

Robert Bosch GmbH
Automotive Electronics

M_CAN

Modular CAN IP-module

DMU Handling

Application Note M_CAN_AN004

Document Revision 1.0
17.08.2023

M_CAN_AN004 AppNote 4 M_CAN with DMU Handling Application Note

i 17.08.2023

LEGAL NOTICE

© Copyright 2023 by Robert Bosch GmbH and its licensors. All rights reserved.

“Bosch” is a registered trademark of Robert Bosch GmbH.

The content of this document is subject to continuous developments and
improvements. All particulars and its use contained in this document are given by
BOSCH in good faith.

NO WARRANTIES: TO THE MAXIMUM EXTENT PERMITTED BY LAW, NEITHER
THE INTELLECTUAL PROPERTY OWNERS, COPYRIGHT HOLDERS AND
CONTRIBUTORS, NOR ANY PERSON, EITHER EXPRESSLY OR IMPLICITLY,
WARRANTS ANY ASPECT OF THIS SPECIFICATION, SOFTWARE RELATED
THERETO, CODE AND/OR PROGRAM RELATED THERETO, INCLUDING ANY
OUTPUT OR RESULTS OF THIS SPECIFICATION, SOFTWARE RELATED
THERETO, CODE AND/OR PROGRAM RELATED THERETO UNLESS AGREED TO
IN WRITING. THIS SPECIFICATION, SOFTWARE RELATED THERETO, CODE
AND/OR PROGRAM RELATED THERETO IS BEING PROVIDED "AS IS", WITHOUT
ANY WARRANTY OF ANY TYPE OR NATURE, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, AND ANY
WARRANTY THAT THIS SPECIFICATION, SOFTWARE RELATED THERETO,
CODE AND/OR PROGRAM RELATED THERETO IS FREE FROM DEFECTS.

ASSUMPTION OF RISK: THE RISK OF ANY AND ALL LOSS, DAMAGE, OR
UNSATISFACTORY PERFORMANCE OF THIS SPECIFICATION (RESPECTIVELY
THE PRODUCTS MAKING USE OF IT IN PART OR AS A WHOLE), SOFTWARE
RELATED THERETO, CODE AND/OR PROGRAM RELATED THERETO RESTS
WITH YOU AS THE USER. TO THE MAXIMUM EXTENT PERMITTED BY LAW,
NEITHER THE INTELLECTUAL PROPERTY OWNERS, COPYRIGHT HOLDERS
AND CONTRIBUTORS, NOR ANY PERSON EITHER EXPRESSLY OR IMPLICITLY,
MAKES ANY REPRESENTATION OR WARRANTY REGARDING THE
APPROPRIATENESS OF THE USE, OUTPUT, OR RESULTS OF THE USE OF THIS
SPECIFICATION, SOFTWARE RELATED THERETO, CODE AND/OR PROGRAM
RELATED THERETO IN TERMS OF ITS CORRECTNESS, ACCURACY,
RELIABILITY, BEING CURRENT OR OTHERWISE. NOR DO THEY HAVE ANY
OBLIGATION TO CORRECT ERRORS, MAKE CHANGES, SUPPORT THIS
SPECIFICATION, SOFTWARE RELATED THERETO, CODE AND/OR PROGRAM
RELATED THERETO, DISTRIBUTE UPDATES, OR PROVIDE NOTIFICATION OF
ANY ERROR OR DEFECT, KNOWN OR UNKNOWN. IF YOU RELY UPON THIS
SPECIFICATION, SOFTWARE RELATED THERETO, CODE AND/OR PROGRAM
RELATED THERETO, YOU DO SO AT YOUR OWN RISK, AND YOU ASSUME THE
RESPONSIBILITY FOR THE RESULTS. SHOULD THIS SPECIFICATION,
SOFTWARE RELATED THERETO, CODE AND/OR PROGRAM RELATED
THERETO PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL LOSSES,
INCLUDING, BUT NOT LIMITED TO, ANY NECESSARY SERVICING, REPAIR OR
CORRECTION OF ANY PROPERTY INVOLVED TO THE MAXIMUM EXTEND
PERMITTED BY LAW.

M_CAN_AN004 AppNote 4 M_CAN with DMU Handling Application Note

ii 17.08.2023

DISCLAIMER: IN NO EVENT, UNLESS REQUIRED BY LAW OR AGREED TO IN
WRITING, SHALL THE INTELLECTUAL PROPERTY OWNERS, COPYRIGHT
HOLDERS OR ANY PERSON BE LIABLE FOR ANY LOSS, EXPENSE OR DAMAGE,
OF ANY TYPE OR NATURE ARISING OUT OF THE USE OF, OR INABILITY TO USE
THIS SPECIFICATION, SOFTWARE RELATED THERETO, CODE AND/OR
PROGRAM RELATED THERETO, INCLUDING, BUT NOT LIMITED TO, CLAIMS,
SUITS OR CAUSES OF ACTION INVOLVING ALLEGED INFRINGEMENT OF
COPYRIGHTS, PATENTS, TRADEMARKS, TRADE SECRETS, OR UNFAIR
COMPETITION.

INDEMNIFICATION: TO THE MAXIMUM EXTEND PERMITTED BY LAW YOU
AGREE TO INDEMNIFY AND HOLD HARMLESS THE INTELLECTUAL PROPERTY
OWNERS, COPYRIGHT HOLDERS AND CONTRIBUTORS, AND EMPLOYEES,
AND ANY PERSON FROM AND AGAINST ALL CLAIMS, LIABILITIES, LOSSES,
CAUSES OF ACTION, DAMAGES, JUDGMENTS, AND EXPENSES, INCLUDING
THE REASONABLE COST OF ATTORNEYS’ FEES AND COURT COSTS, FOR
INJURIES OR DAMAGES TO THE PERSON OR PROPERTY OF THIRD PARTIES,
INCLUDING, WITHOUT LIMITATIONS, CONSEQUENTIAL, DIRECT AND INDIRECT
DAMAGES AND ANY ECONOMIC LOSSES, THAT ARISE OUT OF OR IN
CONNECTION WITH YOUR USE, MODIFICATION, OR DISTRIBUTION OF THIS
SPECIFICATION, SOFTWARE RELATED THERETO, CODE AND/OR PROGRAM
RELATED THERETO, ITS OUTPUT, OR ANY ACCOMPANYING
DOCUMENTATION.

GOVERNING LAW: THE RELATIONSHIP BETWEEN YOU AND ROBERT BOSCH
GMBH SHALL BE GOVERNED SOLELY BY THE LAWS OF THE FEDERAL
REPUBLIC OF GERMANY. THE STIPULATIONS OF INTERNATIONAL
CONVENTIONS REGARDING THE INTERNATIONAL SALE OF GOODS SHALL
NOT BE APPLICABLE. THE EXCLUSIVE LEGAL VENUE SHALL BE
DUESSELDORF, GERMANY.

MANDATORY LAW SHALL BE UNAFFECTED BY THE FOREGOING
PARAGRAPHS.

INTELLECTUAL PROPERTY OWNERS/COPYRIGHT OWNERS/CONTRIBUTORS:
ROBERT BOSCH GMBH, ROBERT BOSCH PLATZ 1, 70839 GERLINGEN,
GERMANY AND ITS LICENSORS.

M_CAN_AN004 AppNote 4 M_CAN with DMU Handling Application Note

iii 17.08.2023

Revision History

Version Date Remark

1.0 17.08.2023 First version of DMU App Note

Conventions

The following conventions are used within this document:

Register names
Names of files and directories
Source code/function names

References

This document refers to the following documents:

Ref Author Title

[1] AE/EY M_CAN User’s Manual
[2] AE/EY M_CAN System Integration Guide
[3] AE/EY User Manual DMU
[4] AE/EY User Manual TSU

Terms and Abbreviations

This document uses the following terms and abbreviations:

Term Meaning

BRP Baud Rate Prescaler
CAN Controller Area Network
CRC Cyclic Redundancy Check
DLC Data Length Code
C With “C” language programmed functions
CRAM Central Memory of the SoC, bound to DMA and CPU
MRAM Message memory of the M_CAN
TSU Timestamping Unit
TTCAN Time-Triggered CAN

M_CAN_AN004 AppNote 4 M_CAN with DMU Handling Application Note

iv 17.08.2023

Table of Contents

1 Overview of DMU integration into M_CAN ... 1
1.1 Host interface for DTM CAN access (AEI Slave) ... 1

1.2 Host interface for direct MRAM access .. 1
1.3 M_CAN interface for MRAM access .. 1
1.4 DMU interface for MRAM access ... 2
2 Target of this Application Note ... 3
3 Introduction to Message Handling with DMU ... 4

4 DMU configuration and Memory map .. 6
4.1 M_CAN and DMU Configuration .. 6

4.2 DMU Memory address map and DMU register .. 6
5 DMU enqueue of TX Element .. 8
5.1 Enqueue Tx Message .. 9
6 DMU dequeuing of RX Element ..10
6.1 Dequeuing of an Rx message ...11

7 Using Time stamping with DMU ..12
7.1 Usage of TSU ...12
7.2 Configuration of TSU ..12
7.3 Reception of timestamped messages ...12

7.4 Transmission of time stamped Messages ...13
8 Example of TX message enqueueing with DMU ...15

8.1 Tx Message Transmission with DMU ..15
9 Example of RX message dequeue with DMU and TSU18

9.1 Rx dequeue Rx Message Transmission with DMU and TSU18
9.2 Hints for using time stamping with TSU ..20

10 List of Tables ..21
11 List of Figures ...22

1/22 17.08.2023

1 Overview of DMU integration into M_CAN

The DMU is an extension-module for the M_CAN and M_TTCAN, which provides an
additional interface that allows simple enqueuing and dequeuing to TX and RX FIFOs
of the M_CAN by linear write or read accesses, in order to be able to offload these
tasks from CPU to standard DMA controllers.

The following figure shows the overview of single CAN system with DMU, TSU,
M_CAN and the integration into a MCU system.

Figure 1: Block diagram M_CAN with DMU and TSU

A M_CAN System consists of at least one M_CAN connected to a module-external
Message RAM (MRAM). The M_CAN is subdivided into functional blocks. Each block
has its own configuration, control, and status registers.

1.1 Host interface for DTM CAN access (AEI Slave)

The Slave Interface dmu_aei connects the DTM_CAN to a customer specific Host
CPU. The Host CPU can access the registers via these dmu_aei interface.

1.2 Host interface for direct MRAM access

The mram_aei Slave interface is used by CPU for direct access to the MRAM, which
is used by M_CAN. Accesses are passed through to dmu_mram_aeim, with DMU
internal arbitration with dmu_aei, which has always the highest access priority. When
dmu_aei and mram_aei are connected to the same SoC bus instance, no arbitration
occurs, since accesses are mutually exclusive.

1.3 M_CAN interface for MRAM access

The m_can_aeim Master Interface connects the M_CAN to an external 32-bit MRAM.
The maximum Message RAM size is 16K • 32 bit. A single M_CAN can use at most
4352 • 32 bit, a single M_TTCAN can use at most 4480 • 32 bit.

2/22 17.08.2023

1.4 DMU interface for MRAM access

The dmu_mram_aeim Master Interface connects the DMU to the same external 32-
bit Message RAM in parallel to the M_CAN m_can_aeim master interface. It is used
for pass-through of mram_aei accesses and for address redirected accesses via
dmu_aei.

3/22 17.08.2023

2 Target of this Application Note

This application note describes the DMU message handling in the M_CAN version
3.3.1, DMU 1.0.1 and TSU 1.0.0.

The topics of this Application Note are:

• Introduction to DMU

• DMU message handling

o Enqueue a message

o Dequeue a message

• Introduction of timestamping with TSU via DMU

• Example of TX handling with TX-FIFO and DMU

• Example of RX handling with RX-FIFO with DMU and TSU

Important Note:

Software examples delivered with this application note are only for illustration
purposes.

4/22 17.08.2023

3 Introduction to Message Handling with DMU

The DMU uses Virtual Buffers for CAN message transfer. The DMU redirects accesses
to these Virtual Buffers dynamically to the MRAM. Redirections are controlled by the
FIFO pointers of the M_CAN. The DMU supports message transfers from the CRAM
to the TX FIFO/Queue and from the RX FIFOs / TX Event FIFO to the CRAM. See
table 1 with an overview of the possible MRAM buffer types.

MRAM buffer type Data transfer direction Buffer condition DMU Request signal

TX FIFO/Queue CRAM →MRAM not full dmu_txr

RX FIFO 0 MRAM →CRAM not empty dmu_rx0r

RX FIFO 1 MRAM →CRAM not empty dmu_rx1r

TX Event FIFO MRAM →CRAM not empty dmu_txer

Table 1: Supported M_CAN message buffers

The M_CAN FIFOs have to be configured as described in [1], e.g. base addresses and
data field sizes. When the M_CAN is setup and running, the CAN messages have to
be interchanged via dedicated DMU Virtual Buffers as shown in Figure 2. These
sections are bound to the Tx FIFO respective Rx FIFO head elements, i.e. the
elements, pointed by M_CAN PUT_INDEX respective GET_INDEX. The DMU just
redirects the accesses to the MRAM.

The data structure of the FIFO elements is described in [1], chapter 2.4 Message RAM.
Each DMU Virtual Buffer is dimensioned to the maximal M_CAN element size, i.e.
72 bytes for Tx and Rx FIFO elements respective 8 byte for Tx Event FIFO element.

Transfer requests of the external DMA controller will be indicated by separate DMU
Request signals, one for each Virtual Buffer, see Table 1. The external DMA
interchange data will be transfered by a linear access to the dedicated Virtual Buffer.

With this linear data transfer, everything internal is implicitly handled, e.g. that a Tx
message will be sent by the M_CAN or that an Rx FIFO element will be acknowledged
and disengaged at the M_CAN.

5/22 17.08.2023

For software debugging purposes, the Virtual Buffers can be accessed via debug
section (DMU debug), without affecting the dataflow of normal operation.

Figure 2: DMU Address Map

MRAM
(n byte)

M
e
ss

a
g
e
 R

A
M

Registers

M_CAN

D
M

U

0x000

0x200

RX0 Element

RX1 Element

TX Event Element

TX Element

0x280

0x300

0x380

0x400

0x480

M
_
C

A
N

0x580

D
M

U
 D

e
b
u
g

0x500

0x3C0

RX0 Element

RX1 Element

TX Event Element

TX Element

0x000

DMU_AEI

MRAM_AEI

0x100
TT Extension

0x160
TSU Extension

6/22 17.08.2023

4 DMU configuration and Memory map

4.1 M_CAN and DMU Configuration

The M_CAN has to be configured for your target CAN node application. This include
all necessary settings to operate as CAN node and is the same configuration as used
without DMU usage. This includes e.g. the CAN node protocol type (CAN FD or CAN
Classic, CAN Bit timing, the TX/RX-FIFOs and TX-Queue buffer configuration, the
filtering, the interrupt usage, etc.

4.2 DMU Memory address map and DMU register

The DMU provides a memory mapped access to the embedded M_CAN with optional
TTCAN registers and optional TSU at the first 512 addresses. The following addresses
for the DMU are listed, i.e. the indirect addressing of the M_CAN head elements and
the configuration registers of the DMU. Data must be accessed via 32 bit (word
access).

ADDRESS SYMBOL NAME RESET Access

0x000 – 0FC M_CAN address range See [1] See [1]

0x100 – 15C TTCAN Extension See [1] See [1]

0x160 – 1FC TSU Extension See [2] See [2]

0x200 – 244 DMU TX Element (18) MRAM1 W²

0x248 – 27C Reserved (14) MRAM1 R

0x280 – 2C4 DMU RX0 Element (18) MRAM1 R²

0x2C8 – 2FC Reserved (14) MRAM1 R

0x300 – 344 DMU RX1 Element (18) MRAM1 R²

0x348 – 37C Reserved (14) MRAM1 R

0x380 – 388 DMU TX Event Element (3) MRAM1 R²

0x38C – 3BC Reserved (13) MRAM1 R

0x3C0 DMUCR DMU Core Release rrrd dddd R

0x3C4 DMUI DMU Internals 0007 0000 RW

0x3C8 DMUQC DMU Queueing Counter 0000 0000 RC

0x3CC DMUIR DMU Interrupt Register 0000 0000 RC1

0x3D0 DMUIE DMU Interrupt Enable 0000 0000 RW

0x3D4 DMUC DMU Configuration 0000 0000 RP

0x3D8 – 3FC Reserved (10) 0000 0000 R

0x400 – 444 DMU TX Element Debug (18) MRAM1 R³

0x448 – 47C Reserved (14) MRAM1 R

0x480 – 4C4 DMU RX0 Element Debug (18) MRAM1 R³

0x4C8 – 4FC Reserved (14) MRAM1 R

0x500 – 544 DMU RX1 Element Debug (18) MRAM1 R³

0x548 – 57C Reserved (14) MRAM1 R

0x580 – 588 DMU TX Event Element Debug (3) MRAM1 R³

0x58C – 5FC Reserved (29) MRAM1 R

0x600 – 7FC Reserved (128) 0000 0000 R

Table 2: DMU address map

7/22 17.08.2023

In case the application software accesses one of the reserved addresses in the DMU
register map (read or write access), the interrupt flag M_CAN IR.ARA is set.
In addition accesses to reserved addresses are directly signaled to the Host CPU by
status signals of the DMU interface.

Regarding the SW implementation the DMU address map with memory segments
should be used with the corresponding header file, see M_CAN.h file as an example.

#define DMU_TX_ELEMENT_BASE_ADDRESS 0x200 // DMU TX Element base address
#define DMU_RX0_ELEMENT_BASE_ADDRESS 0x280 // DMU RX0 Element base address
#define DMU_RX1_ELEMENT_BASE_ADDRESS 0x300 // DMU RX1 Element base address
#define DMU_TXE_ELEMENT_BASE_ADDRESS 0x380 // DMU TXE Element base address

Figure 3: DMU address map segments for M_CAN.h file

The address calculation for the DMU r/w access operation is:
Base address of M_CAN module + DMU address segment address

The M_CAN.h also include the register positions for DMUIR.

8/22 17.08.2023

5 DMU enqueue of TX Element

Overview
The TX Virtual Buffer of the DMU allows to enqueue messages to the Tx FIFO/Queue
of the M_CAN in a simplified way. Both queue types (Fifo or Queue) of the M_CAN are
supported.

The CAN message format of the DMU TX Element is the format described in [1],
chapter 2.4.3 Tx Buffer Element. See following figure as an overview about TX Buffer
Element.

Figure 4: TX buffer element

Start Address
For each message that is transferred to the DMU, the DMU expects the first write
access to be to the first address (called start address) of the TX Element section.

Trigger Address
The last element word Tn of the particular CAN Message, with n ∈ {1, 2, 3, 4, 5, 6, 7,
9, 13, 17}, which is written by the external DMA controller. This is called the Trigger
Address.

9/22 17.08.2023

5.1 Enqueue Tx Message

To enqueue a Tx message, a strict write access sequence has to be processed. The
SW Application or the external DMA controller has to start by writing the T0 word of
the CAN message to the first address of the TX Virtual Buffer (Base address +
0x200), which is called the start address. This triggers the DMU to expect a CAN Tx
message transfer. The complete CAN message has to be transfered linearly to the
ascending and consecutive addresses (word by word) by the external DMA controller.

The DMA transfer is complete by writing the last element word Tn of the CAN Message
(with n ∈ {1, 2, 3, 4, 5, 6, 7, 9, 13, 17}) which is the Trigger Address. The last required
write access to the TX Element Section for a particular CAN message triggers the
scheduling of that TX message element inside of the M_CAN.

The DMU derives the Trigger Address from the RTR bit in T0, the FDF bit in T1, and
the Data Length Code (DLC) in T1. The DMU derives the Trigger Address
dynamically for each message, depending on the individual payload (-> DLC
value) to be transferred. In case of a CAN message with DLC = 4 the Trigger Address
is T2.

After the completion of the first enqueued message scheduling the next access to the
DMU TX Element section is started always at the same start address of the DMU TX
Element (base address + 0x200).

The DMU TX Element handling is also compatible to DMA with a fixed transfer
length/size see flag DMUIR.TXEWATA. In this case of fixed DMU transfer length the
DMU TX handler will ignore all data above the payload size of the CAN message. The
DMU accepts only the CAN message data until end of payload of the CAN message
and transfers it to M_CAN. The DMA data which is transferred above the payload size
address (-> DLC Value) to DMU TX Element section is discarded and not transferred
to M_CAN.

Status flags in the Interrupt Register DMUIR provide detailed information, when one of
the access rules is violated. It is highly recommended, to carefully check all
DMUIR.TXExxx status flags during runtime for unintended activations.

It is recommened to monitor the following interrupt flags, which should never be active
dring the normal operation. You need to use a interrupt function which is monitoring
the DMUIR Interrupt registers.

• DMUIR.TXEEIW: TX Event Element Illegal Write

• DMUIR.TXEEIAS: TX Event Element Illegal Access Sequence

• DMUIR.TXEEID: TX Event Element Illegal Dequeuing

• DMUIR.TXEENSA: TX Event Element Not Start Address

10/22 17.08.2023

6 DMU dequeuing of RX Element

Overview

The RX Virtual Buffer of the DMU allows to dequeue messages to the Rx FIF0 0/1 of
the M_CAN in a simplified way.

The CAN message format for DMU RX Element 0/1 is the format described in [1],
chapter 2.4.2. Rx Buffer and FIFO Element. See following figure as an overview about
RX Buffer and FIFO Element.

Figure 5: RX Buffer / FIFO Element

The DMU RX Element behaves similar to the previously described TX Element. But
the main differences are the transfer direction (MRAM -> CRAM) and that the transfer
size is constant/fixed (according M_CAN:RXESC.FnDS) and does not dynamically
change by the DLC value of a given CAN message.

Start Address
The RX Element section addresses for RX Element 0/1 (R0:
base address + 0x280 and R1: base address + 0x300) are the start addresses.

Trigger Address
The trigger address is derived by the configuration of the dedicated M_CAN Rx FIFO
Element Size. The Rx Buffer / FIFO Element Size is configured with the
M_CAN:RXESC.F0DS[2:0] and M_CAN:RXESC.F1DS[2:0] registers. The trigger
address doesn´t change with the DLC value of the CAN message.

11/22 17.08.2023

6.1 Dequeuing of an Rx message

Dequeuing of an Rx message with the DMU RX Element should only be started, if this
is requested by the DMU. The DMU signals dmu_rx0r and dmu_rx1r indicate the
active request. This means that the dmu_rx0r / dmu_rx1r signals must be checked
for active readiness before the dequeuing process starts.

An Rx message is dequeued by a strict read access sequence. It has to start by
reading the R0 word of the CAN message from the first address of the DMU RX
Element (R0: base address + 0x280 and R1: base address + 0x300), which is called
the start address. This triggers the DMU to expect a CAN Rx message transfer. The
CAN message has to be transferred by a linear addressing to ascending and
consecutive addresses, word by word. The transfer is completed by reading the
Trigger Address Rn, with n ∈ {3, 4, 5, 6, 7, 9, 13, 17}.

The Trigger Address is derived from the configuration of the dedicated M_CAN Rx-
FIFO n Element Size. E.g. if M_CAN:RXESC.F0DS = 0 and M_CAN:RXESC.F1DS =
7. The Trigger Address of DMU RX 0 Element is 0x28C (Rx FIFO element word R3)
and Trigger Address of DMU RX 1 Element is 0x344 (Rx FIFO element word R17).
After the dequeueing process is completed, the next expected access to the DMU
Element can be started at the start address of the DMU RX Element.

The following flags DMUIR.RXnExxx should be monitored and they should be never
active during normal operation. An interrupt routine has to be used for this purpose
which is monitoring the DMUIR interrupt registers:

• DMUIR.RX0,1EIO: RX Element Illegal Overwrite

• DMUIR.RX0,1EIW: RX Element Illegal Write

• DMUIR.RX0,1EIAS: RX Element Illegal Access Sequence

• DMUIR.RX0,1EID: RX Element Illegal Dequeuing

• DMUIR.RX0,1ENSA: RX Element Not Start Address

12/22 17.08.2023

7 Using Time stamping with DMU

The M_CAN supports HW - time stamping. For the time stamping in this application
the TSU unit is used, which is an Add-On of the M_CAN. The hardware time stamping
is supported according CiA 603. See more info about TSU in [5].

The target of this application note is focused to use the combination of DMU with
timestamping.

7.1 Usage of TSU

The TSU is enabled with the CCCR.UTSU register = ‘1’. In case CCCR.UTSU = ‘0’
(default value), the M_CAN’s internal 16-bit timestamp counter is used.

7.2 Configuration of TSU

The TSU is configured with the TSCFG registers Register, the TSCFG is only writeable
while input m_can_cce = ‘1’. The following register bits must be configured:

- TBPRE[7:0] Timebase Prescaler
- SCP Capturing Position
- TBCS Timebase Counter Select
- TSUE Timestamp Unit Enable

See C-function tsu_config() in the application SW code example how the TSU
configuration can be done.

7.3 Reception of timestamped messages

For reception of time stamped messages, a Standard Sync Message/Extended Sync
Message ID Filter Element must be set with the S0.SSYNC = ‘1’ and F1.ESYNC =
‘1’. Without an active filter, the message data are not received.

In case the M_CAN is used together with the TSU, the Rx Buffer and FIFO Element is
modified according to following figure.

13/22 17.08.2023

Figure 6: Rx Buffer and FIFO Element with TSU enabled (CCCR.UTSU = ‘1’)

For message reception, the value of m_can_tsp[3:0] is stored on position
R1B.RXTSP[3:0] of the M_CAN’s Rx Buffer or Rx FIFO element, which the messages
with timestamp capturing are stored. R1B.TSC is set to ‘1’ when a time stamp has
been captured by the TSU and R1B.RXTSP[3:0] holds a valid time stamp pointer.

See more info in [3] chap. 4.2.3 and how to use Tx Event FIFO Element with TSU.

7.4 Transmission of time stamped Messages

To support hardware time stamping by the TSU, bit T1.TSCE is added to the M_CAN’s
TX Buffer element as shown in following Figure 7 below.

When bit T1.TSCE (Timestamp Capture Enable) is set, a successful transmission of
the Tx Buffer element triggers the capture of the TSU’s timebase value as time stamp.

14/22 17.08.2023

 Figure 7: Modified Tx Buffer Element

15/22 17.08.2023

8 Example of TX message enqueueing with DMU

The C-function can_an004_dmu_tx_enqueue() demostrates the principle of TX
message enqueueing with the DMU.

This sample C-function uses 2 x M_CAN nodes in a CAN-FPGA demonstrator. For
this demo, CAN messages are transmitted from node M_CAN_0 with DMU to node
M_CAN_1 with DMU. The M_CANmodule nodes are configured as “normal” node as
without DMU.

TX-node: The TX node (M_CAN_0) is configured as TX-FIFO in Queue mode. CAN-
FD TX messages are pre-defined in a C-Array.

At the TX-node, the DMU is used to transfer/enqueue CAN message to the CAN bus.

The application SW or the DMA controller writes/enqueues CAN messages to the TX
Element of the DMU (Figure 2). The DMU redirects these CAN messages to the
MRAM. When the application SW or the DMA controller writes until the Trigger
Address, the M_CAN transmits the CAN messages to the CAN bus.

RX-node: The RX node (M_CAN_1) is configured as RX-FIFO and use also the DMU.
In this example the received CAN messages are printed out to the console of the FPGA
demonstator.

8.1 Tx Message Transmission with DMU

Following steps are required to transmit a message with a DMU:

1. Configure your DMA controller for a word (four bytes -> 32bit) access. The
transfer size should be calculated according to the payload (DLC value of the
CAN message) of the Tx message. If the DMA supports only fixed transfer
length/size, then this is also possible. In this case, transfer length must be the
length of the maximum Tx message (incl. max. payload), which should be
transmitted.

The write address destination location of the DMA must be calculated as
follows:

Start Address: M_CAN Module address + DMU_TX_ELEMENT_ADDRESS
(0x200).

2. The DMA controller has to transfer/enqueue the Tx message from the source
address (CRAM) to the destination address, which is the start address. The Tx
message must be a 32-bit-word as described in the in [1], chapter 2.4.3 Tx
Buffer Element.

3. The signal dmu_txr must be checked for readiness before the SW applicaton
or the DMA controller transfers/enqueues Tx message to DMU virtual buffer.

4. The enqueue process can only be started when the DMU Request signal
dmu_txr is set. This signal is set and cleared by the DMU.

16/22 17.08.2023

5. The enqueue process should be monitored via a C-interrupt function, which
checks the Interrupt DMUIR.TXExxx status flags. In case of an error the
enqueue processing must be stopped and the error handling must be started.

The DMU redirects the Tx messages, which are written to its TX Element virtual buffer,
to the MRAM. After the Trigger Address is reached, the M_CAN considers the
arbitration among Tx messages internally in the MRAM and externally with the
messages on the CAN bus. Then, the messages are sent out according to their
Message ID.

The Application Code C-functions with DMU have different switches and additional
functions integrated to handle the DMU. The following parameter switches are used:

- USE_DMU: If the DMU is used, then this define/parameter must be ´1´. /*
defined in global_defines.h */

- USE_VARIABLE_PAYLOAD_BY_DLC: Value =´1´, if CAN Message DLC
value is used for the TX transfer. Value =´0´, if a fixed size for the Tx transfer
is used.

Software Examples

Table 1 lists C - functions which are used to demonstrate Tx Enqueue operation. The
functions are provided with this application note.

Table 1: List of C functions which are used for Tx Enqueue demonstration

Name:

File:

Description:

m_can_an004_dmu_tx_enqueue(..)

../appnote/app_note_004_dmu_TX_enqueue_handling.c

Demonstrates the principle of TX enqueueing with the DMU. This
sample C-function uses 2 x M_CAN nodes in a CAN-FPGA
demonstrator. For this demo CAN messages are transmitted from
node M_CAN_0 with DMU to node M_CAN_1 without DMU. The
M_CAN module nodes are configured as “normal” as above
explained.

Name:

File:

Description:

m_can_tx_buffer_init(..)

../m_can/m_can.c

This function configures the Tx Buffer section. Tx Buffer element size
and the Tx Buffer combination is configured. M_CAN has to be in
configuration change enable mode when this function is called.

Name:

File:

Description:

m_can_tx_write_msg_to_tx_buffer(..)

../m_can/m_can.c

Function to copy Tx message to Virtual DMU Tx Buffer. The TX
Buffer elements T0 ,T1 and T2 are adjusted (into the dmu_word
variable) for the subsequent DMU memory write process. This
Function transfers every T0 ,T1 and T2 buffer elements to DMU
virtual buffer.

17/22 17.08.2023

Name:

File:

Description:

m_can_tx_fifo_queue_msg_transmit(..)

../m_can/m_can.c

The function includes a switch parameter USE_DMU inside the
function.

For M_CAN without DMU: (If USE_DMU = 0), function copies Tx
message to FIFO/Queue on MRAM, and requests transmission.
Function only makes these when the Tx FIFO is not full.

For M_CAN with DMU: (If USE_DMU = 1), funtions copies TX
messages to DMU virtual buffer. The DMU redirect the messages to
FIFO/Queue on MRAM. When the application SW or the DMA
controller copies the message until the Trigger Address, the M_CAN
transmits the CAN messages to the CAN bus.

Function only makes the copying when the Tx FIFO is not full. This
is done indirectly by checking bit TXR in the register DMUI. The
behaviour of TXR bit is similar to the dmu_txr signal, which is used
to trigger an external DMA access.

18/22 17.08.2023

9 Example of RX message dequeue with DMU and TSU

The C-function m_can_an004_dmu_rx_with_time_stamp demostrates the principle of
RX dequeueing with the DMU. This example shows also, the usage of timestamping
with the TSU.

This sample C-function uses 2 x M_CAN nodes in a CAN-FPGA demonstrator. As
above CAN messages are transmitted from node M_CAN_0 with DMU to node
M_CAN_1 with DMU, which is the receiving node . The M_CAN module nodes are
configured as “normal” node as node without DMU.

This example also shows the usage of the TSU. The TSU with the hardware time
stamping must be configured according the description in the TSU user manual[5].

Tx-node: The Tx node (M_CAN_0) is configured as Tx-FIFO. CAN-FD Tx messages
are pre-defined in a C-Array.

At the TX-node, a DMU is used to transfer CAN message to the CAN bus. The
application SW or the DMA controller writes/enqueues CAN messages to the TX
Element of the DMU (Figure 2). The DMU redirects these CAN messages to the
MRAM. After that, the M_CAN implicitly transmits the CAN messages to the CAN bus.

RX-node: The RX node (M_CAN_1) is configured as RX-FIFO and use also DMU. .
In this example the received CAN messages are printed out to the console of the FPGA
demonstrator.

At the receiving node the TSU is enabled. The internal time base counter is enabled
the timestamp is captured for Sync at EOF (End of Frame) and the Timebase prescaler
TSCFG.TBPRE[7:0] is set to ´0´.

To configure the M_CAN for reception of timestamped messages, a
Standard/Extended Message ID Filter Element has to be set up by configuration of
S0.SSYNC = ‘1’ respectively F1.ESYNC = ‘1’.

9.1 Rx dequeue Rx Message Transmission with DMU and TSU

Following steps are required to receive a message with M_CAN + DMU:

1. Configure a DMA controller for a word (four bytes -> 32bit) access. For the Rx
transmission the transfer size is fixed. The DMA transfer length/size must be
the length of the complete RX FIFO 0/1. For e.g. in case of a RX-Fifo 0/1 with
64 bytes then transfer size must also 64byte, which are 16 word (32Bit) for the
DMA.

The read address of the DMA source location must be calculated as follows:

Start Address: M_CAN Module address + DMU_RX_ELEMENT_ADDRESS
(R0: base address + 0x280 and R1: base address + 0x300)

2. The DMA controller has to transfer the Rx message from the source address
(start address of DMU Virtual Rx-Element) to the destination address (CRAM).

19/22 17.08.2023

The Rx message must be a 32Bit word as described in the in [1], chapter 2.4.2
Rx Buffer Element.

3. The dequeue process should only be started when the DMU Request signal
dmu_rxr0 (for FIFO0) / dmu_rxr1 (for FIFO1) or bit RX0R / RX1R in register
DMUI) is 1. Otherwise, exception recovery will start (in [3], chapter 3.4 Exception
Recovery at DMU Virtual Buffer). This signal is set and cleared by the DMU

4. The dequeue process should be monitored via a C-interrupt function, which
checks the Interrupt DUMIR.RXxxx status flags. In case of an error the dequeue
processing must be stopped and the error handling must be started.

5. The DMU transfer the messages from the MRAM to the DMU Rx-Element
Virtual Buffer. The application SW or the external DMA controller must transfer
the received message from RX-Element section to the CRAM until the complete
Rx-FIFO size is transferd.

The Application Code C-functions with DMU have different switches and additional
functions integrated to handle the DMU. The following parameter switches are used:

- USE_DMU: If the DMU is used, then this define/parameter must be ´1´. /*
defined in global_defines.h */

Software Examples

Table 2 lists C - functions which are used to demonstrate Tx dequeue operation. The
functions are provided with this application note.

Table 2 : List of C functions which are used for Rx dequeue demonstration

Name:

File:

Descripti
on:

m_can_an004_dmu_rx_with_time_stamp (..)

../app_notes/app_note_004_dmu_RX_dequeue_with_time_s

tamp_handling.c

Demonstrates the principle of RX dequeueing with the DMU with the
usage of TSU. This sample C-function uses 2 x M_CAN nodes in a
CAN-FPGA demonstrator.
TX_Node (M_CAN_0): configured for transmission (TX_FIFO),
transmits CAN FD frames (messages are filled with data in a while-
loop) using a time stamp from the external TSU.
RX_Node (M_CAN_1): configured for reception (RX_FIFO). All
received messages (Messages are received in while-loop) as well as
the time stamp from the TSU and the time stamp from the RX
message are printed on the std_out.

Name:

File:

Descripti
on:

m_can_TSU_set_usage(..)

../m_can/m_can.c

Enable or Disable the TSU usage with the M_CAN

20/22 17.08.2023

Name:

File:

Descripti
on:

tsu_config (..)

../tsu/m_can.c

Configure the TSU. Parameter configuration with function tsu_config()

Parameters: TSU enable / TimeBase Counter Select / Select Capture
Position / TimeBase pre-scaler

9.2 Hints for using time stamping with TSU

See following steps and hints to use hardware time stamping:

1. For the usage of hardware time stamping the TSU is needed. The CCCR.UTSU
must be set (=1), if TSU is enabled. See C-function m_can_TSU_set_usage()

2. The payload for messages with timestaming is reduced to maximum 48 Bytes
with DLC =14, because othterwise overwrite occur. This is needed because of
the timestamping data are inserted into the TX-Frame at R1B.RXTSP[3:0] for
RX-Buffer and FIFO 0/1 configuration. For TX Event-FIFO it is inserted into
E1B.TXTSP[3:0].l

3. Configure the TSU according to our application needs. See C-Function
tsu_config (), how to configure the TSU.

4. Set and configure filter for your RX configuration (FIFO0 / FIFO1). See C-
functions m_can_global_filter_configuration(), m_can_filter_init_standard_id()
or m_can_filter_init_extended_id().

5. Write ID filter (Standard/Extended) to message RAM. For Standard ID Filter see
m_can_filter_write_standard_id() and S0.SSYNC = ‘1’ must be set.

For extended ID Filter see m_can_filter_write_extended_id() and F1.ESYNC =
‘1’ must be set.

21/22 17.08.2023

10 List of Tables

TABLE 1: LIST OF C FUNCTIONS WHICH ARE USED FOR TX ENQUEUE DEMONSTRATION 16
TABLE 2 : LIST OF C FUNCTIONS WHICH ARE USED FOR RX DEQUEUE DEMONSTRATION 19

22/22 17.08.2023

11 List of Figures

FIGURE 1: BLOCK DIAGRAM M_CAN WITH DMU AND TSU .. 1
FIGURE 2: DMU ADDRESS MAP ... 5
FIGURE 3: DMU ADDRESS MAP SEGMENTS FOR M_CAN.H FILE .. 7
FIGURE 4: TX BUFFER ELEMENT .. 8
FIGURE 5: RX BUFFER / FIFO ELEMENT ... 10
FIGURE 6: RX BUFFER AND FIFO ELEMENT WITH TSU ENABLED (CCCR.UTSU = ‘1’) ... 13
FIGURE 7: MODIFIED TX BUFFER ELEMENT .. 14

