

GTM-IP Generic Timer Module

GTM-IP Specification

Revision: 3.1.5.1 (Released on 24.03.2016)

Robert Bosch GmbH Automotive Electronics (AE)

Specification

Revision Number Notice

The specification revision number of this document consists of four decimal integers separated by a dot.

The first decimal integer represents the major release number, the second represents the minor release number and the third represents the delivery number of specification. A GTM-IP release always refers to the first three decimal integer of the specification revision number and is extended by a design step identifier. This GTM-IP release number can be read out of register GTM_REV.

The fourth decimal integer of specification revision number is related to updated versions of the specification which are independent of a GTM-IP release.

During silicon validation and qualification process it may turn out that the current specification revision related to the silicon is incomplete, inconsistent or ambiguous. It may also be the case that the silicon behaviour diverges for a specific functional feature from specification but the behaviour of silicon is also acceptable for intended GTM applications. In these cases Bosch AE will update the specification revision number.

An increased fourth decimal integer means that either the new specification is more precise or that a functional feature was limited or removed. It never means that there was added a new feature.

Specification

Table of Contents

1	Introduction	. 1
1.1	Overview	. 1
1.2	Document Structure	. 2
1.2.1	Sub-module groups	. 2
2	GTM Architecture	. 3
2.1	Overview	. 3
2.1.1	GTM Architecture Block Diagram	. 3
2.1.2	ARU Data Word Description	. 5
2.1.3	GTM-IP signal multiplex	. 7
2.1.4	TIM auxiliary input multiplexing	. 7
2.1.5	TIM external capture forwarding to TOM and ATOM	. 8
2.1.6	TIM to MCS signal forwarding	. 9
2.2	GTM-IP Interfaces	10
2.2.1	GTM-IP Generic Bus Interface (AEI)	11
2.2.2	GTM-IP Multi-master and multitasking support	12
2.3	ARU Routing Concept	12
2.3.1	Principle of data routing using ARU	13
2.3.2	ARU source and destination address count per instance	14
2.3.3	ARU Round Trip Time	15
2.3.4	ARU Blocking Mechanism	15
2.4	GTM-IP Clock and Time Base Management (CTBM)	16
2.4.1	GTM-IP Clock and time base management architecture	16
2.4.2	Cyclic Event Compare	17
2.5	GTM-IP Interrupt Concept	18
2.5.1	Level interrupt mode	21
2.5.2	Pulse interrupt mode	23
2.5.3	Pulse-notify interrupt mode	24
2.5.4	Single-pulse interrupt mode	25
2.5.5	GTM-IP Interrupt concentration method	27
2.6	GTM-IP Software Debugger Support	
2.6.1	Register behavior in case of Software Debugger accesses	27
2.7	GTM-IP Programming conventions	28
2.8	GTM-IP TOP-Level Configuration Register Overview	
2.8.1	GTM-IP TOP-Level Configuration Register Overview Table	
2.9	GTM TOP-Level Configuration Registers Description	
2.9.1	Register GTM_REV	
2.9.2	Register GTM_RST	
2.9.3	Register GTM_CTRL	
2.9.4	Register GTM_AEI_ADDR_XPT	
2.9.5	Register GTM_AEI_STA_XPT	
2.9.6	Register GTM_IRQ_NOTIFY	
2.9.7	Register GTM_IRQ_EN	35
2.9.8	Register GTM_IRQ_FORCINT	37

Revision 3.1.5.1

2.9.9	Register GTM_IRQ_MODE	38
2.9.10	Register GTM_BRIDGE_MODE	39
2.9.11	Register GTM_BRIDGE_PTR1	41
2.9.12	Register GTM_BRIDGE_PTR2	42
2.9.13	Register GTM_MCS_AEM_DIS	43
2.9.14	Register GTM_EIRQ_EN	44
2.9.15	Register GTM_CLS_CLK_CFG	45
2.9.16	Register GTM_CFG	
3	Advanced Routing Unit (ARU)	50
3.1	Overview	
3.2	Special Data Sources	50
3.3	ARU Access via AEI	51
3.3.1	Default ARU Access	51
3.3.2	Debug Access	52
3.4	ARU dynamic routing	
3.4.1	Dynamic routing - CPU controlled	53
3.4.2	Dynamic routing - ARU controlled	
3.5	ARU Interrupt Signals	56
3.5.1	ARU Interrupt Signals Table	57
3.6	ARU Configuration Register Overview	57
3.6.1	ARU Configuration Register Overview Table	57
3.7	ARU Configuration Register Description	58
3.7.1	Register ARU_ACCESS	58
3.7.2	Register ARU_DATA_H	59
3.7.3	Register ARU_DATA_L	60
3.7.4	Register ARU_DBG_ACCESS0	61
3.7.5	Register ARU_DBG_DATA0_H	61
3.7.6	Register ARU_DBG_DATA0_L	
3.7.7	Register ARU_DBG_ACCESS1	62
3.7.8	Register ARU_DBG_DATA1_H	63
3.7.9	Register ARU_DBG_DATA1_L	64
3.7.10	Register ARU_IRQ_NOTIFY	64
3.7.11	Register ARU_IRQ_EN	
3.7.12	Register ARU_IRQ_FORCINT	66
3.7.13	Register ARU_IRQ_MODE	66
3.7.14	Register ARU_CADDR_END	67
3.7.15	Register ARU_CADDR	68
3.7.16	Register ARU_CTRL	68
3.7.17	Register ARU_[z]_DYN_CTRL (z:01)	69
3.7.18	Register ARU_[z]_DYN_RDADDR (z:01)	70
3.7.19	Register ARU_[z]_DYN_ROUTE_LOW (z:01)	71
3.7.20	Register ARU_[z]_DYN_ROUTE_HIGH (z:01)	71
3.7.21	Register ARU_[z]_DYN_ROUTE_SR_LOW (z:01)	72
3.7.22	Register ARU_[z]_DYN_ROUTE_SR_HIGH (z:01)	
4	Broadcast Module (BRC)	
4.1	Overview	74
4.2	BRC Configuration	74

Revision 3.1.5.1

4.3	BRC Interrupt Signals	
4.4	BRC Configuration Register Overview	
4.4.1	BRC Configuration Register Overview Table	
4.5	BRC Configuration Register Description	
4.5.1	Register BRC_SRC_[z]_ADDR (z:011)	
4.5.2	Register BRC_SRC_[z]_DEST (z:011)	
4.5.3	Register BRC_IRQ_NOTIFY	
4.5.4	Register BRC_IRQ_EN	
4.5.5	Register BRC_IRQ_FORCINT	
4.5.6	Register BRC_IRQ_MODE	
4.5.7	Register BRC_EIRQ_EN	
4.5.8	Register BRC_RST	
5	First In First Out Module (FIFO)	
5.1	Overview	
5.2	Operation Modes	
5.2.1	FIFO Operation Mode	
5.2.2	Ring Buffer Operation Mode	
5.2.3	DMA Hysteresis Mode	
5.3	FIFO Interrupt Signals	
5.4	FIFO Configuration Register Overview	
5.5	FIFO Configuration Registers Description	
5.5.1	Register FIFO[i]_CH[z]_CTRL (z:07)	
5.5.2	Register FIFO[i]_CH[z]_END_ADDR (z:07)	
5.5.3	Register FIFO[i]_CH[z]_START_ADDR (z:07)	
5.5.4 5.5.5	Register FIFO[i]_CH[z]_UPPER_WM (z:07)	
5.5.5 5.5.6	Register FIFO[i]_CH[z]_LOWER_WM (z:07)	
5.5.6 5.5.7	Register FIFO[i]_CH[z]_STATUS (z:07) Register FIFO[i] CH[z] FILL LEVEL (z:07)	
5.5.8	Register FIFO[i]_CH[z]_WR_PTR (z:07)	
5.5.9	Register FIFO[i]_CH[z]_RD_PTR (z:07)	
5.5.10	Register FIFO[i]_CH[z]_IRQ_NOTIFY (z:07)	
5.5.11	Register FIFO[i]_CH[z]_IRQ_EN (z:07)	
5.5.12	Register FIFO[i] CH[z] IRQ FORCINT (z:07)	
5.5.13	Register FIFO[i]_CH[z]_IRQ_MODE (z:07)	
5.5.14	Register FIFO[i]_CH[z]_EIRQ_EN (z:07)	
6.5.14	AEI to FIFO Data Interface (AFD)	
6.1	Overview	
6.2	AFD Register overview	
6.3	AFD Register description	
6.3.1	Register AFD[i]_CH[z]_BUF_ACC (z:07)	
7	FIFO to ARU Unit (F2A)	
7.1	Overview	
7.2	Transfer modes	
7.2.1	Data transfer of both ARU words between ARU and FIFO	
7.3	Internal buffer mode	
7.3.1	Reconfiguration of F2A stream 4 to FIFO channel 0	
7.4	F2A Configuration Register Overview	
-		

Revision 3.1.5.1

	· · · · · · · · · · · · · · · · · · ·	
7.5	F2A Configuration Register description	
7.5.1	Register F2A[i]_ENABLE	
7.5.2	Register F2A[i]_CH[z]_ARU_RD_FIFO (z: 07)	
7.5.3	Register F2A[i]_CH[z]_STR_CFG (z: 07)	
7.5.4	Register F2A[i]_CTRL	
8	Clock Management Unit (CMU)	
8.1	Overview	
8.1.1	CMU Block Diagram	
8.2	Global Clock Divider	-
8.3	Configurable Clock Generation sub-unit (CFGU)	
8.3.1	Wave Form of Generated Clock Signal CMU_CLK[x]	
8.4	Fixed Clock Generation (FXU)	
8.5	External Generation Unit (EGU)	
8.6	CMU Configuration Register Overview	
8.6.1	CMU Configuration Register Overview Table	
8.7	CMU Configuration Register Description	
8.7.1	Register CMU_CLK_EN	
8.7.2	Register CMU_GCLK_NUM	
8.7.3	Register CMU_GCLK_DEN	
8.7.4	Register CMU_CLK_[z]_CTRL (z:05)	
8.7.5	Register CMU_CLK_6_CTRL	
8.7.6	Register CMU_CLK_7_CTRL	
8.7.7	Register CMU_ECLK_[z]_NUM (z:02)	116
8.7.8	Register CMU_ECLK_[z]_DEN (z:02)	
8.7.9	Register CMU_FXCLK_CTRL	
8.7.10	Register CMU_GLB_CTRL	
8.7.11	Register CMU_CLK_CTRL	
9	Cluster Configuration Module (CCM)	
9.1	Overview	
9.1.1	Cluster Clock Signal Wiring	
9.2	Address Range Protection	
9.3	CCM Configuration Register Overview	
9.3.1	CCM Configuration Register Overview Table	
9.4	CCM Configuration Register description	
9.4.1	Register CCM[i]_PROT	
9.4.2	Register CCM[i]_CFG	
9.4.3	Register CCM[i]_CMU_CLK_CFG	
9.4.4	Register CCM[i]_CMU_FXCLK_CFG	129
9.4.5	Register CCM[i]_AEIM_STA	
9.4.6	Register CCM[i]_ARP[z]_CTRL (z: 0NARP-1)	
9.4.7	Register CCM[i]_ARP[z]_PROT (z:0NARP-1)	
9.4.8	Register CCM[i]_HW_CONF	
9.4.9	Register CCM[i]_TIM_AUX_IN_SRC	
9.4.10	Register CCM[i]_EXT_CAP_EN	
9.4.11	Register CCM[i]_TOM_OUT	
9.4.12	Register CCM[i]_ATOM_OUT	
10	Time Base Unit (TBU)	142
10	Time Base Unit (TBU)	142

Revision 3.1.5.1

10.1	Overview	
10.1.1	TBU Block Diagram	
10.2	TBU Channels	144
10.2.1	Independent Modes	144
10.2.2	Dependent Mode	145
10.3	TBU Configuration Register Overview	145
10.3.1	TBU Configuration Register Overview Table	
10.4	TBU Register description	
10.4.1	Register TBU_CHEN	
10.4.2	Register TBU_CH0_CTRL	
10.4.3	Register TBU_CH0_BASE	
10.4.4	Register TBU_CH1_CTRL	
10.4.5	Register TBU_CH2_CTRL	
10.4.5	Register TBU_CH[y]_BASE (y:1,2)	
10.4.0		
-	Register TBU_CH3_CTRL	
10.4.8	Register TBU_CH3_BASE	
10.4.9	Register TBU_CH3_BASE_MARK	
10.4.10		152
11	Timer Input Module (TIM)	
11.1	Overview	
11.1.1	TIM Block Diagram	
11.1.2	TIM channel internal connectivity	155
11.1.3	Input source selection INPUTSRCx	156
11.1.4	Input observation	
11.1.5	External capture source selection EXTCAPSRCx	158
11.2	TIM Filter Functionality (FLT)	160
11.2.1	Overview	160
11.2.2	TIM Filter Modes	162
11.2.3	TIM Filter reconfiguration	167
11.3	Timeout Detection Unit (TDU)	
11.3.1	Counter/comparator slice	
11.3.2	Used parallel functions	
11.3.3	Which of the available 8 bit resources are cascaded with a chosen SLIC	
11.0.0	170	mu
11.3.4	Architecture of the TDU Sub-unit	172
11.3.5	ACB Bits for valid data provided by a TIM channel	175
11.4	TIM Channel Architecture	
11.4.1	Overview	
11.4.2	TIM Channel Modes	
11.5	MAP Submodule Interface	
11.5.1	Structure of map data	
11.6	TIM Interrupt Signals	
11.6.1	TIM Interrupt Signals Table	
11.7	TIM Configuration Register Overview	
11.7.1		
	TIM Configuration Register Overview Table	
11.8	TIM Configuration Registers Description	
11.8.1	Register TIM[i]_CH[x]_CTRL	191

Revision 3.1.5.1

11.8.2 Register TIM[i]_CH[x]_CTRL (i:0)	201
11.8.3 Register TIM[i]_CH[x]_FLT_RE	205
11.8.4 Register TIM[i]_CH[x]_FLT_FE	206
11.8.5 Register TIM[i]_CH[x]_GPR0	
11.8.6 Register TIM[i]_CH[x]_GPR1	
11.8.7 Register TIM[i]_CH[x]_CNT	208
11.8.8 Register TIM[i]_CH[x]_CNTS	209
11.8.9 Register TIM[i]_CH[x]_IRQ_NOTIFY	
11.8.10 Register TIM[i]_CH[x]_IRQ_EN	210
11.8.11 Register TIM[i]_CH[x]_IRQ_FORCINT	211
11.8.12 Register TIM[i]_CH[x]_IRQ_MODE	212
11.8.13 Register TIM[i]_RST	
11.8.14 Register TIM[i]_IN_SRC	
11.8.15 Register TIM[i]_CH[x]_EIRQ_EN	
11.8.16 Register TIM[i]_CH[x]_TDUV	
11.8.17 Register TIM[i]_CH[x]_TDUC	
11.8.18 Register TIM[i]_CH[x]_ECNT	
11.8.19 Register TIM[i]_CH[x]_ECTRL	
11.8.20 Register TIM[i]_INP_VAL	
12 Timer Output Module (TOM)	
12.1 Overview	
12.1.1 TOM block diagram	
12.2 TOM Global Channel Control (TGC0, TGC1)	
12.2.1 Overview	
12.2.2 TGC Sub-unit	
12.3 TOM Channel	
12.3.1 TOM Channel 07 architecture	
12.3.2 TOM Channel 814 architecture	
12.3.3 TOM Channel 15 architecture	
12.3.4 Duty cycle, Period and Clock Frequency Update Mechanisms.	
12.3.5 Continuous Counting Up Mode	
12.3.6 Continuous Counting Up-Down Mode	
12.3.7 One-shot Counting Up Mode	
12.3.8 One-shot Counting Up-Down Mode12.3.9 Pulse Count Modulation Mode	
12.3.10 Trigger Generation 12.4 TOM BLDC Support	
12.4 TOM BLDC Support 12.5 TOM Gated Counter Mode	
12.6 TOM Interrupt signals12.7 TOM Configuration Register Overview	
12.7 TOM Configuration Register Description	
12.8.1 Register TOM[i]_TGC[y]_GLB_CTRL (y:01)	
12.8.1 Register TOM[i]_TGC[y]_ENDIS_CTRL (y:01)	
12.8.3 Register TOM[i]_TGC[y]_ENDIS_STAT (y:01)	
12.8.4 Register TOM[i]_TGC[y]_ACT_TB (y:01)	
12.8.5 Register TOM[i]_TGC[y]_OUTEN_CTRL (y:01)	
12.8.6 Register TOM[i]_TGC[y]_OUTEN_STAT (y:01)	
	204

GTM-IP	Specification	Revision 3.1.5.1
12.8.7	Register TOM[i]_TGC[y]_FUPD_CTRL (y:01)	254
12.8.8	Register TOM[i]_TGC[y]_INT_TRIG (y:01)	256
12.8.9	Register TOM[i]_CH[x]_CTRL	257
12.8.10	Register TOM[i]_CH[x]_CN0	261
12.8.11	Register TOM[i]_CH[x]_CM0	261
12.8.12	Register TOM[i]_CH[x]_SR0	262
12.8.13	Register TOM[i]_CH[x]_CM1	262
12.8.14	Register TOM[i]_CH[x]_SR1	
12.8.15	Register TOM[i]_CH[x]_STAT	263
12.8.16	Register TOM[i]_CH[x]_IRQ_NOTIFY	264
12.8.17	Register TOM[i]_CH[x]_IRQ_EN	264
12.8.18	Register TOM[i]_CH[x]_IRQ_FORCINT	
12.8.19	Register TOM[i]_CH[x]_IRQ_MODE	
13	ARU-connected Timer Output Module (ATOM)	267
	Overview	
13.1.1	ATOM block diagram	267
13.1.2	ATOM Global Control (AGC)	
13.1.3	ATOM Channel Mode Overview	272
13.2	ATOM Channel Architecture	273
13.2.1	ATOM channel architecture	273
13.2.2	ARU Communication Interface	274
13.3	ATOM Channel Modes	
13.3.1	ATOM Signal Output Mode Immediate (SOMI)	
13.3.2	ATOM Signal Output Mode Compare (SOMC)	
13.3.3	ATOM Signal Output Mode PWM (SOMP)	
13.3.4	ATOM Signal Output Mode Serial (SOMS)	
13.3.5	ATOM Signal Output Mode Buffered Compare(SOMB)	
13.4	ATOM Interrupt Signals	
	ATOM Register Overview	
	ATOM Register Description	
13.6.1	Register ATOM[i]_AGC_GLB_CTRL	
13.6.2	Register ATOM[i]_AGC_ENDIS_CTRL	
13.6.3	Register ATOM[i]_AGC_ENDIS_STAT	
13.6.4	Register ATOM[i]_AGC_ACT_TB	
13.6.5	Register ATOM[i]_AGC_OUTEN_CTRL	
13.6.6	Register ATOM[i]_AGC_OUTEN_STAT	
13.6.7	Register ATOM[i]_AGC_FUPD_CTRL	
13.6.8	Register ATOM[i]_AGC_INT_TRIG	
13.6.9	Register ATOM[i]_CH[x]_CTRL	
13.6.10	Register ATOM[i]_CH[x]_STAT	
13.6.11	Register ATOM[i]_CH[x]_RDADDR	
13.6.12	Register ATOM[i]_CH[x]_CN0	
13.6.13	Register ATOM[i]_CH[x]_CM0	
13.6.14	Register ATOM[i]_CH[x]_SR0	
13.6.15	Register ATOM[i]_CH[x]_CM1	
13.6.16	Register ATOM[i]_CH[x]_SR1	
13.6.17	Register ATOM[i]_CH[x]_IRQ_NOTIFY	
	0	

Revision 3.1.5.1

13.6.18 13.6.19 13.6.20 14 14.1 14.1.1Connections of TOM and ATOM to DTM inputs DTM IN[v]/DTM IN[v] T 14.1.2360 14.1.3 Connections of TIM to DTM inputs TIM CH IN0/TIM CH IN1 for Connections of TIM to DTM inputs TIM CH IN0/TIM CH IN1 14.1.4for 14.1.5 14.2 14.2.1 14.2.2 14.2.3 14.3 14.3.1 14.3.2 14.4 Combination of input signal TIM CH IN/AUX IN with TOM/ATOM signal 14.4.1 369 14.4.2 14.4.314.5 Synchronous update mechanism of register DTM[i] CH CTRL2372 14.5.114.614.714.7.1(A)TOM output signal routing in case of no DTM instance available374 14.7.2 14.8 14.9 14.9.1 14.9.2 14.9.3 14.9.4 14.9.5 14.9.6 14.9.7 14.9.8 15 15.115.1.1 15.2

Specification

15.2.1 15.3

х

Revision 3.1.5.1

15.3.1 R	ound Robin Scheduling
15.3.2 A	ccelerated Scheduling
15.3.3 S	ingle Prioritization Scheduling
	ultiple Prioritization Scheduling
	mory Organization
	Bus Master Interface
	C Interface
	asic ADC Functions401
	ruction Set402
15.7.1 In	struction Set Summary (part 1)404
15.7.2 In	struction Set Summary (part 2)405
15.7.3 In	struction Set Summary (part 3)406
	struction Codes (part 1)
	struction Codes (part 2)408
	OVL Instruction
	OV Instruction
	RD Instruction
	WR Instruction
	WRL Instruction411
	RDI Instruction411
	RDIO Instruction412
15.7.13 M	WRI Instruction413
15.7.14 M	WRIO Instruction413
15.7.15 M	WRIL Instruction414
15.7.16 P	OP Instruction414
	USH Instruction415
-	RD Instruction
	RDI Instruction
	WR Instruction
	WRI Instruction
	ARD Instruction
	ARDI Instruction419
	RD Instruction420
15.7.25 B	WR Instruction420
15.7.26 B	RDI Instruction421
15.7.27 B	WRI Instruction421
15.7.28 A	DDL Instruction422
15.7.29 A	DD Instruction
	DDC Instruction
	UBL Instruction
	UB Instruction
	UBC Instruction
	EG Instruction426
	NDL Instruction426
15.7.36 A	ND Instruction427
15.7.37 O	RL Instruction427
15.7.38 O	R Instruction427

Revision 3.1.5.1

1 5 7 00		400
15.7.39	XORL Instruction	
15.7.40	XOR Instruction	428
15.7.41	SHR Instruction	428
15.7.42	SHL Instruction	429
15.7.43	ASRU Instruction	429
15.7.44	ASRS Instruction	
-		
15.7.45	ASL Instruction	
15.7.46	MULU Instruction	
15.7.47	MULS Instruction	431
15.7.48	DIVU Instruction	432
15.7.49	DIVS Instruction	433
15.7.50	MINU Instruction	434
15.7.51	MINS Instruction	
15.7.51		
	MAXU Instruction	
15.7.53	MAXS Instruction	
15.7.54	ATUL Instruction	
15.7.55	ATU Instruction	435
15.7.56	ATSL Instruction	436
15.7.57	ATS Instruction	436
15.7.58	BTL Instruction	
15.7.59	BT Instruction	
15.7.60	SETB Instruction	
15.7.61	CLRB Instruction	
15.7.62	XCHB Instruction	
15.7.63	JMP Instruction	439
15.7.64	JBS Instruction	439
15.7.65	JBC Instruction	439
15.7.66	CALL Instruction	440
15.7.67	RET Instruction	440
15.7.68	JMPI Instruction	
15.7.69	JBSI Instruction	
15.7.70	JBCI Instruction	
15.7.71	CALLI Instruction	
15.7.72	WURM Instruction	443
15.7.73	WURMX Instruction	444
15.7.74	WURCX Instruction	445
15.7.75	WUCE Instruction	
15.7.76	NOP Instruction	
	MCS Internal Register Overview	
	-	
15.8.1	MCS Internal Register Overview	
	MCS Internal Register Description	
15.9.1	Register R[y] (y:07)	
15.9.2	Register RS[y] (y:07)	448
15.9.3	Register STA	449
15.9.4	Register ACB	
15.9.5	Register CTRG	
15.9.6	Register STRG	
10.0.0		50

Revision 3.1.5.1

15.9.7 Register TBU_TS0	
15.9.8 Register TBU_TS1	
15.9.9 Register TBU_TS2	
15.9.10 Register MHB	
15.9.11 Register GMI0	
15.9.12 Register GMI1	
15.9.13 Register DSTA	
15.9.14 Register DSTAX	
15.10 MCS Configuration Register Overview	
15.10.1 MCS Configuration Register Overview	
15.11 MCS Configuration Register Description	
15.11.1 Register MCS[i]_CH[x]_CTRL	
15.11.2 Register MCS[i]_CH[x]_PC	
15.11.3 Register MCS[i]_CH[x]_R[y] (y:07)	
15.11.4 Register MCS[i]_CH[x]_ACB	
15.11.5 Register MCS[i]_CH[x]_MHB	
15.11.6 Register MCS[i]_CH[x]_IRQ_NOTIFY	
15.11.7 Register MCS[i]_CH[x]_IRQ_EN	
15.11.8 Register MCS[i]_CH[x]_IRQ_FORCINT	
15.11.9 Register MCS[i]_CH[x]_IRQ_MODE	
15.11.10 Register MCS[i]_CH[x]_EIRQ_EN	
15.11.11 Register MCS[i]_CTRL_STAT	
15.11.12 Register MCS[i]_REG_PROT	
15.11.13 Register MCS[i]_CTRG	
15.11.14 Register MCS[i]_STRG	491
15.11.15 Register MCS[i]_RESET	
15.11.16 Register MCS[i]_CAT	495
15.11.17 Register MCS[i]_CWT	
15.11.18 Register MCS[i]_ERR	497
15.11.19 Memory MCS[i]_MEM	498
16 Memory Configuration (MCFG)	
16.1 Overview	
16.1.1 Memory Layout Configurations (ERM = 0)	500
16.1.2 Memory Layout Parameters (ERM = 0)	501
16.1.3 Memory Layout Configurations (ERM = 1)	502
16.1.4 Memory Layout Parameters (ERM = 1)	502
16.2 MCFG Configuration Registers Overview	503
16.2.1 MCFG Configuration Registers Overview Table	503
16.3 MCFG Configuration Registers	503
16.3.1 Register MCFG_CTRL	
17 TIM0 Input Mapping Module (MAP)	506
17.1 Overview	506
17.1.1 MAP Submodule architecture	
17.2 TIM Signal Preprocessing (TSPP)	
17.2.1 TIM Signal Preprocessing (TSPP) subunit architecture	507
17.2.2 Bit Stream Combination	508
17.3 MAP Register overview	

Revision 3.1.5.1

17.4 MAP Register description	09
17.4.1 Register MAP_CTRL	
18 Digital PLL Module (DPLL)	
18.1 Overview	
18.2 Requirements and demarcation51	
18.3 Input signal courses	
18.3.1 Trigger and State Input Signal51	
18.4 Block and interface description	
18.4.1 DPLL Block Diagram	
18.4.2 Interface description of DPLL51	
18.5 DPLL Architecture	
18.5.1 Purpose of the module	20
18.5.2 Explanation of the prediction methodology	
18.5.3 Clock topology	
18.5.4 Clock generation	21
18.5.5 Typical frequencies	21
18.5.6 Time stamps and systematic corrections	21
18.5.7 DPLL Architecture overview	23
18.5.8 DPLL Architecture description	
18.5.9 Block diagrams of time stamp processing	27
18.5.10 Register and RAM address overview52	28
18.5.11 Software reset and DPLL deactivation	34
18.6 Prediction of the current increment duration	34
18.6.1 The use of increments in the past53	
18.6.2 Increment prediction in Normal Mode and for first PMSM forwards53	
18.6.3 Increment prediction in Emergency Mode and for second PMSM forward 539	ds
18.6.4 Increment prediction in Normal Mode and for first PMSM backwards54	10
18.6.5 Increment prediction in Emergency Mode and for second PMSM backwards	
544	us
18.7 Calculations for actions	46
18.7.1 Action calculations for TRIGGER forwards	47
18.7.2 Action calculations for TRIGGER backwards	49
18.7.3 Action calculations for STATE forwards55	51
18.7.4 Action calculations for STATE backwards55	53
18.7.5 Update of RAM in Normal and Emergency Mode	55
18.7.6 Time and position stamps for actions in Normal Mode	58
18.7.7 The use of the RAM	
18.7.8 Time and position stamps for actions in Emergency Mode	61
18.8 Signal processing	
18.8.1Time stamp processing	64
18.8.2 Count and compare unit	65
18.8.3 Sub pulse generation for SMC=056	
18.8.4Sub pulse generation for SMC=157	
18.8.5 Calculation of the Accurate Position Values	
18.8.6 Scheduling of the Calculation57	
18.9 DPLL Interrupt signals59	96

Revision 3.1.5.1

18.9.1 DPLL Interrupt signals	506
18.10 MCS to DPLL interface	
18.10.1 Architecture and organization	
18.10.2 General functionality	
18.10.2 MCS to DPLL Register overview	
18.11 DPLL Register Memory overview	
18.11.1 Available DPLL register overview18.11.2 RAM Region 1a map description	
18.11.3 RAM Region 1b map description	
18.11.4 RAM Region 1c map description	
18.11.5 Register Region EXT description	
18.11.6 RAM Region 2 map description	
18.12 DPLL Register and Memory description	
18.12.1 Register DPLL_CTRL_0	
18.12.2 Register DPLL_CTRL_1	
18.12.3 Register DPLL_CTRL_2	
18.12.4 Register DPLL_CTRL_3	
18.12.5 Register DPLL_CTRL_4	
18.12.6 Register DPLL_CTRL_5	
18.12.7 Register DPLL_ACT_STA	
18.12.8 Register DPLL_OSW	
18.12.9 Register DPLL_AOSV_2	625
18.12.10 Register DPLL_APT	
18.12.11 Register DPLL_APS	
18.12.12 Register DPLL_APT_2C	
18.12.13 Register DPLL_APS_1C3	
18.12.14 Register DPLL NUTC	
18.12.15 Register DPLL_NUSC	
18.12.16 Register DPLL_NTI_CNT	
18.12.17 Register DPLL_IRQ_NOTIFY	
18.12.18 Register DPLL_IRQ_EN	.640
18.12.19 Register DPLL_IRQ_FORCINT	
18.12.20 Register DPLL_IRQ_MODE	.645
18.12.21 Register DPLL_EIRQ_EN	
18.12.22 Register DPLL_INC_CNT1	
18.12.23 Register DPLL_INC_CNT2	
18.12.24 Register DPLL_APT_SYNC	.651
18.12.25 Register DPLL_APS_SYNC	
18.12.26 Register DPLL_TBU_TS0_T	
18.12.27 Register DPLL_TBU_TS0_S	.655
18.12.28 Register DPLL_ADD_IN_LD1	
18.12.29 Register DPLL_ADD_IN_LD2	
18.12.30 Register DPLL_STATUS	
18.12.31 Register DPLL ID PMTR [z] (z:0NOAC-1)	
18.12.32 Register DPLL_CTRL_0_SHADOW_TRIGGER	
18.12.33 Register DPLL_CTRL_0_SHADOW_STATE	
18.12.34 Register DPLL_CTRL_1_SHADOW_TRIGGER	
	-

Specification

Revision 3.1.5.1

18.12.35 Register DPLL_CTRL_1_SHADOW_STATE666
18.12.36 Register DPLL_RAM_INI667
18.12.37 Memory DPLL TS T
18.12.38 Memory DPLL_TS_T_OLD668
18.12.39 Memory DPLL_FTV_T669
18.12.40 Memory DPLL_TS_S670
18.12.41 Memory DPLL_TS_S_OLD
18.12.42 Memory DPLL_FTV_S671
18.12.43 Memory DPLL THMI671
18.12.44 Memory DPLL THMA672
18.12.45 Memory DPLL_THVAL673
18.12.46 Memory DPLL_TOV673
18.12.47 Memory DPLL_TOV_S674
18.12.48 Memory DPLL_ADD_IN_CAL1
18.12.49 Memory DPLL_ADD_IN_CAL2676
18.12.50 Memory DPLL_MPVAL1677
18.12.51 Memory DPLL MPVAL2677
18.12.52 Memory DPLL_NMB_T_TAR678
18.12.53 Memory DPLL_NMB_T_TAR_OLD
18.12.54 Memory DPLL_NMB_S_TAR680
18.12.55 Memory DPLL_NMB_S_TAR_OLD680
18.12.56 Memory DPLL RCDT TX
18.12.57 Memory DPLL_RCDT_SX
18.12.58 Memory DPLL_RCDT_TX_NOM
18.12.59 Memory DPLL_RCDT_SX_NOM683
18.12.60 Memory DPLL_RDT_T_ACT683
18.12.61 Memory DPLL_RDT_S_ACT684
18.12.62 Memory DPLL DT T ACT
18.12.63 Memory DPLL_DT_S_ACT
18.12.64 Memory DPLL_EDT_T686
18.12.65 Memory DPLL MEDT T
18.12.66 Memory DPLL_EDT_S
18.12.67 Memory DPLL MEDT S
18.12.68 Memory DPLL_CDT_TX
18.12.69 Memory DPLL_CDT_SX
18.12.70 Memory DPLL_CDT_TX_NOM689
18.12.71 Memory DPLL_CDT_SX_NOM
18.12.72 Memory DPLL_TLR
18.12.73 Memory DPLL_SLR691
18.12.74 Memory DPLL_PDT_[z] (z:0NOAC-1)692
18.12.75 Memory DPLL_MLS1
18.12.76 Memory DPLL_MLS2
18.12.77 Memory DPLL_CNT_NUM_1694
18.12.78 Memory DPLL_CNT_NUM_2694
18.12.79 Memory DPLL_PVT
18.12.80 Memory DPLL_PSTC696
18.12.81 Memory DPLL PSSC
TOTTO MELLINIA DELE LOSO

Revision 3.1.5.1

18.12.82 Memory DPLL_PSTM	697
18.12.83 Memory DPLL_PSTM_OLD	698
18.12.84 Memory DPLL_PSSM	699
18.12.85 Memory DPLL_PSSM_OLD	699
18.12.86 Memory DPLL_NMB_T	
18.12.87 Memory DPLL_NMB_S	
18.12.88 Memory DPLL_RDT_S[i]	
18.12.89 Memory DPLL_TSF_S[i]	
18.12.90 Memory DPLL_ADT_S[i]	
18.12.91 Memory DPLL_DT_S[i]	
18.12.92 Register DPLL_TSAC[z] z:(0NOAC-1)	
18.12.93 Register DPLL_PSAC[z] z:(0NOAC-1)	
18.12.94 Register DPLL_ACB_[z]	
18.12.95 Register DPLL_CTRL_11	
18.12.96 Register DPLL_THVAL2	
18.12.97 Register DPLL_TIDEL	
18.12.98 Register DPLL_SIDEL	
18.12.99 Register DPLL_CTN_MIN	
18.12.100 Register DPLL_CTN_MAX	
18.12.101 Register DPLL_CSN_MIN	719
18.12.102 Register DPLL_CSN_MAX	719
18.12.103 Register DPLL_STA	720
18.12.104 Register DPLL_INCF1_OFFSET	724
18.12.105 Register DPLL_INCF2_OFFSET	724
18.12.106 Register DPLL_DT_T_START	
18.12.107 Register DPLL_DT_S_START	
18.12.108 Register DPLL_STA_MASK	
18.12.109 Register DPLL STA FLAG	
18.12.110 Register DPLL_INC_CNT1_MASK	
18.12.111 Register DPLL_INC_CNT2_MASK	
18.12.112 Register DPLL_NUSC_EXT1	
18.12.113 Register DPLL_NUSC_EXT2	
18.12.114 Register DPLL_APS_EXT	
18.12.115 Register DPLL APS 1C3 EXT	
18.12.116 Register DPLL_APS_SYNC_EXT	
· · · · · · · · · · · · · · · · · · ·	
18.12.119 Memory DPLL_RR2	
18.13 DPLL RAM Region 1a value description	
18.13.1 Memory DPLL_PSA[i]	
18.13.2 Memory DPLL_DLA[i]	
18.13.3 Memory DPLL_NA[i]	
18.13.4 Memory DPLL_DTA[i]	
18.14 DPLL RAM Region 2 value description	
18.14.1 Memory DPLL_RDT_T[i]	
18.14.2 Memory DPLL_TSF_T[i]	743
18.14.3 Memory DPLL_ADT_T[i]	

Revision 3.1.5.1

18.14.4 Memory DPLL_DT_T[i]	
18.15 MCS to DPLL Register description	
18.15.1 Register MCS2DPLL_DEB0	
18.15.2 Register MCS2DPLL_DEB1	
18.15.3 Register MCS2DPLL_DEB2	
18.15.4 Register MCS2DPLL_DEB3	
18.15.5 Register MCS2DPLL_DEB4	
18.15.6 Register MCS2DPLL_DEB5	
18.15.7 Register MCS2DPLL_DEB6	
18.15.8 Register MCS2DPLL_DEB7	
18.15.9 Register MCS2DPLL_DEB8	
18.15.10 Register MCS2DPLL_DEB9	
18.15.11 Register MCS2DPLL_DEB10	
18.15.12 Register MCS2DPLL_DEB11	
18.15.13 Register MCS2DPLL_DEB12	
18.15.14 Register MCS2DPLL_DEB13	
18.15.15 Register MCS2DPLL_DEB14	
18.15.16 Register MCS2DPLL_DEB15	
19 Sensor Pattern Evaluation (SPE)	
19.1 Overview 19.1.1 SPE Submodule integration concept into GTM-IP	
 19.1.2 SPE Sample input pattern for <i>TIM[i]_CH[x,y,z](48)</i> 19.2 SPE Submodule description 	
19.2 SPE Submodule description	
19.2.1 SPE to TOM Connections	
19.2.3 SPE Submodule architecture	
19.2.4 SPE[i]_IN_PAT register representation19.2.5 SPE Revolution detection	
19.2.5 SPE Interrupt signals	
19.3 SPE Register overview	
19.4 STE Register Overview	
19.5.1 Register SPE[i]_CTRL_STAT	
19.5.2 Register SPE[i]_PAT	
19.5.2 Register SPE[i]_OUT_PAT[z] (z:07)	
19.5.4 Register SPE[i]_OUT_CTRL	
19.5.5 Register SPE[i]_REV_CNT	
19.5.6 Register SPE[i]_REV_CMP	
19.5.7 Register SPE[i]_IRQ_NOTIFY	
19.5.8 Register SPE[i]_IRQ_EN	
19.5.9 Register SPE[i]_IRQ_FORCINT	
19.5.10 Register SPE[i]_IRQ_MODE	
19.5.11 Register SPE[i]_EIRQ_EN	
19.5.12 Register SPE[i]_CTRL_STAT2	
19.5.12 Register SPE[i]_CMD	
20 Interrupt Concentrator Module (ICM)	
20.1 Overview	
20.2 Bundling	

Revision 3.1.5.1

20.2.1 CTM Infractructure Interrupt Dundling	700
20.2.1 GTM Infrastructure Interrupt Bundling	
20.2.2 DPLL Interrupt Bundling	
20.2.3 TIM Interrupt Bundling	
20.2.4 MCS Interrupt Bundling	
20.2.5 TOM and ATOM Interrupt Bundling	782
20.2.6 Module Error Interrupt Bundling	783
20.2.7 FIFO Channel Error Interrupt Bundling	783
20.2.8 TIM Channel Error Interrupt Bundling	
20.2.9 MCS Channel Error Interrupt Bundling	
20.2.10 Error Interrupt Cluster Bundling	
20.3 ICM Interrupt Signals	
20.4 ICM Configuration Register Overview	
20.4.1 ICM Configuration Register Overview Table	
20.5 ICM Configuration Register Description	
20.5.1 Register ICM IRQG 0	
20.5.2 Register ICM_IRQG_1	
20.5.2 Register ICM_IRQG_2	
20.5.4 Register ICM_IRQG_3	
20.5.5 Register ICM_IRQG_4	
20.5.6 Register ICM_IRQG_5	
20.5.7 Register ICM_IRQG_6	
20.5.8 Register ICM_IRQG_7	
20.5.9 Register ICM_IRQG_8	
20.5.10 Register ICM_IRQG_9	
20.5.11 Register ICM_IRQG_10	
20.5.12 Register ICM_IRQG_11	802
20.5.13 Register ICM_IRQG_MEI	803
20.5.14 Register ICM_IRQG_CEI0	805
20.5.15 Register ICM_IRQG_CEI1	806
20.5.16 Register ICM_IRQG_CEI2	
20.5.17 Register ICM_IRQG_CEI3	
20.5.18 Register ICM_IRQG_CEI4	
20.5.19 Register ICM_IRQG_MCS[i]_CI	
20.5.20 Register ICM_IRQG_MCS[i]_CEI	
20.5.21 Register ICM_IRQG_SPE_CI	
20.5.22 Register ICM_IRQG_SPE_CEI	
20.5.22 Register ICM_IRQG_PSM_0_CI	
20.5.24 Register ICM_IRQG_PSM_0_CEI	
20.5.24 Register ICM_IRQG_TOM_[k]_CI (k:02)	
20.5.26 Register ICM_IRQG_ATOM_[k]_CI (k:02)	
20.5.27 Register ICM_IRQG_CLS_[k]_MEI (k:02)	
21 Output Compare Unit (CMP)	
21.1 Overview	
21.1.1 Architecture of the Compare Unit	
21.2 Bitwise Compare Unit (BWC)	
21.2.1 ABWC compare unit (1)	
21.2.2 TBWC compare unit	823

Revision 3.1.5.1

01.0		
21.3 21.4	Configuration of the Compare Unit	
21.4 21.5	CMP Interrupt Signal	
21.5	CMP Interrupt Signal table	
21.5.1	CMP Interrupt Signal table	
21.6.1		
21.0.1	CMP Configuration Register Overview Table	
21.7	CMP Configuration Register Description	
21.7.1	Register CMP_EN Register CMP_IRQ_NOTIFY	
21.7.2	Register CMP_IRQ_EN	
21.7.3	Register CMP_IRQ_FORCINT	
21.7.4	Register CMP_IRQ_MODE	
21.7.5	Register CMP_EIRQ_EN	
21.7.0 22	Monitor Unit (MON)	
22.1	Overview	
22.1.1	MON Block Diagram	
22.1.2	Realization without Activity Checker of the clock signals	
22.2	Clock Monitoring	
22.2	CMP error Monitoring	
22.3	Checking the Characteristics of Signals by MCS	
22.5	Checking ARU Cycle Time	
22.6	MON Interrupt Signals	
22.7	MON Register Overview	
22.8	MON Configuration Register Description	
22.8.1	Register MON_STATUS	
22.8.2	Register MON_ACTIVITY_0	
22.8.3	Register MON_ACTIVITY_1	
22.8.4	Register MON_ACTIVITY_MCS[z] (z:09)	
23	Appendix A	
23.1	Register Bit Attributes	
23.2	Register Reset Value	
23.3	ARU Write Address Overview	
23.4	GTM Configuration Register Address Map	
23.5	GTM Application Constraints	
23.6	GTM Internal functional dependencies	
23.6.1	GTM Internal functional dependencies (part 1)	
23.6.2	GTM Internal functional dependencies (part 2)	
23.7	Compatibility Notes	
23.7.1	DPLL	847
23.7.2	MCS	848
24	Revision History	849
24.1	Revision History Table	
25	Conventions	865
26	References	
27	Disclaimer	

Specification

1 Introduction

1.1 Overview

This document is the specification for the Generic Timer Module (GTM). It contains a module framework with sub-modules of different functionality. These sub-modules can be combined in a configurable manner to form a complex timer module that serves different application domains and different classes within one application domain. Because of this scalability and configurability the timer is called generic.

The scalability and configurability is reached with an architecture philosophy where dedicated hardware sub-modules are located around a central routing unit (called Advanced Routing Unit (ARU)). The ARU can connect the sub-modules in a flexible manner. The connectivity is software programmable and can be configured during runtime.

Nevertheless, the GTM-IP is designed to unload the CPU or a peripheral core from a high interrupt load. Most of the tasks inside the GTM-IP can run -once setup by an external CPU- independent and in parallel to the software. There may be special situations, where the CPU has to take action but the goal of the GTM design was to reduce these situations to a minimum.

The hardware sub-modules have dedicated functionality's, e.g. there are timer input modules where incoming signals can be captured and characterized together with a notion of time. By combination of several sub-modules through the ARU complex functions can be established. E.g. the signals characterized at an input module can be routed to a signal processing unit where an intermediate value about the incoming signal frequency can be calculated.

The modules that help to implement such complex functions are called *infrastructure components* further on. These components are present in all GTM variants. However, the number of these components may vary from device to device.

Other sub-modules have a more general architecture and can fulfill typical timer functions, e.g. there are PWM generation units. The third classes of sub-modules are those fulfilling a dedicated functionality for a certain application domain, e.g. the DPLL serves engine management applications. A fourth group of sub-modules is responsible for supporting the implementation of safety functions to fulfill a defined safety level. The module ICM is responsible for interrupt services and defines the fifth group.

Each GTM-IP is build up therefore with sub-modules coming from those four groups. The application class is defined by the amount of components of those sub-modules integrated into the implemented GTM-IP.

1.2 Document Structure

The structure of this document is motivated out of the aforementioned sub-module classes. Chapter 2 describes the dedicated GTM-IP implementation this specification is written for. It gives an overview about the implemented sub-modules.

The following chapters 3 up to 10 deals with the so called infrastructure components for routing, clock management and common time base functions. Chapters 11 to 14 describe the signal input and output modules while the following chapter 15 explains the signal processing and generation sub-module with 16 its memory configuration. The next section chapters 17 to 19 provids a detailed description of application specific modules like the MAP, DPLL and SPE. The last section chapters 21 to 22 provides to safety related modules like CMP and MON sub-modules. Chapter 20 describes a module that bundles several interrupts coming from the other sub-modules and connect them to the outside world.

Chapter	Sub-module	Group	
3	Advanced Routing Unit (ARU)	Infrastructure components	
4	Broadcast Module (BRC)	Infrastructure components	
5	First In First Out Module (FIFO)	Infrastructure components	
6	AEI-to-FIFO Data Interface (AFD)	Infrastructure components	
7	FIFO-to-ARU Interface (F2A)	Infrastructure components	
8	Clock Management Unit (CMU)	Infrastructure components	
9	Cluster Configuration Module (CCM)	Infrastructure components	
10	Time Base Unit (TBU)	Infrastructure components	
11	Timer Input Module (TIM)	IO Modules	
12	Timer Output Module (TOM)	IO Modules	
13	ARU-connected Timer Output Module (ATOM)	IO Modules	
14	Dead Time Module (DTM)	IO Modules	
15	Multi Channel Sequencer (MCS)	Signal generation and processing	
16	Memory Configuration (MCFG)	Memory for signal generation and processing	
17	TIM0 Input Mapping Module (MAP)	Dedicated	
18	Digital PLL (DPLL)	Dedicated	
19	Sensor Pattern Evaluation Module (SPE)	BLDC support	
20	Interrupt Concentrator Module (ICM)	Interrupt services	
21	Output Compare Unit (CMP)	Safety features	
22	Monitoring Unit (MON)	Safety features	

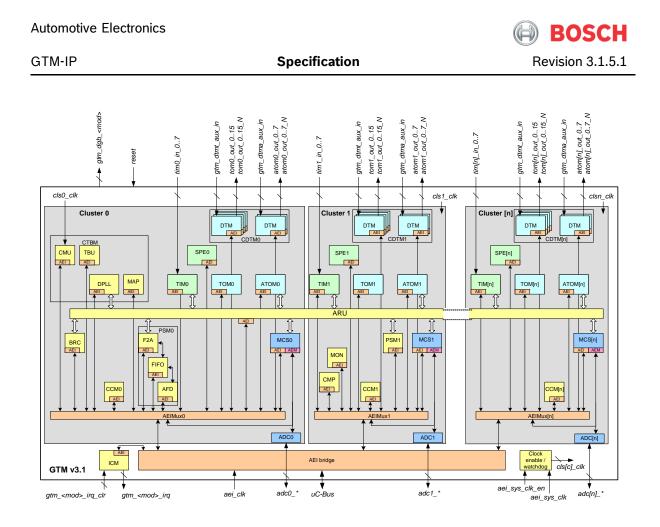
1.2.1 Sub-module groups

2 GTM Architecture

2.1 Overview

As already mentioned in Chapter 1 the GTM-IP forms a generic timer platform that serves different application domains and different classes within these application domains. Depending on these multiple requirements of application domains multiple device configurations with different number of sub-modules (i.e. ATOM, BRC, MCS, PSM, SPE, TIM, TOM, DTM) and different number of channel per sub-module (if applicable) are possible.

The device dependent configuration (i.e. the number of sub-modules) is listed in the device specific appendix B of this document [1].


The Parameter Storage Module (PSM) is only a virtual hierarchy and consists of the sub-modules F2A, FIFO and AFD.

The Cluster Dead Time Module (CDTM) is also a virtual hierarchy and consists of up to six DTM modules. It depends on the GTM device configuration which of the six DTM instances are available. Please refer to Appendix B for list of available DTM instances. In general, the first four DTM modules inside a CDTM[n] hierarchy are connected to the outputs of the TOM instance [n] of the cluster [n], the other two DTM instances are connected to the outputs of the ATOM instance [n] of this cluster [n].

The cluster view of a GTM-IP architecture is depicted in figure 2.1.1. This is a generic figure which shows an exemplarily GTM-IP device configuration.

The device dependent configuration (i.e. the count of sub-modules and channels per sub-module) is listed in the device specific appendix B of this document [1].

2.1.1 GTM Architecture Block Diagram

The GTM-IP is divided in multiple clusters 0...n. A certain amount of modules exist in each cluster. The operating frequency of a cluster can be configured to OFF, aei_sys_clk or aei_sys_clk/2. The clock enable generation can be implemented internal to the GTM_IP or external. In case of an external enable generation aei_sys_clk_en is used to generate the internal clocks. In addition an enable watchdog is implemented to monitor the correctness of the external applied enable signals aei_sys_clk_en.

The central component of the GTM-IP is the Advanced Routing Unit (ARU) where most of the sub-modules are located around and connected to. This ARU forms together with the Broadcast (BRC) and the Parameter Storage Module (PSM) the infrastructural part of the GTM. The ARU is able to route data from a connected source sub-module to a connected destination sub-module. The routing is done in a deterministic manner with a round-robin scheduling scheme of connected channels which receive data from ARU and with a worst case round-trip time.


The routed data word size of the ARU is 53 bit. The data word can logically be split into three parts. These parts are shown in figure 2.1.2. Bits 0 to 23 and bits 24 to 47 typically hold data for the operation registers of the GTM-IP. This can be, for example, the duty cycle and period duration of a measured PWM input signal or the output characteristic of an output PWM to be generated. Another possible content of Data0 and Data1 can be two 24 bit values of the GTM-IP time bases TBU_TS0, TBU_TS1 and TBU_TS2. Bits 48 to 52 can contain control bits to send control information from one sub-module to another. These ARU Control Bits (ACB) can have a different meaning for different sub-modules.

Specification

It is also possible to route data from a source to a destination and the destination can act later on as source for another destination. These routes through the GTM-IP are further on called *data streams*. For a detailed description of the ARU sub-module please refer to chapter 3.

2.1.2 ARU Data Word Description

The BRC is able to distribute data from one source module to more than one destination modules connected to the ARU. The PSM sub-module consists of three sub-units, the AEI-to-FIFO Data Interface (AFD), FIFO-to-ARU Interface (F2A) and the FIFO itself. The PSM can serve as a data storage for incoming data characteristics or as parameter storage for outgoing data. This data is stored in a RAM that is logically located inside the FIFO sub-unit, but physically the RAM is implemented and integrated by the silicon vendor with his RAM implementation technology. Therefore, the GTM-IP provides the interface to the RAM at its module boundary. The AFD sub-unit is the interface between the FIFO and the GTM SoC system bus interface AEI (please see section 2.2.1 for detailed discussion). The F2A sub-unit is the interface between the FIFO sub-unit and the ARU.

Signals are transferred into the GTM-IP at the Timer Input Modules (TIM). These modules are able to filter the input signals and annotate additional information. Each channel is for example able to measure pulse high or low times and the period of a PWM signal in parallel and route the values to ARU for further processing. The internal operation registers of the TIM sub-module are 24 bits wide.

The Clock Management Unit (CMU) serves up to 13 different clocks for the GTM and up to three external clock pins *GTM_ECLK0...2*. It acts as a clock divider for the system clock. The counters implemented inside other sub-modules are typically driven from this sub-module. Please note, that the CMU clocks are implemented as enable signals for the counters while the whole system runs with the GTM global clock *SYS_CLK*. This global clock typically corresponds to the micro controller bus clock the GTM-IP is connected to and should not exceed 100MHz because of the power dissipation of the used transistors where the GTM is implemented with.

The TBU provides up to three independent common time bases for the GTM-IP. In general, the number of time bases depends on the implemented device. If three time bases are implemented, two of these time bases can also be clocked with the digital PLL (DPLL) *sub_inc1c* and *sub_inc2c* outputs. The DPLL generates the higher frequent clock signals *sub_inc1*, *sub_inc2*, *sub_inc1c* and *sub_inc2c* on behalf of the frequencies of up to two input signals. These two input signals can be selected out of six incoming signals from the TIMO sub-module. In this sub-module the incoming signals are selected for further processing inside the DPLL.

Specification

Signal outputs are generated with the Dead Time Module (DTM), Timer Output Modules (TOM) and the ARU-connected TOMs (ATOM). Each TOM channel is able to generate a PWM signal at its output. Because of the integrated shadow register even the generation of complex PWM outputs is possible with the TOM channels by serving the parameters with the CPU. It is possible to trigger TOM channels for a successor sub-module through a trigger line between TOM(x) CH(15) and TOM TOM(x+1) CH(0). But to avoid long trigger paths the GTM-IP integrator can configure after which TOM sub-module instance a register is placed into the trigger signal chain. Each register results in one SYS CLK cycle delay of the trigger signal. Please refer to device specification of silicon vendor for unregistered trigger chain length.

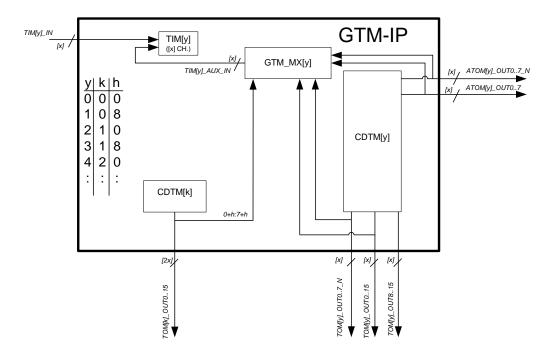
In addition, each TOM sub-module can integrate functions to drive one BLDC engine. This BLDC support is established together with the TIM and Sensor Pattern Evaluation (SPE) sub-module.

The ATOMs offer the additional functionality to generate complex output signals without CPU interaction by serving these complex waveform characteristics by other sub-modules that are connected to the ARU like the PSM or Multi Channel Sequencer (MCS). While the internal operation and shadow registers of the TOM channels are 16 bit wide, the operation and shadow registers of the ATOM channels are 24 bit wide to have a higher resolution and to have the opportunity to compare against time base values coming from the TBU.

It is possible to trigger ATOM channels for a successor ATOM sub-module through a trigger line between ATOM(x)_CH(7) and ATOM(x+1)_CH(0). But to avoid long trigger paths the GTM-IP integrator can configure after which ATOM sub-module instance a register is placed into the trigger signal chain. Each register results in one SYS_CLK cycle delay of the trigger signal. Please refer to device specification of silicon vendor for unregistered trigger chain length.

Together with the MCS the ATOM is able to generate an arbitrary predefined output sequence at the GTM-IP output pins. The output sequence is defined by instructions located in RAM connected to the MCS sub-module. The instructions define the points were an output signal should change or to react on other signal inputs. The output points can be one or two time stamps (or even angle stamp in case of an engine management system) provided by the TBU. Since the MCS is able to read data from the ARU it is also able to operate on incoming data routed from the TIM. Additionally, the MCS can process data that is located in its connected RAMs. The MCS RAM is located logically inside the MCS while the silicon vendor has to implement its own RAM technology there.

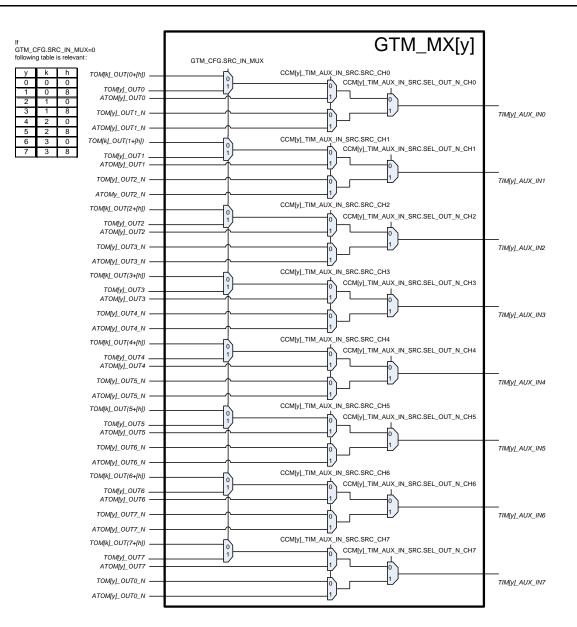
The two modules Compare Module (CMP) and Monitor Module (MON) implement safety related features. The CMP compares two output channels of the DTM and sends the result to the MON sub-module were the error is signaled to the CPU. The MON module is also able to monitor the ARU and CMU activities.


In the described implementation the sub-modules of the GTM-IP have a huge amount of different interrupt sources. These interrupt sources are grouped and concentrated

Specification

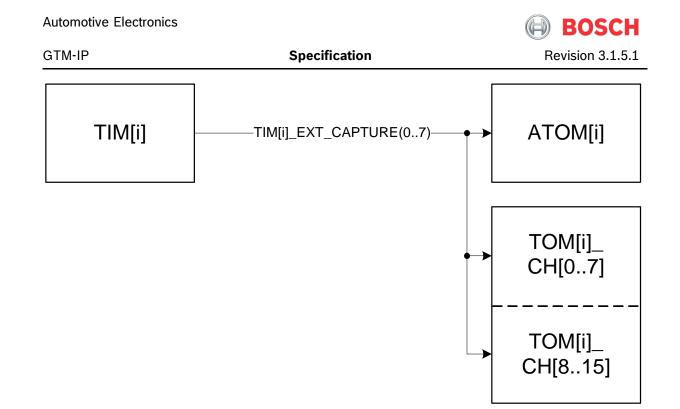
by the Interrupt Concentrator Module (ICM) to form a much easier manageable bunch of interrupts that are visible outside of the GTM-IP.

On the GTM-IP top level there are some configurable signal connections from the signal output of the DTM modules to the input signals of the TIM modules.


2.1.3 GTM-IP signal multiplex

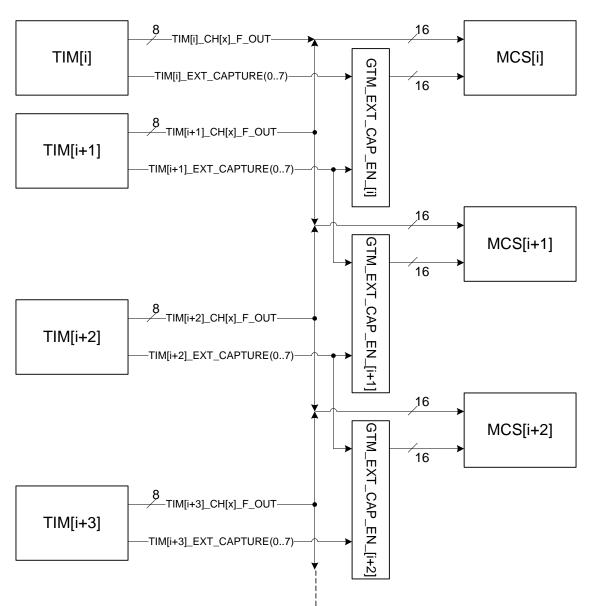
The next diagram gives an overview of the connectivity for different configuration of GTM global bit SRC_IN_MUX of register GTM_CFG and the cluster configuration register CCM[y]_TIM_AUX_IN_SRC. The source selection is defined per channel with the bit SRC_CH[x] and SEL_OUT_N_CH[x] in the register CCM[y]_TIM_AUX_IN_SRC.

2.1.4 TIM auxiliary input multiplexing



The trigger out of TIM (i.e. the signals TIM[i] EXT CAPTURE(7:0) of each TIM instance i) are routed to ATOM instance [i] and TOM instance [i] with i=0...cITIM-1 (cITIM defines the number of available TIM instances, please refer to device specific Appendix B).

This TIM trigger can be used to trigger inside the ATOM or TOM instance either a channel or the global control register of AGC or TGC0/TGC1 unit.


2.1.5 TIM external capture forwarding to TOM and ATOM

The trigger out of TIM (i.e. the signals TIM[i]_EXT_CAPTURE(7:0) of each TIM instance i) are additionally routed to the MCS instance [i]. This trigger forwarding can be enabled by register **CCM[i]_EXT_CAP_EN**.

2.1.6 TIM to MCS signal forwarding

Specification

x=0,...,cCTIM with cCTIM = number of available TIM channel of instance

2.2 GTM-IP Interfaces

In general the GTM-IP can be divided into four interface groups. Two interface groups represent the ports of the GTM-IP where incoming signals are assembled and outgoing signals are created. These interfaces are therefore connected to the GTM-IP input sub-module TIM and to the GTM-IP output sub-modules DTM.

Another interface is the bus interface where the GTM-IP can be connected to the SoC system bus. This generic bus interface is described in more detail in section 2.2.1. The last interface is the interrupt controller interface. The GTM-IP provides several interrupt

Confidential

Specification

lines coming from the various sub-modules. These interrupt lines are concentrated inside the ICM and have to be adapted to the dedicated micro controller environment where each interrupt handling can look different. The interrupt concept is described in more detail in section 2.5.

2.2.1 GTM-IP Generic Bus Interface (AEI)

The GTM-IP is equipped with a generic bus interface that can be widely adapted to different SoC bus systems. This generic bus interface is called AE-Interface (AEI). The adaptation of the AEI to SoC buses is typically done with a bridge module translating the AEI signals to the SoC bus signals of the silicon vendor. The AEI bus signals are depicted in the following table:

Signal name	I/O	Description	Bit width
AEI_SEL	I	GTM-IP select line	1
AEI_ADDR	I	GTM-IP address	32
AEI_PIPE	I	AEI Address phase signal	1
AEI_W1R0	I	Read/Write access	1
AEI_WDATA	I	Write data bus	32
AEI_RDATA	0	Read data bus	32
AEI_READY	0	Data ready signal	1
AEI_STATUS	0	AEI Access status	2

2.2.1.1 AEI bus signals

The AEI Status Signal may drive one of the following values:

2.2.1.2 AEI Status Signal

AEI_STATUS	Description
0b00	No Error
0b01	Illegal Byte Addressing
0b10	Illegal Address Access
0b11	Unsupported Address

The signal value 0b00 is returned if no error occurred during AEI access.

The signal value 0b01 is returned if the bus address is not an integer multiple of 4 (byte addressing).

The signal value 0b11 is returned if the address is not handled in the GTM. The signal value 0b10 is returned

if the written register is a protected register (e.g. protected by bit RF_PROT) or if the register is temporarily not writable because of sub-module internal state or the clock of the relevant cluster is disabled.

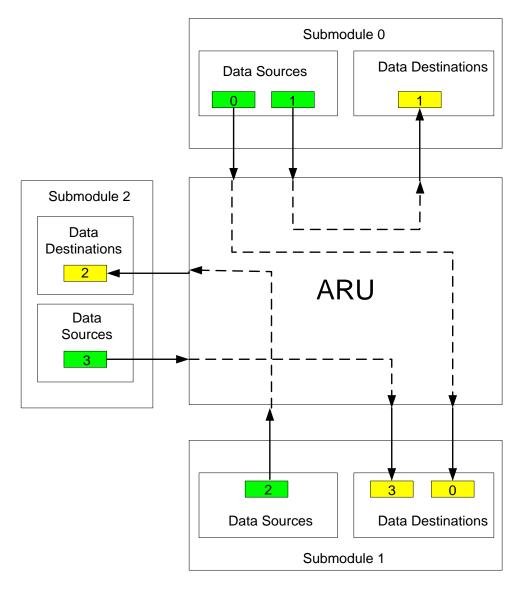
In case of an illegal write access signaled by status 0b10 the register will not be modified.

NOTE: Exception for register **CMU_CLK_CTRL**. In case of write access signalled by aei_status 0b10 the register will be modified each completely disabled bit.

Reading registers will never return status 0b10.

The detailed list of register addresses with return status 0b10 can be found in [1].

2.2.2 GTM-IP Multi-master and multitasking support


To support multi-master and multitask access to the registers of the GTM-IP a dedicated write-access scheme is used for critical control bits inside the IP that need such a mechanism. This can be for example a shared register where more than one channel can be controlled globally by one register write access. Such register bits are implemented inside the GTM-IP with a double bit mechanism, where the writing of 0b00 and 0b11 has no effect on the register bit and where 0b01 sets the bit and 0b10 resets the bit. If the CPU wants to read the status of the bit it always gets a 0b00 if the bit is reset and it gets an 0b11 if the bit is set.

2.3 ARU Routing Concept

One central concept of the GTM-IP is the routing mechanism of the ARU sub-module for data streams. Each data word transferred between the ARU and its connected submodule is 53 bit wide. It is important to understand this concept in order to use the resources of the GTM-IP effectively. Each module that is connected to the ARU may provide an arbitrary number of ARU write channels and an arbitrary number of ARU read channels. In the following, the ARU write channels are named data sources and the ARU read channels are named data destinations.

The concept of the ARU intends to provide a flexible and resource efficient way for connecting any data source to an arbitrary data destination. In order to save resource costs, the ARU does not implement a switch matrix, but it implements a data router with serialized connectivity providing the same interconnection flexibility. Figure 2.3.1 shows the ARU data routing principle. Data sources are marked with a green rectangle and the data destinations are marked with yellow rectangles. The dashed lines in the ARU depict the configurable connections between data sources and data destinations. A connection between a data source and a data destination is also called a data stream.

The configuration of the data streams is realized according to the following manner: Each data source has its fixed and unique source address: The ARU read ID. The fixed address of each data source is pointed out by the numbers in the green boxes of figure 2.3.1. The address definitions of all available data sources in the GTM-IP can be obtained from table 23.3. The connection from a specific data source to a specific data destination is defined by configuring the corresponding address of a data source (i.e. the ARU read ID) in the desired data destination. The configured address of each data destination is pointed out by the numbers in the yellow boxes of figure 2.3.1.

Normally, the destination is idle and waits for data from the source. If the source offers new data, the destination does a destructive read, processes the data and goes idle again. The same data is never read twice.

There is one sub-module for which this destructive read access does not hold. This is the BRC sub-module configured in Maximal Throughput Mode. For a detailed description of this module please refer to chapter 4.

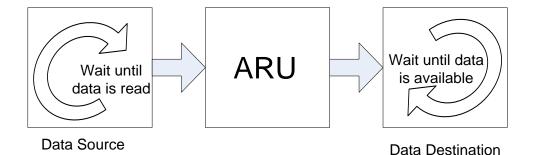
The functionality of the ARU is as follows: The ARU sequentially polls the data destinations of the connected modules in a round-robin order. If a data destination requests new data from its configured data source and the data source has data available, the ARU delivers the data to the destination and it informs both, the data source and destination that the data is transferred. The data source marks the delivered ARU data as invalid which means that the destination consumed the data.

It should be noted that each data source should only be connected to a single data destination. This is because the destinations consume the data. If two destinations would reference the same source one destination would consume the data before the other destination could consume it. Since the data transfers are blocking, the second destination would block until it receives new data from the source. If a data source should be connected to more than one data destination the sub-module Broadcast (BRC) has to be used. On the other hand, the transfer from a data source to the ARU is also blocking, which means that the source channel can only provide new data to the ARU when an old data word is consumed by a destination. In order to speed up the process of data transfers, the ARU handles two different data destinations in parallel.

Following table gives an overview about the number of data destinations and data sources of each GTM-IP instance type.

Sub-module	Number of data sources per instance	Number of data destinations per instance
ARU	1	0
DPLL	24	24
TIM	8	0
MCS	24	8
BRC	22	12
ТОМ	0	0
АТОМ	8	8
DTM	0	0
PSM	8	8
ICM	0	0
СМР	0	0
MON	0	0
ССМ	0	0

2.3.2 ARU source and destination address count per instance


2.3.3 ARU Round Trip Time

The ARU uses a round-robin arbitration scheme with a fixed round trip time for all connected data destinations. This means that the time between two adjacent read requests resulting from a data destination channel always takes the round trip time, independently if the read request succeeds or fails.

2.3.4 ARU Blocking Mechanism

Another important concept of the ARU is its blocking mechanism that is implemented for transferring data from a data source to a data destination. This mechanism is used by ARU connected sub-modules to synchronize the sub-modules to the routed data streams. Figure 2.3.4.1 explains the blocking mechanism.

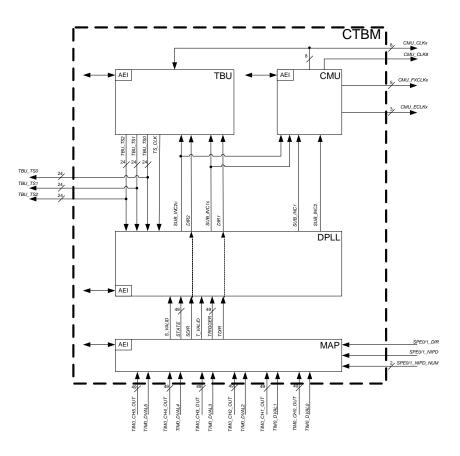
2.3.4.1 Graphical representation of ARU blocking mechanism

If a data destination requests data from a data source over the ARU but the data source does not have any data yet, it has to wait until the data source provides new data. In this case the sub-module that owns the data destination may perform other tasks. When a data source produces new data faster than a data destination can consume the data the source raises an error interrupt and signals that the data could not be delivered in time. The new data is marked as valid for further transfers and the old data is overwritten.

In any case the round trip time for the ARU has a fixed reset value for a specific device configuration. The end value of the roundtrip counter can be changed with a configuration register **ARU_CADDR_END** inside the ARU. For more details see the ARU specific chapter.

Please refer also to device specific Appendix B of this specification for detailed information [1].

Specification


It is possible to reset the ARU roundtrip counter **ARU_CADDR** manually synchronous to CMU clock enable from configuration register inside CMU module. Please refer to CMU specific chapter for more details.

One exception is the BRC sub-module when configured in Maximal Throughput Mode. Please refer to chapter 4 for a detailed description.

2.4 GTM-IP Clock and Time Base Management (CTBM)

Inside the GTM-IP several sub-units are involved in the clock and time base management of the whole GTM. Figure 2.4.1 shows the connections and sub blocks involved in these tasks. The sub blocks involved are called Clock and Time Base Management (CTBM) modules further on.

2.4.1 GTM-IP Clock and time base management architecture

One important module of the CTBM is the Clock Management Unit (CMU) which generates up to 14 clocks for the sub-modules of the GTM and up to three GTM external clocks $CMU_ECLK[z]$ (z: 0...2). For a detailed description of the CMU functionality and clocks please refer to Chapter 8.

The five (5) *CMU_FXCLK[y*] (y: 0...4) clocks are used by the TOM sub-module for PWM generation.

A maximum of nine (9) $CMU_CLK[x]$ (x: 0...8) clocks are used by other sub-modules of the GTM for signal generation.

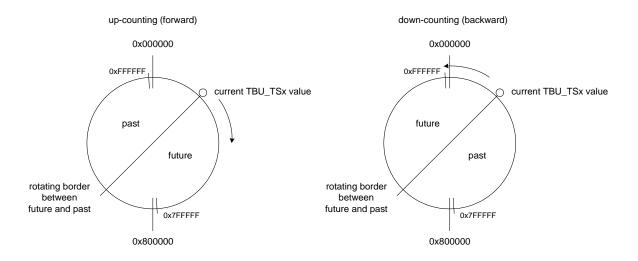
Inside the Time Base Unit (TBU) one of $CMU_CLK[x]$ (x: 0...7) clocks is used per channel to generate a common time base for the GTM. Besides the $CMU_CLK[x]$ signals, the TBU can use the compensated $SUB_INC[i]c$ (i: 1,2) signals coming from the DPLL sub-module for time base generation. This time base then typically represents an angle clock for an engine management system. For the meaning of compensated ($SUB_INC[i]c$) and uncompensated ($SUB_INC[i]$) DPLL signals please refer to the DPLL chapter 18. The $SUB_INC[i]c$ signals in combination with the two direction signal lines DIR[i] the TBU time base can be controlled to run forwards or backwards. The TBU functionality is described in Chapter 10.

The TBU sub-module generates the three time base signals *TBU_TS0*, *TBU_TS1* and *TBU_TS2* which are widely used inside the GTM as common time bases for signal characterization and generation.

Besides the time base 1 and 2 which may represent a relative angle clock for an engine management system it is helpful to have an absolute angle clock for CPU/MCS internal angle algorithm calculations. This absolute angle clock is represented by the TBU base 3. The TBU channel 0 up to 2 are widely used inside the GTM as common time (channel 0, 1 and/or 2) or angle (channel 1 and/or 2) bases for signal characterization and generation. The TBU channel 3 is only configurable and readable by MCS0 or CPU.

As stated before, the DPLL sub-module provides the four clock signals *SUB_INC[i]* and *SUB_INC[i]* which can be seen as a clock multiplier generated out of the two input signal vectors *TRIGGER* and *STATE* coming from the MAP sub-module. For a detailed description of the DPLL functionality please refer to chapter 18.

The MAP sub-module is used to select the *TRIGGER* and *STATE* signals for the DPLL out of six input signals coming from TIMO sub-module. Besides this, the MAP sub-module is able to generate a *TDIR* (TRIGGER Direction) and *SDIR* (STATE Direction) signal for the DPLL and TBU coming from the SPE0 and SPE1 signal lines. The direction signals are generated out of a defined input pattern. For a detailed description of the MAP sub-module please refer to section 17.


2.4.2 Cyclic Event Compare

With the time base module (TBU) the GTM provides three counters, where the counter of TBU_CH0 represents a time and the counter TBU_CH1 and TBU_CH2 may represent a time (if clock source is CMU_CLK generated inside CMU) or an angle (if clock source is a DPLL sub_inc signal provided via CMU).

From application point of view it is necessary to divide the cyclic event counter representing time or angle into two parts, the past and the future.

The border of past/future is a moving border depending on current time or angle value. The cyclic event counting and the moving border of past/future is depicted in the figure below.

2.4.2.1 Cyclic event counter represeting time or angle

Inside different submodules of GTM a grater-equal compare (in case of up-counting) or a less-equal compare (in case of down-counting) against a TBU base value (representing time or angle) always means that it is checked if the reference value is in relation to the current TBU value in the future or in the past.

2.5 GTM-IP Interrupt Concept

The sub-modules of the GTM-IP can generate thousands of interrupts on behalf of internal events. This high amount of interrupts is combined inside the Interrupt Concentrator Module (ICM) into interrupt groups. In these interrupt groups the GTM-IP sub-module interrupt signals are bundled to a smaller set of interrupts. From these interrupt sets, a smaller amount of interrupt signals is created and signaled outside of the GTM-IP as a signal $GTM_{MOD} > IRQ$, where MOD > Identifies the name of the corresponding GTM-IP sub-module.

Moreover, each output signal $GTM_<MOD>_IRQ$ has a corresponding input signal $GTM_<MOD>_IRQ_CLR$ that can be used for clearing the interrupts. These input signals can be used by the surrounding micro controller system as:

- acknowledge signal from a DMA controller
- validation signal from ADC
- clear signal from a GTM-external interrupt controller to do an atomic clear while entering an ISR routine

The controlling of the individual interrupts is done inside the sub-modules. If a submodule consists of several sub-module channels that are most likely to work independent from each other (like TIM, PSM, MCS, TOM, and ATOM), each submodule channel has its own interrupt control and status register set, named as interrupt set in the following. Other sub-modules (SPE, ARU, DPLL, BRC, CMP and global GTM functionality) have a common interrupt set for the whole sub-module.

The interrupt set consists of four registers: The **IRQ_EN** register, the **IRQ_NOTIFY** register, the **IRQ_FORCINT** register, and the **IRQ_MODE** register. While the registers **IRQ_EN**, **IRQ_NOTIFY**, and **IRQ_FORCINT** signalize the status and allow controlling of each individual interrupt source within an interrupt set, the register **IRQ_MODE** configures the interrupt mode that is applied to all interrupts that belong to the same interrupt set.

In order to support a wide variety of micro controller architectures and interrupt systems with different interrupt signal output characteristics and internal interrupt handling the following four modes can be configured:

- Level mode
 - Pulse mode
 - Pulse-Notify mode
 - Single-Pulse mode

These interrupt modes are described in more details in the following subsections.

The register **IRQ_EN** allows the enabling and disabling of an individual interrupt within an interrupt set. Independent of the configured mode, only enabled interrupts can signalize an interrupts on its signal *GTM_<MOD>_IRQ*.

The register **IRQ_NOTIFY** collects the occurrence of interrupt events. The behavior for setting a bit in this register depends on the configured mode and thus it is described later on in the mode descriptions.

Independent of the configured mode any write access with value '1' to a bit in the register **IRQ_NOTIFY** always clears the corresponding **IRQ_NOTIFY** bit.

Moreover, the enabling of a disabled interrupt source with a write access to the register **IRQ_EN** also clears the corresponding bit in the **IRQ_NOTIFY** register but only if the error interrupt source **EIRQ_EN** is disabled. However, if the enabling of a disabled interrupt is simultaneous to an incoming interrupt event, the interrupt event is dominant and the register **IRQ_NOTIFY** is not cleared.

Additionally, each write access to the register **IRQ_MODE**, clears all bits in the **IRQ_NOTIFY** register. It should be notified that the clearing of **IRQ_NOTIFY** is applied independently of the written data (e.g. no mode change).

Thus, a secure way for reconfiguring the interrupt mode of an interrupt set, is to disable all interrupts of the interrupt set with the register **IRQ_EN**, define the new interrupt

mode by writing register **IRQ_MODE**, followed by enabling the desired interrupts with the register **IRQ_EN**.

Thus, a secure way for reconfiguring the interrupt mode of an error interrupt set, is to disable all error interrupts of the error interrupt set with the register **EIRQ_EN**, define the new interrupt mode by writing register **IRQ_MODE**, followed by enabling the desired error interrupts with the register **EIRQ_EN**.

The register **IRQ_FORCINT** is used by software for triggering individual interrupts with a write access with value '1'. Since a write access to **IRQ_FORCINT** only generates a single pulse, **IRQ_FORCINT** is not implemented as a true register and thus any read access to **IRQ_FORCINT** always results with a value of '0'.

The mechanism for triggering interrupts with **IRQ_FORCINT** is globally disabled after reset. It has to be explicitly enabled by clearing the bit **RF_PROT** in the register **GTM_CTRL** (see section 2.9.3)

For the modules AEI-bridge, BRC, FIFO, TIM, MCS, DPLL, SPE and CMP each interrupt may configured to raise instead of the normal interrupt an error interrupt if enabled by the corresponding error interrupt enable bit in register **EIRQ_EN**. It is possible for one source to enable the normal interrupt and the error interrupt in parallel. Because both interrupt clear signals could reset the notify bit this is expected

to cause problems in a system and therefore it is strongly recommended to not enable both interrupt types at the same point in time.

Similar to enabling an interrupt, the enabling of a disabled error interrupt source with a write access to the register **EIRQ_EN** also clears the corresponding bit in the **IRQ_NOTIFY** register only if the interrupt source **IRQ_EN** is disabled. However, if the enabling of a disabled error interrupt is simultaneous to an incoming interrupt event, the interrupt event is dominant and the register **IRQ_NOTIFY** is not cleared.

All enabled error interrupts are OR-combined inside the ICM and assigned to the dedicated GTM port *gtm_err_irq*. A corresponding input *gtm_err_irq_clr* allows the reset of this error interrupt from outside the GTM (hardware clear).

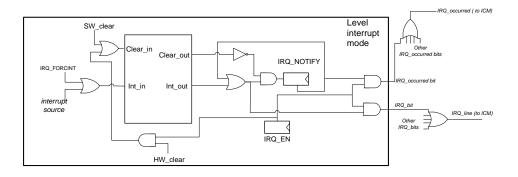
To be able to detect the module source of the error interrupt the ICM provides the register **ICM_IRQG_MEI**.

The error interrupt causing channel can be determined for the module FIFO by evaluating the ICM register **ICM_IRQG_CEI0**.

The error interrupt causing channel can be determined for the modules TIM by evaluating the ICM register **ICM_IRQG_CEI1...2**.

The error interrupt causing channel can be determined for the modules MCS with all possible channel by evaluating the ICM register **ICM_IRQG_MCS[i]_CEI**.

In case of usage only the first 8 channels of each MCS the error interrupt causing channel can be determined by evaluating the ICM register **ICM_IRQG_CEI3...4**.



2.5.1 Level interrupt mode

The default interrupt mode is the Level Interrupt Mode. In this mode each occurred interrupt event is collected in the register **IRQ_NOTIFY**, independent of the corresponding enable bit of register **IRQ_EN** and **EIRQ_EN**.

An interrupt event, which is defined as a pulse on the signal *Int_out* of figure 2.5.1.1, may be triggered by the interrupt source of the sub-module or by software performing a write access to the corresponding register **IRQ_FORCINT**, with a disabled bit **RF_PROT** in register **GTM_CTRL**.

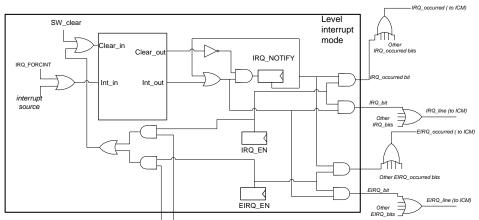
2.5.1.1 Level interrupt mode scheme

A collected interrupt bit in register **IRQ_NOTIFY** may be cleared by a clear event, which is defined as a pulse on signal *Clear_out* of figure 2.5.1.1. A clear event can be performed by writing '1' to the corresponding bit in the register **IRQ_NOTIFY** leading to a pulse on signals *SW_clear*. A clear event may also result from an externally connected signal *GTM_<MOD>_IRQ_CLR*, which is routed to the signal *HW_clear* of figure 2.5.1.1. However, the hardware clear mechanism is only possible, if the corresponding interrupt is enabled by register **IRQ_EN**.

As table 2.5.1.2 shows, interrupt events are dominant in the case of a simultaneous interrupt event and clear event.

Int_in	Clear_in	Int_out	Clear_out
0	0	0	0
0	1	0	1
1	0	1	0
1	1	1	0

2.5.1.2 Priority of Interrupt Events and Clear Events


Specification

As shown in figure 2.5.1.1 an occurred interrupt event is signaled as a constant signal level with value 1 to the signal *IRQ_bit*, if the corresponding interrupt is enabled in register **IRQ_EN**.

With exception of the sub-modules ARU and DPLL, the signal *IRQ_bit* is OR-combined with the neighboring *IRQ_bit* signals of the same interrupt set and they are routed as a signal *IRQ_line* to the interrupt concentrator module (ICM). The interrupt signals *IRQ_bit* of the sub-modules DPLL and ARU are routed directly as a signal *IRQ_line* to the sub-module ICM. In some cases (sub-modules TOM and ATOM) the ICM may further OR-combine several *IRQ_line* signals to an outgoing interrupt signal *GTM_<MOD>_IRQ*. In the other cases the *IRQ_line* signals are directly connected to the outgoing signals *GTM_<MOD>_IRQ*, within the sub-module ICM.

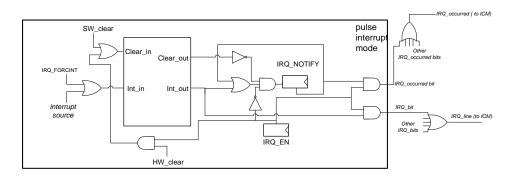
The signal *IRQ_occurred* is connected in a similar way as the signal *IRQ_line*, however this signal is used for monitoring the interrupt state of the register **IRQ_NOTIFY** in the registers of the ICM.

The additional error interrupt enable mechanism for level interrupt is shown below.

2.5.1.3 Level interrupt scheme for modules AEI-bridge, BRC, FIFO, TIM, MCS, DPLL, SPE, CMP

gtm_err_irq_clr (GTM-IP input port) ____ gtm_<xxx>_irq_clr (GTM-IP input port)

A collected interrupt bit in register **IRQ_NOTIFY** may be cleared by a clear event, which is defined as a pulse on signal *Clear_out* of figure 2.5.1.3. A clear event can be performed by writing '1' to the corresponding bit in the register **IRQ_NOTIFY** leading to a pulse on signals *SW_clear*. A clear event may also result from the externally connected signal *gtm_<MOD>_irq_clr* or *gtm_err_irq_clr*, which is routed as an HW_*clear* to *Clear_in* of figure 2.5.1.3. However, the hardware clear mechanism is only possible, if the corresponding interrupt or error interrupt is enabled by register **IRQ_EN**.


Specification

As it can be seen from the figure 2.5.1.3 an occurred interrupt event is signaled as a constant signal level with value 1 to the signal *IRQ_bit*, if the corresponding interrupt is enabled in register **IRQ_EN**.

2.5.2 Pulse interrupt mode

The Pulse interrupt mode behavior can be observed from figure 2.5.2.1.

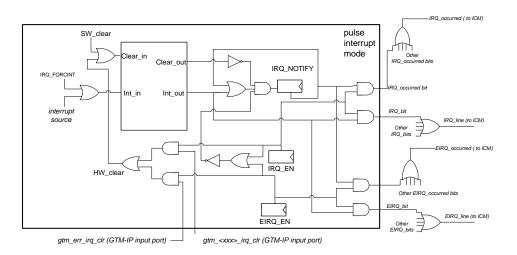
2.5.2.1 Pulse interrupt mode scheme

In Pulse Interrupt Mode each Interrupt Event will generate a pulse on the *IRQ_bit* signal if **IRQ_EN** is enabled.

As it can be seen from the figure, the interrupt bit in **IRQ_NOTIFY** register is always cleared if **IRQ_EN** is enabled.

However, if an interrupt is disabled in the register **IRQ_EN**, an occurred interrupt event is captured in the register **IRQ_NOTIFY**, in order to allow polling for disabled interrupts by software.

Disabled interrupts may be cleared by an interrupt clear event.


In Pulse interrupt mode, the signal IRQ_occurred is always 0.

The additional error interrupt enable mechanism for pulse interrupt is shown below.

2.5.2.2 Pulse interrupt scheme for modules AEI-bridge, BRC, FIFO, TIM, MCS, DPLL, SPE, CMP

BOSCH Revision 3.1.5.1

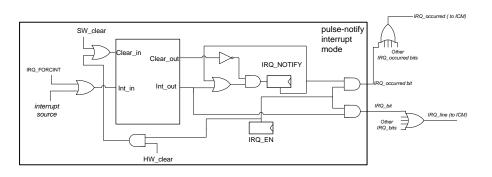
Specification

In Pulse Interrupt Mode each Interrupt Event will generate a pulse on the *EIRQ_bit* signal if **EIRQ_EN** is enabled.

As it can be seen from the figure, the interrupt bit in **IRQ_NOTIFY** register is always cleared if **EIRQ_EN** or **IRQ_EN** are enabled.

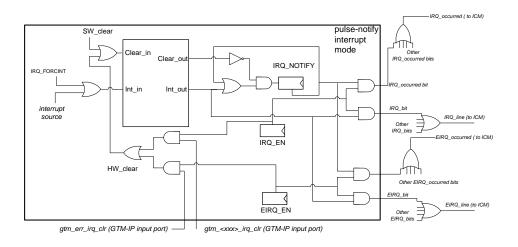
However, if an error interrupt is disabled in the register **EIRQ_EN**, an occurred error interrupt event is captured in the register **IRQ_NOTIFY**, in order to allow polling for disabled error interrupts by software.

Disabled error interrupts may be cleared by an error interrupt clear event. In Pulse interrupt mode, the signal EIRQ_occurred is always 0.


2.5.3 Pulse-notify interrupt mode

In Pulse-notify Interrupt mode, all interrupt events are captured in the register **IRQ_NOTIFY**. If an interrupt is enabled by the register **IRQ_EN**, each interrupt event will also generate a pulse on the *IRQ_bit* signal. The signal *IRQ_occurred* will be high if interrupt is enabled in register **IRQ_EN** and the corresponding bit of register **IRQ_NOTIFY** is set. The Pulse-notify interrupt mode is shown in figure 2.5.3.1.

2.5.3.1 Pulse-notify interrupt mode scheme


Confidential

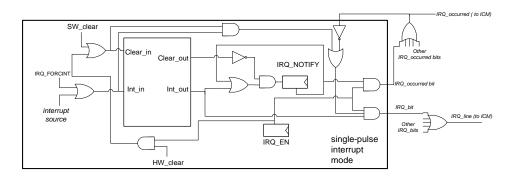
Specification

The additional error interrupt enable mechanism for pulse-notify interrupt is shown below

2.5.3.2 Pulse-notify interrupt scheme for modules AEI-bridge, BRC, FIFO, TIM, MCS, DPLL, SPE, CMP

In Pulse-notify Interrupt mode, all error interrupt events are captured in the register **IRQ_NOTIFY**. If an error interrupt is enabled by the register **EIRQ_EN**, each error interrupt event will also generate a pulse on the *EIRQ_bit* signal. The signal *EIRQ_occurred* will be high if error interrupt is enabled in register **EIRQ_EN** and the corresponding bit of register **IRQ_NOTIFY** is set. The Pulse-notify interrupt mode for error interrupts is shown in figure 2.5.3.2.

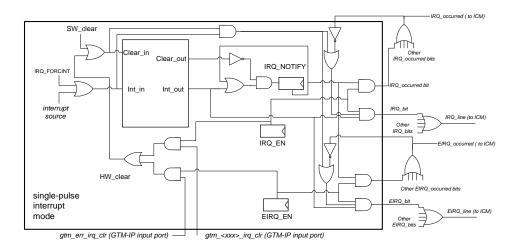
2.5.4 Single-pulse interrupt mode


In Single-pulse Interrupt Mode, an interrupt event is always captured in the register **IRQ_NOTIFY**, independent of the state of **IRQ_EN**. However, only the first interrupt event of an enabled interrupt within a common interrupt set is forwarded to signal *IRQ_line*. Additional interrupt events of the same interrupt set cannot generate pulses on the signal *IRQ_line*, until the corresponding bits in register **IRQ_NOTIFY** of enabled interrupts are cleared by a clear event. The *IRQ_occurred* signal line will be high, if the

Specification

IRQ_EN and the **IRQ_NOTIFY** register bits are set. The Single-pulse interrupt mode is shown in figure 2.5.4.1.

The only exceptions are the modules ARU and DPLL. In these modules the *IRQ_occurred* bit of each interrupt is directly connected (without OR-conjunction of neighboring *IRQ_occurred* bits) to the inverter for suppressing further interrupt pulses.


2.5.4.1 Single-pulse interrupt mode scheme

To avoid unexpected IRQ behavior in the single pulse mode, all desired interrupt sources should be enabled by a single write access to **IRQ_EN** and the notification bits should be cleared by a single write access to the register **IRQ_NOTIFY**.

The additional error interrupt enable mechanism for single-pulse interrupt is shown below

2.5.4.2 Single-pulse interrupt scheme for modules AEI-bridge, BRC, FIFO, TIM, MCS, DPLL, SPE, CMP

In Single-pulse Interrupt Mode, an error interrupt event is always captured in the register **IRQ_NOTIFY**, independent of the state of **EIRQ_EN**. However, only the first

error interrupt event of an enabled error interrupt within a common error interrupt set is forwarded to signal *EIRQ_line*. Additional error interrupt events of the same error interrupt set cannot generate pulses on the signal *EIRQ_line*, until the corresponding bits in register **IRQ_NOTIFY** of enabled error interrupts are cleared by a clear event. The *EIRQ_occurred* signal line will be high, if the **EIRQ_EN** and the **IRQ_NOTIFY** register bits are set. The Single-pulse interrupt mode for error interrupts is shown in figure 2.5.4.2.

To avoid unexpected EIRQ behavior in the single pulse mode, all desired error interrupt sources should be enabled by a single write access to **EIRQ_EN** and the notification bits should be cleared by a single write access to the register **IRQ_NOTIFY**.

The only exceptions are the modules ARU and DPLL. In these modules the *EIRQ_occurred* bit of each error interrupt is directly connected (without OR-conjunction of neighboring *EIRQ_occurred* bits) to the inverter for suppressing further error interrupt pulses.

2.5.5 GTM-IP Interrupt concentration method

Because of the grouping of interrupts inside the ICM, it can be necessary for the software to access the ICM sub-module first to determine the interrupt set that is responsible for an interrupt. A second access to the responsible register **IRQ_NOTIFY** is then necessary to identify the interrupt source, serve it and to reset the interrupt flag in register **IRQ_NOTIFY** afterwards. The interrupt flags are never reset by an access to the ICM. For a detailed description of the ICM sub-module please refer to chapter 20.

2.6 GTM-IP Software Debugger Support

For software debugger support the GTM-IP comes with several features. E.g. status register bits must not be altered by a read access from a software debugger. To avoid this behavior to reset a status register bit by software, the CPU has to write a '1' explicitly to the register bit to reset its content.

The table 2.6.1 describes the behavior of some GTM-IP registers with special functionality on behalf of read accesses from the AEI bus interface.

2.6.1 Register behavior in case of Software Debugger accesses

Module	Register	Description	
--------	----------	-------------	--

AFD	AFD[i]_CH[x]_BUFFACC	The FIFO read access pointers are not altered on behalf of a Debugger read access to this register.
TIM	TIM[i]_CH[x]_GPR0/1	The overflow bit is not altered in case of a Debugger read access to this registers.
ΑΤΟΜ	ATOM[i]_CH[x]_SR0/1	In SOMC mode a read access to this register by the Debugger does not release the channel for a new compare/match event.

Further on, some important states inside the GTM-IP sub-module have to be signaled to the outside world, when reached and should for example trigger the software debugger to stop program execution. For this internal state signaling please refer to the GTM-IP module integration guide.

The GTM provides an external signal *gtm_halt*, which disables clock signal *SYS_CLK* for debugging purposes. If *SYS_CLK* is disabled, a connected debugger can read any GTM related register and the GTM internal RAMs using AEI. Moreover, the debugger can also perform write accesses to the internal RAMs and to all GTM related registers in order to enable advanced debugging features (e.g. modifications of register contents in single step mode).

2.7 GTM-IP Programming conventions

To serve different application domains the GTM-IP is a highly configurable module with many configuration modes. In principle the sub-modules of the GTM-IP are intended to be configured at system startup to fulfill certain functionality for the application domain the micro controller runs in.

For example, a TIM input channel can be used to monitor an application specific external signal, and this signal has to be filtered. Therefore, the configuration of the TIM channel filter mode will be specific to the external signal characteristic. While it can be necessary to adapt the filter thresholds during runtime an adaptation of the filter mode during runtime is not reasonable. Thus, the change of the filter mode during runtime can lead to an unexpected behavior.

In general, the programmer has to be careful when reprogramming configuration registers of the GTM-IP sub-modules during runtime. It is recommended to disable the channels before reconfiguration takes place to avoid unexpected behavior of the GTM-IP.

2.8 GTM-IP TOP-Level Configuration Register Overview

2.8.1 GTM-IP TOP-Level Configuration Register Overview Table

Register name	Description	Details in Section
GTM_REV	GTM Version control register	2.9.1
GTM_RST	GTM Global reset register	2.9.2
GTM_CTRL	GTM Global control register	2.9.3
GTM_AEI_ADDR_XPT	GTM AEI Timeout exception address register	2.9.4
GTM_AEI_STA_XPT	GTM AEI Non zero status register	2.9.5
GTM_IRQ_NOTIFY	GTM Interrupt notification register	2.9.6
GTM_IRQ_EN	GTM Interrupt enable register	2.9.7
GTM_EIRQ_EN	GTM Error interrupt enable register	2.9.14
GTM_IRQ_FORCINT	GTM Software interrupt generation register	2.9.8
GTM_IRQ_MODE	GTM top level interrupts mode selection	2.9.9
GTM_BRIDGE_MODE	GTM AEI bridge mode register	2.9.10
GTM_BRIDGE_PTR1	GTM AEI bridge pointer 1 register	2.9.11
GTM_BRIDGE_PTR2	GTM AEI bridge pointer 2 register	2.9.12
GTM_MCS_AEM_DIS	GTM MCS master port disable register	2.9.13
GTM_CLS_CLK_CFG	GTM Cluster Clock Configuration	2.9.15
GTM_CFG	GTM Configuration register	2.9.16

2.9 GTM TOP-Level Configuration Registers Description

2.9.1 Register GTM_REV

Address Offset:	see App	oendix B			Initial V	alue:	0xXXXX_XXXX					
	31 30 29 28	27 26 25 24	23 22 21 20	19 18 17 16	15 14 13 12	11 10 9 8	7 6 5 4 4 3 3 2 2 1 1					
Bit	DEV_CODE2	DEV_CODE1	DEV_CODE0	MAJOR	MINOR	Oz	STEP					
Mode	۳	œ	с	۲	۲	٣	٣					
Initial Value	XXO	XXO	XXO	XXO	XXO	XXO	XXX0					
Rit 7.0	STED.	ologeo et	00	•	•	•	•					

Bit 7:0 **STEP:** release step

GTM-IP	GTM-IP Specification	
	GTM Release step	
Bit 11:8	NO: delivery number	
	Define delivery number of GTM-IP specification.	
Bit 15:12	MINOR: minor version number	
	Define minor version number of GTM-IP specification.	
Bit 19:16	MAJOR: major version number	
	Define major version number of GTM-IP specification.	
Bit 23:20	DEV_CODE0: Device encoding digit 0.	
	Device encoding digit 0.	
Bit 27:24	DEV_CODE1: Device encoding digit 1.	
	Device encoding digit 1.	
Bit 31:28	DEV_CODE2: Device encoding digit 2.	
	Device encoding digit 2.	
	Note: The numbers are encoded in BCD. Values "A" - "F'	' are characters.
Note: See de	evice specific Appendix B [1] for reset value.	

2.9.2 Register GTM_RST

Address Offset:	see Appendix B Initial Value: 0x0000_0000
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Bit	Reserved Reserved Reserved
Mode	R R R R
Initial Value	00000 ⁻ 0 0000 ⁻
Bit 0	 RST: GTM-IP Reset. 0 = No reset action 1 = Initiate reset action for all sub-modules Note: This bit is automatically cleared by hardware after it was written Therefore, the register is always read as zero (0) by the software. Note: This bit is write protected by bit RF_PROT of 2.9.3
Bit 26:1 Bit 27	Reserved Note: Read as zero, should be written as zero. BRIDGE_MODE_WRDIS: GTM_BRIDGE_MODE write disable. 0 = writing of GTM_BRIDGE_MODE register is enabled 1 = writing of GTM_BRIDGE_MODE register is disabled

Note: This bit is write protected by bit RF_PROT of 2.9.3

BOSCH

Specification

Bit 31:28 Reserved

Note: Read as zero, should be written as zero.

2.9.3 Register GTM_CTRL

Address Offset:	see Appendix B	Initial Va	alue:	0x0000_	0x0000_0001								
	31 31 30 29 28 27 26 27 26 27 26 27 26 27 26 21 21 19 117 16	15 14 13 12	11 10 9	8 6 5 4	3 2	1 0							
Bit	Reserved	AEIM_CLUSTER	Reserved	TO_VAL	Reserved	TO_MODE RF_PROT							
Mode	Ľ.	Ľ	В	RŇ	Ч	RW RW							
Initial Value	00 00 00 00 00 00	0000	000	00000	00	0							
Bit 0	 RF_PROT: RST and FORCINT protection. 0 = SW RST (global), SW interrupt FORCINT, and SW RAM reset functionality is enabled 1 = SW RST (global), SW interrupt FORCINT, and SW RAM reset functionality is disabled 												
Bit 1	TO_MODE: AEI timeout mode. 0 = Observe: If timeout_counter=0 with timeout flag will be storegister. Following timeout_counter=0 the first entry in the aei_addr_ flag/aei_status error_code will access.	ored to t ounter=0 timeout re	he GT access egister.	M_AEI_AD es will not Clearing th	DR_ overv e tim	XPT write eout							
	1 = Abort: In addition to observe mo by signaling an illegal module ready. In case of a read deliv accesses.	e access	on aei	_status and	l sen	ding							
Bit 3:2	Reserved: Read as zero, should be Note: Read as zero, should be writt												
Bit 8:4	TO_VAL: AEI timeout value. Note: These bits define the number occurs. When TO_VAL equals is disabled.	-											
Bit 11:9	Reserved: Read as zero, should be Writt												

GTM-IP	Specification	Revision 3.1.5.1
Bit 15:12	AEIM_CLUSTER: AEIM cluster number Note: These bits show the number of the AEI mass throws the interrupts <i>AEIM_USP_ADDR</i> , <i>AEIM_USP_BE</i> depending on the AEI master Note: If one of the corresponding irq notify bits (6 will be frozen until the interrupt notify bits (6:4)	AEIM_IM_ADDR and r port access status. :4) is set, this bit field
Bit 31:16	Reserved	

Note: Read as zero, should be written as zero.

2.9.4 Register GTM_AEI_ADDR_XPT

Address Offset:	see Appendix B		Initial Value: 0x0000_000								
	31 30 29 28 28 26 26 25 25 25 23 23 23 23	20 19 18 17 16	15 14 13 12 11 11 10 9 8	7 6 5 3 3 3 2 2 2 1 1							
Bit	Reserved	TO_WIR0	TO_ADDR								
Mode	۵	٣	۲								
Initial Value	000×0	0	0000×0								

Bit 19:0 **TO_ADDR:** AEI timeout address. Note: This bit field defines the AEI address for which the AEI timeout event occurred.

Bit 20 **TO_W1R0:** AEI timeout Read/Write flag. Note: This bit defines the AEI Read/Write flag for which the AEI timeout event occurred.

Bit 31:21 Reserved

Note: Read as zero, should be written as zero.

2.9.5 Register GTM_AEI_STA_XPT

BOSCH

Specification

Address Offset:	see Appendix B		Initial Value:	0x0000_0000						
	31 30 29 28 28 26 26 25 25 25 23 23 23 23	20 19 18 17 16	15 14 13 12 11 11 10 9 8	7 5 3 3 3 2 2 1 1						
Bit	Reserved	WIRO	ADDR							
Mode	۵	с	۲							
Initial Value	000×0	0	00000 0							

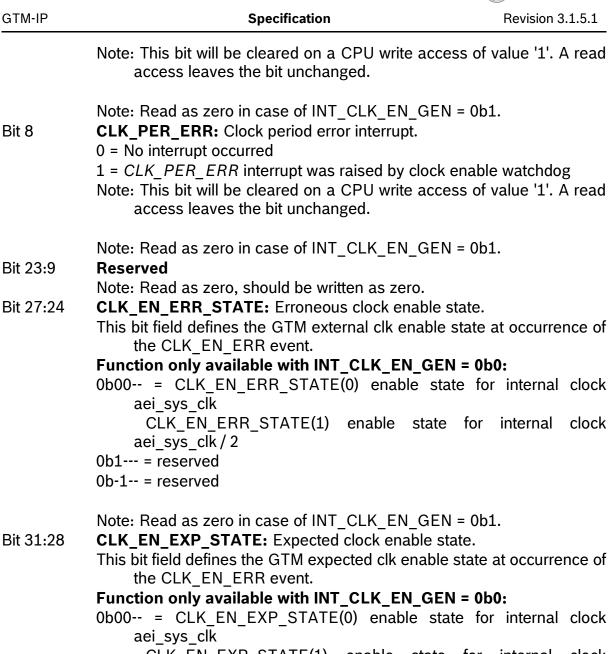
Bit 19:0 **ADDR:** AEI exception address.

Note: This bit field captures the address of the first AEI access resulting with a non-zero AEI status signal. The bit field can be cleared by clearing the interrupt flags AEI_USP_ADDR, AEI_USP_BE, and AEI_IM_ADDR in the register GTM_IRQ_NOTIFY.

Bit 20 W1R0: AEI exception Read/Write flag.

Note: This bit field captures the address of the first AEI access resulting with a non-zero AEI status signal. The bit field can be cleared by clearing the interrupt flags AEI_USP_ADDR, AEI_USP_BE, and AEI_IM_ADDR in the register GTM_IRQ_NOTIFY.

Bit 31:21 **Reserved**


Note: Read as zero, should be written as zero.

2.9.6 Register GTM_IRQ_NOTIFY

Address Offset:	s	see Appendix B													Initial Value: 0x0000_00									00								
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	6	5	4	3	2	1	0
Bit		CLK_EN_EXP_ST	ATE			CLK_EN_ERR_ST	ATE		Reserved														CLK_PER_ERR	CLK_EN_ERR	AEIM_USP_BE	AEIM_IM_ADDR	AEIM_USP_ADDR	AELUSP_BE	AEI_IM_ADDR	AEI_USP_ADDR	AEL TO XPT	
Mode		ď	:			ď	:			۲						щ							RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	
Initial Value		0×0000	0			0×0000	0			000 000														0	0	0	0	0	0	0	0	0

GTM-IP	Specification	Revision 3.1.5.1
Bit 0	 AEI_TO_XPT: AEI timeout exception occurred. 0 = No interrupt occurred 1 = AEI_TO_XPT interrupt was raised by the AEI T Note: This bit will be cleared on a CPU write access access leaves the bit unchanged. 	
Bit 1	 AEI_USP_ADDR: AEI unsupported address interrul 0 = No interrupt occurred 1 = AEI_USP_ADDR interrupt was raised by the AI Note: This bit will be cleared on a CPU write access access leaves the bit unchanged. 	El interface
Bit 2	 AEI_IM_ADDR: AEI illegal Module address interrup 0 = No interrupt occurred 1 = AEI_IM_ADDR interrupt was raised by the AEI Note: This bit will be cleared on a CPU write access access leaves the bit unchanged. 	interface
Bit 3	 AEI_USP_BE: AEI unsupported byte enable interru 0 = No interrupt occurred 1 = AEI_USP_BE interrupt was raised by the AEI in Note: This bit will be cleared on a CPU write access access leaves the bit unchanged. 	nterface
Bit 4	 AEIM_USP_ADDR: AEI master port unsupported a 0 = No interrupt occurred 1 = AEIM_USP_ADDR interrupt was raised by interface Note: This bit will be cleared on a CPU write access access leaves the bit unchanged. 	the AEI master port
Bit 5	AEIM_IM_ADDR: AEI master port illegal Module at 0 = No interrupt occurred 1 = AEIM_IM_ADDR interrupt was raised by the AE Note: This bit will be cleared on a CPU write access access leaves the bit unchanged.	I master port interface
Bit 6	AEIM_USP_BE: AEI master port unsupported byte 0 = No interrupt occurred 1 = AEIM_USP_BE interrupt was raised by the AEI Note: This bit will be cleared on a CPU write access access leaves the bit unchanged.	master port interface
Bit 7	CLK_EN_ERR: Clock enable error interrupt. 0 = No interrupt occurred 1 = <i>CLK_EN_ERR</i> interrupt was raised by clock en	able watchdog

Confidential

CLK_EN_EXP_STATE(1) enable state for internal clock aei_sys_clk / 2

0b1--- = reserved

0b-1-- = reserved

Note: Read as zero in case of INT_CLK_EN_GEN = 0b1.

2.9.7 Register GTM_IRQ_EN

BOSCH

Specification

Revision 3.1.5.1

Address Offset:	see Appendix B	0x0000_0000										
	31 33 33 33 33 33 33 24 25 25 25 25 25 22 22 22 22 22 23 23 23 23 24 26 26 26 26 27 26 26 27 26 27 26 27 26 27 27 26 27 27 26 27 27 27 26 27 27 27 27 27 28 27 27 28 27 27 28 27 27 28 27 27 28 27 28 27 27 28 27 27 28 27 27 28 27 28 27 28 27 28 27 28 27 28 27 28 27 28 27 28 28 27 28 28 27 28 28 27 28 28 27 28 28 27 28 28 28 27 28 28 28 27 28 28 28 28 28 28 28 28 28 28 28 28 28	15 14 13 13 13 12 11 11 9	8 6 6 7 8 10 10 10 10 10 10 10 10 10 10 10 10 10									
Bit	Reserved		CLK_PER_ERR_I CLK_EN_ERR_IR AEIM_USP_BE_IR AEIM_USP_BE_IR AEI_USP_BE_IRQ AEI_USP_BE_IRQ AEI_USP_ADDR_IR AEI_USP_ADDR_IR AEI_USP_ADDR_IR AEI_USP_ADDR_IR									
Mode	۳.		RW RW RW RW RW RW RW RW RW RW									
Initial Value	0000 0000000		· · · · · · · · · · ·									
Bit 0 Bit 1	AEI_TO_XPT_IRQ_EN: AEI_TO_XPT_IRQ interrupt enable. 0 = Disable interrupt, interrupt is not visible outside GTM-IP 1 = Enable interrupt, interrupt is visible outside GTM-IP AEI_USP_ADDR_IRQ_EN: AEI_USP_ADDR_IRQ interrupt enable. 0 = Disable interrupt, interrupt is not visible outside GTM-IP											
Bit 2	 1 = Enable interrupt, interrupt is visible outside GTM-IP AEI_IM_ADDR_IRQ_EN: AEI_IM_ADDR_IRQ interrupt enable. 0 = Disable interrupt, interrupt is not visible outside GTM-IP 1 = Enable interrupt, interrupt is visible outside GTM-IP 											
Bit 3	AEI_USP_BE_IRQ_EN: <i>AEI_USP_</i> 0 = Disable interrupt, interrupt is no 1 = Enable interrupt, interrupt is vis	t visible outside	GTM-IP									
Bit 4	AEIM_USP_ADDR_IRQ_EN: <i>AEI_</i> 0 = Disable interrupt, interrupt is no 1 = Enable interrupt, interrupt is vis	t visible outside	GTM-IP									
Bit 5	AEIM_IM_ADDR_IRQ_EN: <i>AEIM_</i> 0 = Disable interrupt, interrupt is no 1 = Enable interrupt, interrupt is vis	t visible outside	GTM-IP									
Bit 6	AEIM_USP_BE_IRQ_EN: <i>AEIM_U</i> 0 = Disable interrupt, interrupt is no 1 = Enable interrupt, interrupt is vis	t visible outside	GTM-IP									
Bit 7	CLK_EN_ERR_IRQ_EN: <i>CLK_EN</i> 0 = Disable interrupt, interrupt is no 1 = Enable interrupt, interrupt is vis	t visible outside (GTM-IP									
Bit 8	Note: Read as zero in case of INT_ CLK_PER_ERR_IRQ_EN: CLK_P											

GTM-IP	Specification	Revision 3.1.5.1
	0 = Disable interrupt, interrupt is not visible outside GTM- 1 = Enable interrupt, interrupt is visible outside GTM-IP	·IΡ
Bit 31:9	Note: Read as zero in case of INT_CLK_EN_GEN = 0b1 Reserved Note: Read as zero, should be written as zero.	

2.9.8 Register GTM_IRQ_FORCINT

Address Offset:	see Appendix B	Initial Value:	0x0000_0000										
	31 30 29 27 27 26 26 25 25 25 23 23 23 23 23 23 21 21 19 11 11	15 14 13 13 12 11 10 9	886666 677 444 2333										
Bit	Reserved		TRG_CLK_PER_E TRG_CLK_EN_ER TRG_AEIM_USP_ TRG_AEIM_USP_ TRG_AEI_USP_B TRG_AEI_USP_B TRG_AEI_USP_B TRG_AEI_USP_A										
Mode	٣		RAw RAw RAw RAw RAw RAw RAw										
Initial Value	00000000000000000000000000000000000000		o o o o o o o o										
Bit 1	 TRG_AEI_TO_XPT: Trigger AEI_T 0 = No interrupt triggering 1 = Assert AEI_TO_XPT_IRQ intern Note: This bit is cleared automatica Note: This bit is write protected by b TRG_AEI_USP_ADDR: Trigger software. 0 = No interrupt triggering 1 = Assert AEI_USP_ADDR_IRQ in Note: This bit is cleared automatica Note: This bit is cleared automatica 	Tupt for one clock Ily after write. Dit RF_PROT of AEI_USP_ADDF Diterrupt for one co Ily after write.	k cycle 2.9.3 R_ <i>IR</i> Q interrupt by clock cycle										
Bit 2	TRG_AEI_IM_ADDR: Trigger AEI_IM_ADDR_IRQ interrupt by software. 0 = No interrupt triggering 1 = Assert AEI_IM_ADDR_IRQ interrupt for one clock cycle Note: This bit is cleared automatically after write. Note: This bit is write protected by bit RF_PROT of 2.9.3												
Bit 3	TRG_AEI_USP_BE: Trigger <i>AEI_U</i> 0 = No interrupt triggering 1 = Assert <i>AEI_USP_BE_IRQ</i> interv Note: This bit is cleared automatica	rupt for one cloc											

BOSCH

GTM-IP	Specification	Revision 3.1.5.1
	Note: This bit is write protected by bit RF_PROT of 2.9	3
Bit 4	TRG_AEIM_USP_ADDR: Trigger <i>AEIM_USP_ADDR_</i> software. 0 = No interrupt triggering 1 = Assert <i>AEIM_USP_ADDR_IRQ</i> interrupt for one clo Note: This bit is cleared automatically after write. Note: This bit is write protected by bit RF_PROT of 2.9	ock cycle
Bit 5	TRG_AEIM_IM_ADDR: Trigger <i>AEIM_IM_ADDR_IF</i> software. 0 = No interrupt triggering 1 = Assert <i>AEIM_IM_ADDR_IRQ</i> interrupt for one clock Note: This bit is cleared automatically after write. Note: This bit is write protected by bit RF_PROT of 2.9	cycle
Bit 6	TRG_AEIM_USP_BE: Trigger <i>AEIM_USP_BE_IRG</i> software. 0 = No interrupt triggering 1 = Assert <i>AEIM_USP_BE_IRQ</i> interrupt for one clock Note: This bit is cleared automatically after write. Note: This bit is write protected by bit RF_PROT of 2.9	cycle
Bit 7	TRG_CLK_EN_ERR: Trigger <i>CLK_EN_ERR_IRQ</i> inte 0 = No interrupt triggering 1 = Assert <i>CLK_EN_ERR_IRQ</i> interrupt for one clock of Note: This bit is cleared automatically after write. Note: This bit is write protected by bit RF_PROT of 2.9.	ycle
Bit 8	Note: Read as zero in case of INT_CLK_EN_GEN = 0k TRG_CLK_PER_ERR: Trigger <i>CLK_PER_ERR_IR</i> software. 0 = No interrupt triggering 1 = Assert <i>CLK_PER_ERR_IRQ</i> interrupt for one clock Note: This bit is cleared automatically after write. Note: This bit is write protected by bit RF_PROT of 2.9.	Q interrupt by cycle
Bit 31:9	Note: Read as zero in case of INT_CLK_EN_GEN = 0k Reserved Note: Read as zero, should be written as zero.	1 .

2.9.9 Register GTM_IRQ_MODE

Specification

Address Offset:	see Appendix B Initial Value: 0x0000_000	00X								
	31 33 30 29 27 28 27 26 26 25 22 23 23 23 23 23 21 17 11 17 117 117 117 117 117 117 117	1 0								
Bit	Reserved	IRQ_MODE								
Mode	α									
Initial Value	00000 0000000	хх								
Rit 1.0	IBO MODE. Interrupt strategy mode selection for the AEI timeout	and								

Bit 1:0 **IRQ_MODE:** Interrupt strategy mode selection for the AEI timeout and address monitoring interrupts.

- 0b00 = Level mode
- 0b01 = Pulse mode

0b10 = Pulse-Notify mode

0b11 = Single-Pulse mode

Note: The interrupt modes are described in section 2.5.

Note: This mode selection is only valid for the interrupts described in section 2.9.6.

Bit 31:2 Reserved

Note: Read as zero, should be written as zero.

2.9.10 Register GTM_BRIDGE_MODE

Address Offset:	see Appendix B										Initial Value:									0xXX00_X00X												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	3	2	1	0
Bit				BUFF DPT								Reserved				BRG_RST		Reserved		SYNC INPUT RE	Decented		BUFF_OVL	MODE_UP_PGR			Reserved			BYPASS_SYNC	MSK_WR_RSP	BRG MODE
Mode				œ	:							Ж				RAw		Ч		R	٩		RCw	Я			Ж			RW	RW	RW
Initial Value	XXXO				00 00 00				0		0×0 × 0×0				0	0 00×0 0 0 ×						×										
Bit 0	Bit 0 BRG_MODE: Defines the operation mode for the AEI bridge. 0 = AEI bridge operates in sync. bridge mode																															

0 = AEI bridge operates in sync_bridge mode

1 = AEI bridge operates in async_bridge mode

GTM-IP	Specification	Revision 3.1.5.1
	Note: Reset value depends on the hardware silicon vendor.	configuration chosen by
Bit 1	 MSK_WR_RSP: Mask write response. 0 = Do not mask the write response. Depending the latency for execution can vary due to After this time the status of the access will AEI_STATUS to the bus interface. 1 = Mask write response. The write buffer of the actual access will be stored to the write b on the bus interface the acceptance of AEI_STATUS=0b00 will be signaled. In c the actual access will be postponed until the becomes free. Note: The status of the executed write access using the notify bits AEI_USP_AEI_USP_BE in the register GTM_IRQ_N 	GTM internal arbitration. be signaled by the signal e bridge is activated, the uffer and without latency the access is signaled. ase of a full write buffer he next write buffer entry ses can be observed by DDR ,AEI_IM_ADDR,
	Note: With active write buffer MSK_WR_RSP=1, be delayed due to previous inserted write a buffer which wait to be serviced. This car access on the bus to a different periphera executed earlier in time than the write acce Applications must be setup up with to unexpected operation can happen.	actions in the transaction I lead to the fact that an I than the GTM might be ess buffered in the GTM.
Bit 2	 BYPASS_SYNC: Bypass synchronizer flipflops Function only available with BRG_MODE=1 0 = synchronizer flip-flops in use, latency increase (aei_clk -> aei_sys_clk and back aei_sysetting must be used if aei_clk and ad asynchronous by independent clock source 1 = synchronizer flip-flops are bypassed. No asynchronization. This setting can be used if are generated by clock gating or clock did clock source. Clock edges on aei_clk and out of the same clock edge of the common zero skew. 	se due to synchronization ys_clk -> aei_clk). This ei_sys_clk operate fully es. additional latency due to f aei_clk and aei_sys_clk ivision out of a common d aei_sys_clk generated

Bit 7:3 Reserved

Note: Read as zero, should be written as zero.

Bit 8 **MODE_UP_PGR:** Mode update in progress.

- 0 = No update in progress.
- 1 = Update in progress.

BOSCH

GTM-IP	Specification	Revision 3.1.5.1
Bit 9	 BUFF_OVL: Buffer overflow register. 0 = No buffer overflow occurred. 1 = Buffer overflow occurred. Note: A buffer overflow can occur while multiple about the external bus or a pipelined instruction is started GTM_BRIDGE_PTR1 register). 	
Bit 11:10	Reserved Note: Read as zero, should be written as zero.	
Bit 12	 SYNC_INPUT_REG: additional pipelined stage in mode 0 = No additional pipelined stage implemented. 1 = additional pipelined stage implemented. All accommode will be increased by one clock cycle. Note: Reset value depends on the hardware consilicon vendor. 	esses in synchronous
Bit 15:13 Bit 16	Reserved Note: Read as zero, should be written as zero. BRG_RST: Bridge software reset. 0 = No bridge reset request. 1 = Bridge reset request. Note: This bit is cleared automatically after write.	
Bit 23:17	Reserved Note: Read as zero, should be written as zero.	
Bit 31:24	BUFF_DPT: Buffer depth of AEI bridge. Signals the buffer depth of the GTM AEI bridge imp Note: Reset value depends on the hardware con silicon vendor.	

Note: All writable bits are write protected by bit BRIDGE_MODE_WRDIS of 2.9.2

2.9.11 Register GTM_BRIDGE_PTR1

BOSCH

Specification

Address Offset:	see Append	ix B		Initia	al Value:	0x0XX0_0000						
	31 30 29 28 28 28 28 28	25 24 23 23 22 21 21	19 18 17 16	15 14	13 12 11 10	9 8 7 6 5	4 3 2 1 0					
Bit	RSP_TRAN_RDY	FBC	ABT_TRAN_PGR		TRAN_IN_PGR	FIRST_RSP_PTR	NEW_TRAN_PTR					
Mode	٣	Ľ	Ľ		Ľ	Ľ	۲					
Initial Value	00×0	XXX0	0×0		0×0	0×0	0×0					
Bit 4:0	NEW_TRAN_PTR: New transaction pointer. Signals the actual value of the new transaction pointer.											

Bit 9:5 FIRST RSP PTR: First response pointer. Signals the actual value of first response pointer.

- **TRAN_IN_PGR:** Transaction in progress pointer (acquire) Bit 14:10 Transaction in progress pointer.
- Bit 19:15 **ABT TRAN PGR:** Aborted transaction in progress pointer. Aborted transaction in progress pointer.
- **FBC:** Free buffer count. Bit 25:20 Number of free buffer entries. Note: Initial value depends on the hardware configuration chosen by silicon vendor. (see BUFF DPT in GTM BRIDGE MODE register).
- Bit 31:26 **RSP TRAN RDY:** Response transactions ready. Amount of ready response transactions.

Note: This register operates on the AEI CLK domain.

Note: This register holds diagnosis information about the AEI bus bridge. Each access to the GTM IP will update the defined pointer bit fields. Depending on the mode of GTM MODE BRIDGE (BRG MODE, MSK WR RESP), the AEI protocol and operating frequency which is use, the 4 pointer bit fields will change at different clock cycles relative to the start of the transaction. This leads to the fact that reading the register can show values not equal to the defined Initial Value, even directly after a write to GTM BRIDGE MODE with BRG RST=1 was done.

2.9.12 Register GTM BRIDGE PTR2

Specification

Address Offset:	see Appendix B Initial Value: 0x000	0_0000				
	31 31 30 30 29 27 27 26 27 27 26 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27	4 4 2 1 0				
Bit	Reserved					
Mode	٣	Ľ				
Initial Value	0000 0000 000	0×0				
Bit 4:0	TRAN_IN_PGR2: Transaction in progress pointer (aquire2) Transaction in progress pointer 2.					

Bit 31:5 **Reserved**

Note: Read as zero, should be written as zero.

Note: This register operates on the GTM_CLK domain.

2.9.13 Register GTM_MCS_AEM_DIS

Address Offset:	see Appendix B				Initial Value: 0x0000_0000					0			
	31 30 29 28 27 26 25 25	23 22	21 20	19 18	17 16	15 14	13 12	11 10	9 8	7 6	5 4	3	1 0
Bit	Reserved	DIS_CLS11	DIS_CLS10	DIS_CLS9	DIS_CLS8	DIS_CLS7	DIS_CLS6	DIS_CLS5	DIS_CLS4	DIS_CLS3	DIS_CLS2	DIS_CLS1	DIS_CLS0
Mode	۲	с	£	£	Ы	٣	ш	œ	£	с	æ	٣	с
Initial Value	00×0	00	00	00	00	00	00	00	00	00	00	00	00

Bit 1:0 DIS_CLSO: Disable MCS AEIM access in cluster 0 Multicore encoding in use (DIS_CLSx(1) defines the state of the signal) 0b00 = State is 0; MCS AEM access in cluster x enabled (ignore write access) 0b01 = Change state to 0 0b10 = Change state to 1 0b11 = State is 1; MCS AEM access in cluster x disabled(ignore write

Note: Any read access to a **DIS_CLSx** bit field will always result in a value 00 or 11 indicating current state. A modification of the state is only performed with the values 01 and 10. Writing the values 00 and 11 is always ignored.

Bit 3:2	DIS_CLS1: Disable MCS AEIM access in cluster 1, see bit DIS_CLS0
Bit 5:4	DIS_CLS2: Disable MCS AEIM access in cluster 2, see bit DIS_CLS0
Bit 7:6	DIS_CLS3: Disable MCS AEIM access in cluster 3, see bit DIS_CLS0
Bit 9:8	DIS_CLS4: Disable MCS AEIM access in cluster 4, see bit DIS_CLS0
Bit 11:10	DIS_CLS5: Disable MCS AEIM access in cluster 5, see bit DIS_CLS0
Bit 13:12	DIS_CLS6: Disable MCS AEIM access in cluster 6, see bit DIS_CLS0
Bit 15:14	DIS_CLS7: Disable MCS AEIM access in cluster 7, see bit DIS_CLS0
Bit 17:16	DIS_CLS8: Disable MCS AEIM access in cluster 8, see bit DIS_CLS0
Bit 19:18	DIS_CLS0: Disable MCS AEIM access in cluster 9, see bit DIS_CLS0
Bit 21:20	DIS_CLS10: Disable MCS AEIM access in cluster 10, see bit DIS_CLS0
Bit 23:22	DIS_CLS11: Disable MCS AEIM access in cluster 11, see bit DIS_CLS0
Bit 31:24	Reserved
	Note: Read as zero, should be written as zero.

Specification

2.9.14 Register GTM_EIRQ_EN

Address Offset:	see Appendix B Initial Va	Initial Value: 0x0000_0000						
	31 30 29 27 27 26 27 26 26 26 26 26 26 27 26 21 19 117 117 115 115 113 113	11 10 9	8 1	6	5	3 4	2	• 0
Bit	Reserved	CLK_PER_ERR_E	AEIM_USP_BE_EI	AEIM_IM_ADDR_	AEIM_USP_ADDR AEI USP BE EIR	IM ADDR		
Mode	Ľ.	RW	RW	RW	RW	RW	RW	
Initial Value	000000	, н	1 0	0	0 0	00	0	
Bit 0	AEI_TO_XPT_EIRQ_EN: <i>AEI_TO_XPT_EIRQ</i> error interrupt enable. 0 = Disable error interrupt, interrupt is not visible outside GTM-IP 1 = Enable error interrupt, interrupt is visible outside GTM-IP							
Bit 1	 AEI_USP_ADDR_EIRQ_EN: AEI_USP_ADDR_EIRQ error interrupt enable. 0 = Disable error interrupt, interrupt is not visible outside GTM-IP 1 = Enable error interrupt, interrupt is visible outside GTM-IP 							

GTM-IP	Specification	Revision 3.1.5.1								
Bit 2	AEI_IM_ADDR_EIRQ_EN: AEI_IM_ADDR_EIRQ err	AEI_IM_ADDR_EIRQ_EN: AEI_IM_ADDR_EIRQ error interrupt enable.								
	0 = Disable error interrupt, interrupt is not visible outs 1 = Enable error interrupt, interrupt is visible outside (
Bit 3	AEI_USP_BE_EIRQ_EN: AEI_USP_BE_EIRQ error	interrupt enable.								
	0 = Disable error interrupt, interrupt is not visible outs 1 = Enable error interrupt, interrupt is visible outside (
Bit 4	AEIM_USP_ADDR_EIRQ_EN: AEIM_USP_ADDR_E enable. 0 = Disable error interrupt, interrupt is not visible outs 1 = Enable error interrupt, interrupt is visible outside (ide GTM-IP								
Bit 5	AEIM_IM_ADDR_EIRQ_EN: <i>AEIM_IM_ADDR_EIR</i> enable. 0 = Disable error interrupt, interrupt is not visible outs 1 = Enable error interrupt, interrupt is visible outside (ide GTM-IP								
Bit 6	AEIM_USP_BE_EIRQ_EN: AEIM_USP_BE_EIRQ enable. 0 = Disable error interrupt, interrupt is not visible outs 1 = Enable error interrupt, interrupt is visible outside (ide GTM-IP								
Bit 7	CLK_EN_ERR_EIRQ_EN: <i>CLK_EN_ERR_EIRQ</i> inte 0 = Disable interrupt, interrupt is not visible outside G 1 = Enable interrupt, interrupt is visible outside GTM-	TM-IP								
Bit 8	Note: Read as zero in case of INT_CLK_EN_GEN = (CLK_PER_ERR_EIRQ_EN: <i>CLK_PER_ERR_EIRQ</i> = 0 = Disable interrupt, interrupt is not visible outside G 1 = Enable interrupt, interrupt is visible outside GTM-	interrupt enable. TM-IP								
Bit 31:9	Note: Read as zero in case of INT_CLK_EN_GEN = (Reserved Note: Read as zero, should be written as zero.	Ob1.								

2.9.15 Register GTM_CLS_CLK_CFG

Specification

Revision 3.1.5.1

Address Offset:	see Appendix B					Initial Value: 0x00XX_XXXX							xx
	31 30 29 28 27 26 25 25	23 22	21 20	19 18	17 16	15 14	13 12	11 10	9	7 6	5 4	3 2	1 0
Bit	Reserved	CLS11_CLK_DIV	CLS10_CLK_DIV	CLS9_CLK_DIV	CLS8_CLK_DIV	CLS7_CLK_DIV	CLS6_CLK_DIV	CLS5_CLK_DIV	CLS4_CLK_DIV	CLS3_CLK_DIV	CLS2_CLK_DIV	CLS1_CLK_DIV	CLS0_CLK_DIV
Mode	٣	RPw	RPw	RPw	RPw	RPw	RPw	RPw	RPw	RPw	RPw	RPw	RPw
Initial Value	00×0	0bxx	0bxx	0bxx	0bxx	0bxx	0bxx	0bxx	0bxx	0bxx	Obxx	Obxx	0bxx
Bit 1:0	X X <thx< th=""> <thx< th=""> <thx< th=""></thx<></thx<></thx<>												

Bit 3:2	CLS1_CLK_DIV: Cluster 1 Clock Divider 0b00 : Cluster is disabled. 0b01 : Cluster is enabled without clock divider. 0b10 : Cluster is enabled with clock divider 2. 0b11 : Reserved
	Note: These bits are only writable if bit field RF_PROT of register GTM_CTRL is cleared.
Bit 5:4	CLS2_CLK_DIV: Cluster 2 Clock Divider 0b00 : Cluster is disabled. 0b01 : Cluster is enabled without clock divider. 0b10 : Cluster is enabled with clock divider 2. 0b11 : Reserved

Note: These bits are only writable if bit field RF_PROT of register GTM_CTRL is cleared.

Bit 7:6 CLS3_CLK_DIV: Cluster 3 Clock Divider

GTM-IP	Specification	Revision 3.1.5.1
	0b00 : Cluster is disabled. 0b01 : Cluster is enabled without clock divider. 0b10 : Cluster is enabled with clock divider 2. 0b11 : Reserved	
	Note: These bits are only writable if bit field GTM_CTRL is cleared.	RF_PROT of register
Bit 9:8	CLS4_CLK_DIV: Cluster 4 Clock Divider 0b00 : Cluster is disabled. 0b01 : Cluster is enabled without clock divider. 0b10 : Cluster is enabled with clock divider 2. 0b11 : Reserved	
	Note: These bits are only writable if bit field GTM_CTRL is cleared.	RF_PROT of register
Bit 11:10	CLS5_CLK_DIV: Cluster 5 Clock Divider 0b00 : Cluster is disabled. 0b01 : Cluster is enabled without clock divider. 0b10 : Cluster is enabled with clock divider 2. 0b11 : Reserved	
	Note: These bits are only writable if bit field GTM_CTRL is cleared.	RF_PROT of register
Bit 13:12	CLS6_CLK_DIV: Cluster 6 Clock Divider 0b00 : Cluster is disabled. 0b01 : Cluster is enabled without clock divider. 0b10 : Cluster is enabled with clock divider 2. 0b11 : Reserved	
	Note: These bits are only writable if bit field GTM_CTRL is cleared.	RF_PROT of register
Bit 15:14	CLS7_CLK_DIV: Cluster 7 Clock Divider 0b00 : Cluster is disabled. 0b01 : Cluster is enabled without clock divider. 0b10 : Cluster is enabled with clock divider 2. 0b11 : Reserved	
	Note: These bits are only writable if bit field GTM_CTRL is cleared.	RF_PROT of register
Bit 17:16	CLS8_CLK_DIV: Cluster 8 Clock Divider 0b00 : Cluster is disabled.	

		DOJCH
GTM-IP	Specification	Revision 3.1.5.1
	0b10 : Cluster is enabled with clock divider 2. 0b11 : Reserved	
	Note: These bits are only writable if bit field GTM_CTRL is cleared.	RF_PROT of register
Bit 19:18	CLS9_CLK_DIV: Cluster 9 Clock Divider 0b00 : Cluster is disabled. 0b01 : Cluster is enabled without clock divider. 0b10 : Cluster is enabled with clock divider 2. 0b11 : Reserved	
	Note: These bits are only writable if bit field GTM_CTRL is cleared.	RF_PROT of register
Bit 21:20	CLS10_CLK_DIV: Cluster 10 Clock Divider 0b00 : Cluster is disabled. 0b01 : Cluster is enabled without clock divider. 0b10 : Cluster is enabled with clock divider 2. 0b11 : Reserved	
	Note: These bits are only writable if bit field GTM_CTRL is cleared.	RF_PROT of register
Bit 23:22	CLS11_CLK_DIV: Cluster 11 Clock Divider 0b00 : Cluster is disabled. 0b01 : Cluster is enabled without clock divider. 0b10 : Cluster is enabled with clock divider 2. 0b11 : Reserved	
	Note: These bits are only writable if bit field GTM_CTRL is cleared.	RF_PROT of register
	CK_RATE in register CCM[c]_HW_CFG. G_CLOCK_RATE=0, only the values 0b00 and 0b(-

If CFG_CLOCK_RATE=1, only the values 0b00, 0b01 and 0b10 are valid for bit fields CLS[c]_CLK_DIV.

If CFG_CLOCK_RATE=1, limitation for some cluster are possible to disable high frequency clock usage. In this case only values 0b00 and 0b10 are valid for bit fields CLS[c]_CLK_DIV. Please refer also to device specific Appendix B of this specification for detailed information [1].

Note: Writing a value to a bit field CLS[c]_CLK_DIV that is not available in the device, an AEI status 0b10 is returned.

Specification

(with c = 0 to NCCM-1)

2.9.16 Register GTM_CFG

Address Offset:	see Appendix B Initial Value: 0x0000_0000						
	31 30 29 28 28 27 28 27 28 27 27 26 23 23 23 23 23 23 21 23 21 23 21 23 23 23 23 23 23 23 23 23 23 23 23 23						
Bit	Reserved						
Mode	٣						
Initial Value	000000 000000						
Bit 0	SRC_IN_MUX : GTM_TIM[i]_AUX_IN input source selection 0 = use for TIM[i] output of TOM[k]						

1 = use for TIM[i] output of TOM[i] (same cluster) See figure 2.1.4 for details.

Bit 31:1 Reserved

Note: Read as zero, should be written as zero.

3 Advanced Routing Unit (ARU)

3.1 Overview

The Advanced Routing Unit (ARU) is a flexible infrastructure component for transferring 53 bit wide data (five control bits and two 24 bit values) between several sub-modules of the GTM core in a configurable manner.

Since the concept of the ARU has already been described in section 2.3, this section only describes additional ARU features that can be used by the software for configuring and debugging ARU related data streams.

Also the definition of 'streams' and 'channels' in the ARU context is done in section 2.3.

The principle of ARU data routing is desribed in chapter 2.3.

In the real GTM implementation the ARU serves in parallel per clock period two individual data destinations, one destination at port ARU-0 and at port ARU-1. Both ARU ports ARU-0 and ARU-1 are running by default in parallel but can be configured in dynamic routing mode (see below) to run in an individual mode.

As already defined in the chapter 2.3, the ARU read ID is the address of the data source that is configured in the data destination module.

These ARU read ID's are selected by the individual counter of ARU ports ARU-0 and ARU-1.

Via the the ARU ports ARU-0 and ARU-1 with each ARU read ID two independent GTM sub-modules are addressed and served.

The combination of ARU port (ARU-0 or ARU-1) and the ARU read ID addresses one ARU wdata source (i.e. the ARU write port of a GTM sub-module).

The assignment of ARU write ports of GTM sub-modules to the ARU ports ARU-0 and ARU-1 and the ARU read ID's is device depending and can be found in Appendix B [1].

3.2 Special Data Sources

Besides the addresses of the sub-module related data sources as described in Table 23.3, the ARU provides two special data sources that can be used for the configuration of data streams. These data sources are defined as follows:

Address 0x1FF: Data source that provides always a 53 bit data word with zeros. A read access to this memory location will never block a requesting data destination.

Specification

Address 0x1FE: Data source that never provides a data word. A read access to this memory location will always block a requesting data destination. This is the reset value of the read registers inside the data destinations.

Address 0x000: This address is reserved and can be used to bring data through the ARU registers **ARU_DATA_H** and **ARU_DATA_L** into the system by writing the write address 0x000 into the **ARU_ACCESS** register. This means that software test data can be brought into the GTM-IP by the CPU.

3.3 ARU Access via AEI

Besides the data transfer between the connected sub-modules, there are two possibilities to access ARU data via the AEI.

3.3.1 Default ARU Access

The default ARU access incorporates the registers **ARU_ACCESS**, which is used for initiation of a read or write request and the registers **ARU_DATA_H** and **ARU_DATA_L** that provide the ARU data word to be transferred.

The status of a read or write transfer can be determined by polling specific bits in register **ARU_ACCESS**. Furthermore the *acc_ack* bit in the interrupt notify register is set after the read or write access is performed to avoid data loss e.g. on access cancelation.

A pending read or write request may also be canceled by clearing the associated bit. In the case of a read request, the AEI access behaves as a read request initiated by a data destination of a module. The read request is served by the ARU immediately when no other destination has a pending read request. This means, that an AEI read access does not take part in the scheduling of the destination channels and that the time between two consecutive read accesses is not limited by the round trip time.

On the other hand, the AEI access has the lowest priority behind the ARU scheduler that serves the destination channels. Thus, in worst case, the read request is served after one round trip of the ARU, when all destination channels would request data at the same point in time.

In the case of the write request, the ARU provides the write data at the address defined by the ADDR bit field inside the **ARU_ACCESS** register.

To avoid data loss, the reserved ARU address 0x0 has to be used to bring data into the system. Otherwise, in case the address specified inside the ADDR bit field is defined for another sub-module that acts as a source at the ARU data loss may occur and no deterministic behavior is guaranteed.

Specification

This is because the regular source sub-module is not aware that its address is used by the ARU itself to provide data to a destination.

It is guaranteed that the ARU write data is send to the destination in case of both modules want to provide data at the same time.

Configuring both read and write request bits results in a read request, if the write request bit inside the register isn't already set. The read request bit will be set but not the write request bit. The following table describes the important cases of the bit 12 (RREQ) and bit 13 (WREQ) of the **ARU_ACCESS** register:

3.3.1.1 WREQ and RREQ in **ARU_ACCESS** register

AEI write access : aei_wdata (13:12)	actual value of ARU_ACCESS(13:12)	next value of ARU_ACCESS(13:12)	comment
0 0	01	0 0	cancel read request
0 0	10	0 0	cancel write request
01	10	10	unchanged register
10	01	01	unchanged register
11	0 0	01	both read and write request results in a read request
11	10	10	as before but WREQ bit is already set -> unchanged register

3.3.2 Debug Access

The debug access mode enables to inspect routed data of configured data streams during runtime.

The ARU provides two independent debug channels, whereas each is configured by a dedicated ARU read address in register **ARU_DBG_ACCESS0** and **ARU_DBG_ACCESS1** respectively.

The registers **ARU_DBG_DATA0_H** and **ARU_DBG_DATA0_L** (**ARU_DBG_DATA1_H** and **ARU_DBG_DATA1_L**) provide read access to the latest data word that the corresponding data source sent through the ARU.

Any time when data is transferred through the ARU from a data source to the destination requesting the data the interrupt signal *ARU_NEW_DATA0_*IRQ (*ARU_NEW_DATA1_*IRQ) is raised.

For advanced debugging purposes, the interrupt signal can also be triggered by software using the register **ARU_IRQ_FORCINT**.

Please note, that the debug mechanism should not be used by the application, when a HW-Debugger is used to trace the ARU communication. In that case, the debug registers are used by the HW-Debugger to specify the ARU streams that should be traced.

3.4 ARU dynamic routing

A dynamic routing feature of the ARU is implemented and can be configured using the additional AEI registers :

ARU_CTRL, ARU_[x]_DYN_CTRL, ARU_[x]_DYN_RDADDR, ARU_[x]_DYN_ROUTE_LOW, ARU_[x]_DYN_ROUTE_HIGH, ARU_[x]_DYN_ROUTE_SR_LOW and ARU_[x]_DYN_ROUTE_SR_HIGH.

For further information see the register part of this chapter.

3.4.1 Dynamic routing - CPU controlled

The dynamic routing feature can be enabled separately for ARU-0 and ARU-1 by setting the corresponding bit fields of the register **ARU_CTRL**.

The enabling of the dynamic routing feature is synchronized to the normal routing scheme if ARU master ID-0 is addressed. The dynamic route will started with additional ARU master DYN_READ_ID0.

With the dynamic routing feature it is possible to insert additional ARU master ID's, DYN_READ_IDy (y:0-5), in a defined manner into the normal ARU routing scheme.

Specification

While inserting additional ARU master ID's the normal ARU routing scheme is paused. Therefore please consider that inserting additional ARU master ID's will lengthen the normal routing scheme.

It is possible to configure 6 additional ARU master ID's in the **ARU_[x]_DYN_ROUTE_LOW/_HIGH** registers for both ARU-0 and ARU-1.

In the bit field **DYN_CLK_WAIT** of **ARU_[x]_DYN_ROUTE_HIGH** register the number of clock cycles has to be configured, after which one of the additional ARU master ID's will be inserted.

After each configured number of clock cycles the defined ARU master ID's will be inserted cyclic one after each other in the following manner :

... -> DYN_READ_ID0 -> DYN_READ_ID1 -> DYN_READ_ID2 -> DYN_READ_ID3 -> DYN_READ_ID4 -> DYN_READ_ID5 -> DYN_READ_ID0 -> ...

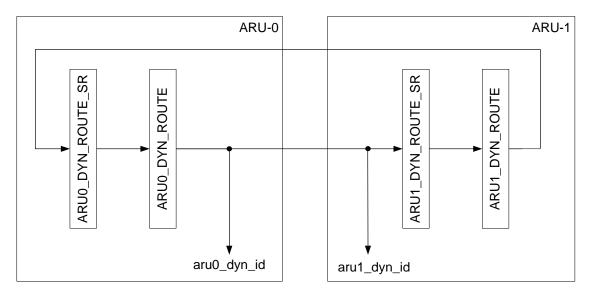
In the shadow registers **ARU_[x]_DYN_ROUTE_SR_LOW/_HIGH** further 6 ARU master, DYN_READ_IDy (y:6-11), can be configured.

The bit DYN_UPDATE_EN in the **ARU_[x]_DYN_ROUTE_SR_HIGH** register controls whether the **ARU_[x]_DYN_ROUTE_LOW/_HIGH** registers are updated from its shadow registers except DYN_UPDATE_EN, it is not updated. The update is executed once after writing **ARU_[x]_DYN_ROUTE_SR_HIGH**. If update started DYN_UPDATE_EN is reset.

With the DYN_ROUTE_SWAP option in the **ARU_[x]_DYN_CTRL** register it is possible to swap the registers **ARU_[x]_DYN_ROUTE_LOW/HIGH** with its shadow registers **ARU_[x]_DYN_ROUTE_SR_LOW/HIGH**. The swapping is executed always after the 6 ARU master DYN_READ_ID's are inserted. So it is possible to insert a maximum of 12 ARU master DYN_READ_ID's cyclic after each configured number of clock cycles. If swap started DYN_UPDATE_EN is reset.

Setting the bit field **DYN_CLK_WAIT** of **ARU_[x]_DYN_ROUTE_HIGH** register to zero, only the defined ARU master DYN_READ_ID's will be executed. The normal ARU routing scheme is stopped.

Setting the bit field **DYN_CLK_WAIT** of **ARU_[x]_DYN_ROUTE_HIGH** register to 15, only the normal ARU routing scheme is executed. Inserting of additional ID's is stopped.


To reset the ARU caddr counter and ARU dynamic route counter set bit ARU_ADDR_RSTGLB of **CMU_GLB_CTRL** following by a write access to register **CMU_CLK_EN**.

Specification

3.4.1.1 Dynamic routing ring mode

In dynamic routing ring mode it is possible to use all 24 DYN_READ_ID's from both ARU-0 and ARU-1 by setting bit field ARU_DYN_RING_MODE in **ARU_CTRL** register to 1. In this mode all 4 registers **ARU_[x]_DYN_ROUTE_LOW/_HIGH** and **ARU_[x]_DYN_ROUTE_SR_LOW/_HIGH** are connected as a ring, so all 24 DYN_READ_ID's can be used from both ARU's. The ring structure is shown in figure 3.4.1.1.1. The data register shift direction is shown by the arrows in the ring.

3.4.1.1.1 ARU dynamic routing - ring mode

Enabling the dynamic routing ring mode will automatically reset the caddr counter of both ARU-0 and ARU-1. This is necessary to synchronize both ARU's in this mode.

Enabling the dynamic routing ring mode will ignored DYN_ROUTE_SWAP and DYN_UPDATE_EN.

Note: DYN_ARU_UPDATE_EN should be disabled in dynamic routing ring mode. It is possible to enable the dynamic routing ring mode for both ARU-0 and ARU-1 or only for one of the ARU's by setting the corresponding bit field ARU_0_DYN_EN/ARU_1_DYN_EN of the register **ARU_CTRL**.

Because of the fact that to each ARU port ARU-0 and ARU-1 with the same ARU read ID two differnt GTM sub-modules are served it may make sense to enable ARU dynamic routing only for one port ARU-0 or ARU-1 if configured to ring-mode. The other port is then served in the default round robin manner.

In dynamic routing ring mode **ARU_[x]_DYN_ROUTE_LOW/_HIGH** and **ARU_[x]_DYN_ROUTE_SR_LOW/_HIGH** are not write-protected. NOTE: Avoid modification of **ARU [x] DYN ROUTE LOW/ HIGH** and

ARU_[x]_DYN_ROUTE_SR_LOW/_HIGH in active dynamic routing ring mode.

3.4.2 Dynamic routing - ARU controlled

Furthermore it is possible to reload the **ARU_[x]_DYN_ROUTE_SR_LOW/_HIGH** registers by ARU itself.

Therefore the ARU has its own master port which will be served in the normal ARU routing scheme. The ARU read address for this master port has to be configured in the register **ARU_[x]_DYN_RDADDR.**

This feature can be enabled by setting bit DYN_ARU_UPDATE_EN of **ARU_[x]_DYN_CTRL** register.

The following mapping of the ARU word to the **ARU_[x]_DYN_ROUTE_LOW/_HIGH** registers is implemented :

ARU_[x]_DYN_ROUTE_SR_LOW(23:0) = aru_data(23:0) ARU_[x]_DYN_ROUTE_SR_HIGH(28:0) = aru_data(52:24)

The bit field aru_data(51:48) controls the configuration bits DYN_CLK_WAIT and the bit aru_data(52) controls the configuration bit DYN_UPDATE_EN. Both functions are described in the chapter above 3.4.1.

In opposite to the dynamic routing scheme controlled from CPU/AEI (only the 6 additional ARU master DYN_REA_ID's are inserted) two additional ID's are served. One is the ARU master ID itself for reloading and the other is the default ID-0. The ID-0 is only added to the inserted routing scheme if bit field **DYN_CLK_WAIT** of **ARU_[x]_DYN_ROUTE_HIGH** is set to zero (only the inserted routing scheme is executed). This ensures that a debug access can take place even if only the inserted routing scheme is executed.

The following dynamic routing scheme is executed for 15 > **DYN_CLK_WAIT** > 0 :

... -> ARU-master_ID -> DYN_READ_ID0 -> DYN_READ_ID1 -> DYN_READ_ID2 -> DYN_READ_ID3 -> DYN_READ_ID4 -> DYN_READ_ID5 -> ARU-master_ID -> ...

The following dynamic routing scheme is executed for **DYN_CLK_WAIT** = 0 :

... -> ARU-master_ID -> DYN_READ_ID0 -> DYN_READ_ID1 -> DYN_READ_ID2 -> DYN_READ_ID3 -> DYN_READ_ID4 -> DYN_READ_ID5 -> default_ID0 -> ARU-master_ID -> ...

With the possibility of reloading the dynamic routing scheme over ARU, a FIFO or MCS is able to deliver the dynamic routing scheme data.

3.5 ARU Interrupt Signals

3.5.1 ARU Interrupt Signals Table

Signal	Description
ARU_NEW_DATA0_IRQ	Indicates that data is transferred through the ARU using debug channel ARU_DBG_ACCESS0 .
ARU_NEW_DATA1_IRQ	Indicates that data is transferred through the ARU using debug channel ARU_DBG_ACCESS1 .
ARU_ACC_ACK_IRQ	ARU access acknowledge IRQ.

3.6 ARU Configuration Register Overview

3.6.1 ARU Configuration Register Overview Table

Register name	Description	Details in Section
ARU_ACCESS	ARU access register	3.7.1
ARU_DATA_H	ARU access register upper data word	3.7.2
ARU_DATA_L	ARU access register lower data word	3.7.3
ARU_DBG_ACCESS0	ARU debug access channel 0	3.7.4
ARU_DBG_DATA0_H	ARU debug access 0 transfer register upper data word	3.7.5
ARU_DBG_DATA0_L	ARU debug access 0 transfer register lower data word	3.7.6
ARU_DBG_ACCESS1	ARU debug access channel 0	3.7.7
ARU_DBG_DATA1_H	ARU debug access 1 transfer register upper data word	3.7.8
ARU_DBG_DATA1_L	ARU debug access 1 transfer register lower data word	3.7.9
ARU_IRQ_NOTIFY	ARU interrupt notification register	3.7.10
ARU_IRQ_EN	ARU interrupt enable register	3.7.11
ARU_IRQ_FORCINT	ARU force interrupt register	3.7.12
ARU_IRQ_MODE	ARU interrupt mode register	3.7.13
ARU_CADDR_END	ARU caddr counter end value	3.7.14
ARU_CADDR	ARU caddr counter value	3.7.15
ARU_CTRL	ARU enable dynamic routing	3.7.16
ARU_[z]_DYN_CTRL (z:01)	ARU z dynamic routing control register	3.7.17

Specificatio	n
--------------	---

Revision 3.1.5.1

ARU_[z]_DYN_RDADDR (z:01)	ARU z read ID for dynamic routing	3.7.18
ARU_[z]_DYN_ROUTE_LOW (z:01)	ARU z lower bits of DYN_ROUTE register	3.7.19
ARU_[z]_DYN_ROUTE_HIGH (z:01)	ARU z higher bits of DYN_ROUTE register	3.7.20
ARU_[z]_DYN_ROUTE_SR_LOW (z:01)	ARU z shadow register for ARU_[z]_DYN_ROUTE_LOW	3.7.21
ARU_[z]_DYN_ROUTE_SR_HIGH (z:01)	ARU z shadow register for ARU_[z]_DYN_ROUTE_HIGH	3.7.22

3.7 ARU Configuration Register Description

3.7.1 Register ARU_ACCESS

Address Offset:	see Appendix B	Initial Value: 0x0000_01FE										
	31 30 29 27 27 26 27 26 26 26 25 22 22 23 23 23 23 21 19 11 11	15 14	13 12	11 10 9	8 6 7 8 0 0 1 1 2 2 3 3 4 4 4 7 7							
Bit	Reserved	Reserved REEQ Reserved ADDR										
Mode	۲		RAw RAw	Ľ	RPw							
Initial Value	00000 00000		0 0	000	0x1FE							
Bit 8:0	 ADDR: ARU address Define the ARU address used for transmission Note: For an ARU write request, the used. Note: A write request to the address of 0x1FE (always empty address effect. Note: ARU address bits ADDR are of are zero 	ne pr ess s) are	eferr 0x1F e ign	F (alw ored a	ays full address) or nd doesn't have any							
Bit 11:9	Reserved Note : Read as zero, should be writt	en a	s zei	ſO								
Bit 12	RREQ: Initiate read request											

- GTM-IP
- 0 = No read request is pending
- 1 = Set read request to source channel addressed by ADDR
- **Note:** This bit is cleared automatically after transaction. Moreover, it can be cleared by software to cancel a read request.
- **Note**: RREQ bit is only writable if WREQ bit is zero, so to switch from RREQ to WREQ a cancel request has to be performed before.
- **Note**: Configuring both RREQ and WREQ bits results in a read request, so RREQ bit will be set if the WREQ bit of the register isn't already set.
- **Note**: The ARU read request on address ADDR is served immediately when no other destination has actually a read request when the RREQ bit is set by CPU. In a worst case scenario, the read request is served after one round trip of the ARU, but this is only the case when every destination channel issues a read request at consecutive points in time.

Bit 13 **WREQ**: Initiate write request

- 0 = No write request is pending
- 1 = Mark data in registers ARU_DATA_H and ARU_DATA_L as valid
- **Note:** This bit is cleared automatically after transaction. Moreover, it can be cleared by software to cancel a write request.
- **Note:** WREQ bit is only writable if RREQ bit is zero, so to switch from WREQ to RREQ a cancel request has to be performed before.
- **Note**: Configuring both RREQ and WREQ bits results in a read request, so WREQ bit will not be set
- **Note**: The data is provided at address ADDR. This address has to be programmed as the source address in the destination sub-module channel. In worst case, the data is provided after one full ARU round trip.

Bit 31:14 Reserved

Note: Read as zero, should be written as zero

Note: The register ARU_ACCESS can be used either for reading or for writing at the same point in time.

3.7.2 Register ARU_DATA_H

Specification

Revision 3.1.5.1

Address Offset:	see A	ppendix B	Initial Value:	0x0000_0000
	31 30 29	28 27 26 25 25 23 23 23 23 23 21 21 19 18 16	15 14 13 13 12 11 10 9 8	7 6 6 7 7 7 7 7 7 7 0
Bit	Reserved		рата	
Mode	Ж		RW	
Initial Value	0×0		0000x0	
Bit 28:0		: Upper ARU data word Transfer upper ARU data wo	d addressed by Al	DDR. The data bits

Note: Transfer upper ARU data word addressed by ADDR. The data bits 24 to 52 of an ARU word are mapped to the data bits 0 to 28 of this register

Bit 31:29 Reserved

Note: Read as zero, should be written as zero

3.7.3 Register ARU_DATA_L

Address Offset:	see A	ppendix B	Initial Value:	0x0000_0000
	31 30 29	28 27 26 25 25 24 23 23 23 23 23 23 21 21 21 19 17	15 14 13 13 12 11 10 9 8	7 5 4 4 3 3 3 1 1 1
Bit	Reserved		рата	
Mode	щ		RW	
Initial Value	0×0		000000	

Bit 28:0 **DATA**: Lower ARU data word

Note: Transfer lower ARU data word addressed by ADDR. The data bits 0 to 23 of an ARU word are mapped to the data bits 0 to 23 of this register and the data bits 48 to 52 of an ARU word are mapped to the data bits 24 to 28 of this register when data is read by the CPU.

Note: For writing data into the ARU by the CPU the bits 24 to 28 are **not** transferred to bit 48 to 52 of the ARU word. Only bits 0 to 23 are written to bits 0 to 23 of the ARU word

Revision 3.1.5.1

GTM-IP

Specification

Bit 31:29 Reserved

Note: Read as zero, should be written as zero

3.7.4 Register ARU_DBG_ACCESS0

Address Offset:	see Appendix B Initial Va	lue:	0x0000_01FE				
	31 33 30 29 27 28 27 26 26 26 25 25 25 25 26 21 19 117 117 115 115 113 113	11 10 9	8 6 7 0 0 1 1 1 2 2 3 3				
Bit	Reserved		ADDR				
Mode	œ		RŴ				
Initial Value	00000 00		0x1FE				
Bit 8:0	ADDR: ARU debugging address Note: Define address of ARU debugging char	nnel 0.					
Bit 31:9	Reserved						

Note: Read as zero, should be written as zero

3.7.5 Register ARU_DBG_DATA0_H

Address Offset:	see A	ppendix B	Initial Value:	0x0000_0000
	31 30 29	28 27 26 25 24 24 23 23 23 23 23 23 23 23 23 21 21 20 19 17	15 14 13 13 13 12 11 11 10 9	6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Bit	Reserved		рата	
Mode	٣		۲	
Initial Value	0x0		0000	
Bit 28:0	DATA	: Upper debug data word		

Note: Transfer upper ARU data word addressed by register **DBG_ACCESS0**. The data bits 24 to 52 of an ARU word are mapped to the data bits 0 to 28 of this register

Note: The interrupt ARU NEW DATA0 IRQ is raised if a new data word is available.

Specification

Bit 31:29 Reserved Note: Read as zero, should be written as zero

3.7.6 Register ARU DBG DATA0 L

Address Offset:	see A	ppendix B	Initial Value:	0x0000_0000
	31 30 29	28 27 26 25 25 24 23 23 23 23 21 20 19 11 17	16 15 14 13 13 13 13 11 11 11 9 9	7 6 5 4 4 3 3 3 2 2 1 1
Bit	Reserved		рата	
Mode	ы		۲.	
Initial Value	0x0		000000000000000000000000000000000000000	
Bit 28:0	DATA	: Lower debug data word		

Note: Transfer lower ARU data word addressed by register DBG_ACCESS0. The data bits 0 to 23 of an ARU word are mapped to the data bits 0 to 23 of this register and the data bits 48 to 52 of an ARU word is mapped to the data bits 24 to 28 of this register.

Note: The interrupt ARU NEW DATA0 IRQ is raised if a new data word is available.

Bit 31:29 Reserved Note: Read as zero, should be written as zero

3.7.7 Register ARU DBG ACCESS1

Specification

Revision 3.1.5.1

Address Offset:	see Appendix B Initial Value:	0x0000_01FE						
	31 30 29 27 27 26 26 26 25 23 23 23 23 23 21 21 20 16 11 15 15 16 16 16 16 17 11 11 11 11 12 13 13 13 13 13 13 13 13 13 13 13 13 13	8 6 6 7 7 7 7 7 0						
Bit	Reserved	ADDR						
Mode	۵	RW						
Initial Value	00000 00	0X1FE						
Bit 8:0 Bit 31:9	ADDR: ARU debugging address Note: Define address of ARU debugging channel 1. Reserved							

Note: Read as zero, should be written as zero

3.7.8 Register ARU_DBG_DATA1_H

Address Offset:	see Appendix B														Initial Value: 0x0000_0										0000						
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	6	5	4	ю	2	1 0
Bit		Reserved			ДАТА АТА																										
Mode		Я																Я													
Initial Value		0×0															000000	000													

DATA: Upper debug data word Bit 28:0

Note: Transfer upper ARU data word addressed by register DBG_ACCESS1. The data bits 24 to 52 of an ARU word are mapped to the data bits 0 to 28 of this register

Note: The interrupt ARU NEW DATA1 IRQ is raised if a new data word is available.

Bit 31:29 Reserved

Note: Read as zero, should be written as zero

Specification

3.7.9 Register ARU_DBG_DATA1_L

Address Offset:	see A	ppendix B	Initial Value:	0x0000_0000
	31 30 29	28 27 26 25 24 23 23 23 23 21 21 21 21 19 11 17 17	15 14 13 12 12 11 10 9 8	7 6 5 4 4 3 3 3 2 2 1 1
Bit	Reserved		DATA	
Mode	с		۲.	
Initial Value	0×0		0000000	

Bit 28:0 **DATA**: Lower debug data word

Note: Transfer lower ARU data word addressed by register DBG_ACCESS1. The data bits 0 to 23 of an ARU word are mapped to the data bits 0 to 23 of this register and the data bits 48 to 52 of an ARU word is mapped to the data bits 24 to 28 of this register.

Note: The interrupt *ARU_NEW_DATA1_IRQ* is raised if a new data word is available.

Bit 31:29 **Reserved Note**: Read as zero, should be written as zero

3.7.10 Register ARU_IRQ_NOTIFY

Address Offset:	see Appendix B Initial Value:	0x0000_0	000)	
	31 31 32 33 33 33 33 33 33 33 24 24 25 25 25 25 23 23 23 23 23 23 23 21 15 117 117 117 117 117 117 117 117 117	а 6 – 7 8 8 8 8 8 8 8 8 8 8	2	1	0
Bit	Reserved		ACC_ACK	NEW_DATA1	NEW DATA0
Mode	٣		RCw	RCw	RCw
Initial Value	000000 00000		0	0	0
Bit 0	NEW_DATA0 : Data was transferred for addr ARU 0 = No interrupt occurred 1 = <i>ARU_NEW_DATA0_IRQ</i> interrupt was raised b		SS	0	

GTM-IP	Specification	Revision 3.1.5.1
	Note : This bit will be cleared on a CPU write access access leaves the bit unchanged.	s of value '1'. A read
Bit 1	NEW_DATA1 : Data was transferred for addr ARU_I 0 = No interrupt occurred	DBG_ACCESS1
	1 = ARU_NEW_DATA1_IRQ interrupt was raised by	/ the ARU
	Note: This bit will be cleared on a CPU write access access leaves the bit unchanged.	s of value '1'. A read
Bit 2	ACC_ACK: AEI to ARU access finished, on read ac	cess data are valid
	Note: This bit will be cleared on a CPU write access access leaves the bit unchanged.	s of value '1'. A read
Bit 31:3 Reserved		
	Note: Read as zero, should be written as zero	

3.7.11 Register ARU_IRQ_EN

Address Offset:	see Appendix B Initial Value: 0x0000_00)00	
	31 32 33 33 33 33 33 33 33 33 33 33 33 33 33 34 35 36 37 38 39 30 31 31 32 33	2	1 0
Bit	Reserved	ACC_ACK_IRQ_E	NEW_DATA1_IRQ NEW_DATA0_IRQ
Mode	٣	RW	RW RW
Initial Value	00000 00000	0	0 0
Bit 0	NEW_DATA0_IRQ_EN : <i>ARU_NEW_DATA0_IRQ</i> interrupt enabl 0 = Disable interrupt, interrupt is not visible outside GTM-IP 1 = Enable interrupt, interrupt is visible outside GTM-IP	e	
Bit 1	NEW_DATA1_IRQ_EN : <i>ARU_NEW_DATA1_IRQ</i> interrupt enabl 0 = Disable interrupt, interrupt is not visible outside GTM-IP 1 = Enable interrupt, interrupt is visible outside GTM-IP	e	
Bit 2	ACC_ACK_IRQ_EN : <i>ACC_ACK_IRQ</i> interrupt enable 0 = Disable interrupt, interrupt is not visible outside GTM-IP 1 = Enable interrupt, interrupt is visible outside GTM-IP		
Bit 31:3	Reserved Note: Read as zero, should be written as zero		

BOSCH

Specification

3.7.12 Register ARU_IRQ_FORCINT

Address Offset:	see Appendix B Initial Value: 0x0000_00	000
	31 32 33 33 33 33 33 33 33 33 33 33 33 33 33 33 34 35 36 37 38 39 30 31 14 15 15 15 16 16 16 11 12 13 14 15 16 17 18 19 10 10 11 12 14 <th>2 1 0</th>	2 1 0
Bit	Reserved	TRG_ACC_ACK TRG_NEW_DATA TRG_NEW_DATA
Mode	α.	RAw RAw RAw
Initial Value	00000 00000	000
Bit 0	TRG_NEW_DATA0 : Trigger new data 0 interrupt 0 = corresponding bit in status register will not be forced 1 = Assert corresponding field in ARU_IRQ_NOTIFY register Note: This bit is cleared automatically after write. Note: This bit is write protected by bit RF_PROT of register GTM_	_CTRL
Bit 1	TRG_NEW_DATA1 : Trigger new data 1 interrupt 0 = corresponding bit in status register will not be forced 1 = Assert corresponding field in ARU_IRQ_NOTIFY register Note: This bit is cleared automatically after write. Note: This bit is write protected by bit RF_PROT of register GTM_	_CTRL
Bit 2	TRG_ACC_ACK : Trigger ACC_ACK interrupt 0 = corresponding bit in status register will not be forced 1 = Assert corresponding field in ARU_IRQ_NOTIFY register Note: This bit is cleared automatically after write. Note: This bit is write protected by bit RF_PROT of register GTM_	_CTRL
Bit 31:3	Reserved Note: Read as zero, should be written as zero	

3.7.13 Register ARU_IRQ_MODE

Specification

Revision 3.1.5.1

Address Offset:	see Appendix B	Initial Value:	0x0000_000	X
	31 30 29 27 27 26 26 26 25 24 23 23 23 23 21 21 21 19 11 11	15 14 13 13 12 11 10 9 8	7 6 5 4 3 3	1 0
Bit	Reserved			IRQ_MODE
Mode	٣			RW
Initial Value	0000 ×0			XX
Bit 1:0	IRQ_MODE: IRQ mode selection 0b00 = Level mode 0b01 = Pulse mode 0b10 = Pulse-Notify mode 0b11 = Single-Pulse mode Note: The interrupt modes are deso	cribed in section 2.	5.	
Bit 31:2	Reserved	on 25 70ro		

Note: Read as zero, should be written as zero

3.7.14 Register ARU_CADDR_END

Address Offset:	see Appendix B Initial Value: 02	×0000_00XX
	31 30 29 27 27 27 26 26 25 25 22 23 23 23 23 21 17 11 17 117 116 116 116 116 116 116 1	6 5 3 3 3 1 0
Bit	Reserved	CADDR_END
Mode	۲. ۲	RW
Initial Value	0000 ⁻	XXXX XXXX

Bit 6:0 **CADDR_END** set end value of ARU caddr counter

Note: The ARU roundtrip counter aru_caddr runs from zero to caddr_end value.

Note: Shorten the ARU roundtrip cycle by setting a smaller number than the defined reset value will cause that not all ARU-connected modules will be served.

GTM-IP Specification	Revision 3.1.5.1
Note: Making the roundtrip cycle longer than the r cause longer ARU roundtrip time and as a re connected modules will not be served as fast as device.	esult some ARU-
Note : The reset value is device-specific. For more in refer to Appendix B.	nformation please
Note: This bit is write protected by bit RF_PROT of reg	gister GTM_CTRL
Bit 31:7 Reserved	

Note: Read as zero, should be written as zero

3.7.15 Register ARU_CADDR

Address Offset:	see Appendix B		Initial Value: 0	×0000_0000
	31 30 29 27 26 26 26 25 24 23	22 21 20 19 18 17 16	15 14 13 13 12 11 10 9 8	6 5 4 4 4 1 1 0
Bit	Reserved	CADDR_1	Reserved	CADDR_0
Mode	۲	٣	٣	۲
Initial Value	00000 0000 0	0000_0000	00000 0000 0	00000
Bit 6:0 Bit 15:7	CADDR_0 value of ARU-0 caddr counter Reserved Note: Read as zero, should be written as zero			
Bit 22:16 Bit 31:23	CADDR_1 value of ARU-1 caddr counter Reserved Note: Read as zero, should be written as zero Note: The registers CADDR 0 and CADDR 1 start incrementing with			
	Note: The registers CADDR_0 and CADDR_1 start incrementing with each clock cycle just after reset. Due to this the initial reset value cannot be read back.			

3.7.16 Register ARU_CTRL

BOSCH

Specification

Revision 3.1.5.1

Address Offset:	see Appendix B Initial Value: 0x000	0000_000
	31 33 30 30 29 27 27 26 27 26 27 26 27 26 21 19 11 11 11 11 11 11 11 11 11 11 11 11	0 1 2 3 4 0
Bit	Reserved	ARU_DYN_RING_ ARU_1_DYN_EN ARU_0_DYN_EN
Mode	٣	RW RW
Initial Value	000000 000000	o 8 8
Bit 1:0	 ARU_0_DYN_EN enable dynamic routing for ARU-0 Dynamic routing enable of ARU-0. Write of following double bit values is possible: 0b00 = no change 0b01 = disable dynamic routing 0b10 = enable dynamic routing 0b11 = no change Note: If dynamic routing is disabled, the normal ARU routing ARU-0 is executed. ARU_1_DYN_EN enable dynamic routing for ARU-1 Dynamic routing enable of ARU-1 Write of following double bit values is possible: 0b00 = no change 0b01 = disable dynamic routing 0b11 = no change 	scheme for
Bit 4	 Note: If dynamic routing is disabled, the normal ARU routing ARU-1 is executed. ARU_DYN_RING_MODE enable dynamic routing ring mode Dynamic routing ring mode for both ARU-0 and ARU-1 0: different dynamic routing scheme for ARU-0 and ARU-1 1: same dynamic routing scheme for ARU-0 and ARU-1 with read-ID's (dynamic routing ring mode) 	2
Bit 31:5	Reserved Note: Read as zero, should be written as zero	

3.7.17 Register ARU_[z]_DYN_CTRL (z:0...1)

Specification

Revision 3.1.5.1

Address Offset:	see Appendix B Initial Value: 0x0000_0000	
	31 33 30 29 27 28 26 26 26 25 25 26 27 26 23 23 23 23 19 11 11 11 11 11 11 11 11 11 20 20 21 23 23 23 23 23 23 23 24 24 26 27 25 25 25 25 26 26 26 26 26 26 26 26 26 26 26 27 26 26 26 26 26 26 26 26 26 26 26 26 26	۲ 0
Bit	Reserved	
Mode	۳ ا	RW
Initial Value	00000 c	0 0
Bit 0	DYN_ARU_UPDATE_EN enable reload of DYN ROUTE register from the second se	om

ARU itself

Enable reload of DYN_ROUTE register from ARU itself

Bit 1 **DYN_ROUTE_SWAP** enable swapping DYN_ROUTE_SR with **DYN_ROUTE** register Enable swapping **DYN_ROUTE_SR** with **DYN_ROUTE** register

Reserved Bit 31:2 Note: Read as zero, should be written as zero

3.7.18 Register ARU_[z]_DYN_RDADDR (z:0...1)

Address Offset:	see Appendix B Initial Value:	0x0000_0000
	31 33 33 33 33 33 33 34 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 36 37 36 36 36 37 36 36 36 36 36 36 36 36 36 36 36 36 36	8 6 6 1 7 7 1 8 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9
Bit	Reserved	DYN_ARU_RDAD
Mode	٣	RW
Initial Value	0000×0	0000X0
Bit 8:0	DYN_ARU_RDADDR ARU read address ID to relo register	ad the DYN_ROUTE

ARU read address ID to reload the DYN_ROUTE register from ARU itself

Specification

Bit 31:9 Reserved

Note: Read as zero, should be written as zero

3.7.19 Register ARU_[z]_DYN_ROUTE_LOW (z:0...1)

Address Offset:	see Appendix B		Initial Value:	0x0000_0000
	31 30 29 27 27 26 26 25 25 24 25 23 23 23 23 23 21 21 21	18 17 16	15 14 13 13 12 11 10 9 8	7 6 7 3 3 3 2 1 1
Bit	Reserved DYN_READ_ID2		DYN_READ_ID1	DYN_READ_ID0
Mode	ж <u></u>		RW	RW
Initial Value	00×0		00×00	00×0
Bit 7:0	DYN_READ_ID0 ARU read ARU read ID 0 for dynamic read			
Bit 15:8	DYN_READ_ID1 ARU read I ARU read ID 1 for dynamic read ID 1			
Bit 23:16	DYN_READ_ID2 ARU read I ARU read ID 2 for dynamic re	D2		
Bit 31:24	Reserved Note: Read as zero, should b	U	en as zero	

3.7.20 Register ARU_[z]_DYN_ROUTE_HIGH (z:0...1)

Address Offset:	see Appendix B										Ini	iti	al	Va	alu	le:		0x0000_0000																			
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	6	5	4	з	2 1	0						
Bit		Recerted				DYN CIK WAIT			DYN_READ_ID5								DYN_READ_ID4								DYN_READ_ID3												
Mode		۵	C			RW			RW								ЯŚ								RW												
Initial Value		0~0	0X0			0×0	222		00×0									00 00 00 00 00 00 00 00 00 00 00 00 00									00×00										

GTM-IP	Specification	Revision 3.1.5.1
Bit 7:0	DYN_READ_ID3 ARU read ID 3	
	ARU read ID 3 for dynamic routing	
Bit 15:8	DYN_READ_ID4 ARU read ID 4	
	ARU read ID 4 for dynamic routing	
Bit 23:16	DYN_READ_ID5 ARU read ID 5	
	ARU read ID 5 for dynamic routing	
Bit 27:24	DYN_CLK_WAIT number of clk cycles for dynamic r	outing
	Defines the number of clk cycles between each dyna	mic routing ID
Bit 31:28	Reserved	
	Note: Read as zero, should be written as zero	

3.7.21 Register ARU_[z]_DYN_ROUTE_SR_LOW (z:0...1)

Address Offset:	see Appendix B		Initial Value:	0x0000_0000
	31 30 29 28 27 26 26 25 25	23 22 21 21 20 19 18 17 16	15 14 13 13 12 11 10 9 8	7 5 7 3 3 3 1 1 1 1
Bit	Reserved	DYN_READ_ID8	DYN_READ_ID7	DYN_READ_ID6
Mode	٣	RW	R	RŴ
Initial Value	00×00	00×00	00×00	00×0
Bit 7:0 Bit 15:8	DYN_READ_ID6 ARU read ID 6 for NOTE : These bit DYN_READ_ID7	r dynamic routing s are mapped to A	RU data bits aru_	data(7:0)
Dit 10.0	ARU read ID 7 for	r dynamic routing	RU data bits aru_	data(15:8)
Bit 23:16	DYN_READ_ID8 ARU read ID 8 for	r dynamic routing	DI data hita aru	data (22,16)
Bit 31:24	Reserved	s are mapped to A ro, should be writt	ARU data bits aru_ en as zero	uala(23:10)
NOTE : This	s is the shadow reg			UTE_LOW

3.7.22 Register ARU_[z]_DYN_ROUTE_SR_HIGH (z:0...1)

BOSCH

Specification

Address Offset:	see Ap	эр	endix B									In	nit	ial	V	/a	lu	e:			0>	<00)0(0_(00	00		
	31 30 29	28	27 26 25 24	23	22	21	20	19	18	17	16	15	14	13		12	11	10	9	8	7	6	5	4	ю	2		0
Bit		DYN_UPDATE_EN	DYN_CLK_WAIT					DYN_READ_ID10											DYN_READ_ID9									
Mode	с	RW	RW				RW						R															
Initial Value	0×0	0	0×0				0×00									0×00								0×00				
Bit 7:0	DYN_READ_ID9 ARU read ID 9 ARU read ID 9 for dynamic routing NOTE : These bits are mapped to ARU data bits aru data(31:24)																											
Bit 15:8	ARU r	ea	EAD_ID1 Id ID 10 f These bit	or	dyr	na	mi	ic r	οι	utiı	ng		U	da	ata	a k	oits	S i	arı	J	dat	ta(39):32	2)			
Bit 23:16	DYN_ ARU r	RE ea	E AD_ID1 Id ID 11 f These bit	1 A or (۹R۱ dyr	U ı na	rea mi	ad ic r	ID rou) 1 utii	.1 ng	S								-		•						
Bit 27:24	DYN_	CI	_K_WAI1 the numb	้ ทเ	um	be	er o	of	clk	< C	:yc	cles	st	for	r d	lyr	٦a	m	ic	ro	uti	ng			-	C		
Bit 28	DYN_ Enable	UF Ə	These bit PDATE_I update adow reg	EN AR	up {U _	oda _[)	ate x]_	e ei _ D `	na YN	blo N_	e f R	fro OU	om JT	sł E	ha _L	ad _ O	0%	v r //_	e H	gis IG	ter i H	re	gi	ste	ers		ror	n
Bit 31:29	Reser	ve				• •	-											u_	_d	at	a(5	52)						
NOTE : This			ead as ze adow reg															N_	R	0	UT	Е_	H	IG	Η			

4 Broadcast Module (BRC)

4.1 Overview

Since each write address for the sub-module channels of the GTM-IP that are able to write to the ARU can only be read by a single module, it is impossible to provide a data stream to different modules in parallel (This statement holds not for sources, which do not invalidate their data after the data were read by any consumer, e.g. DPLL).

To overcome this issue for regular modules, the sub-module Broadcast (BRC) enables to duplicate data streams multiple times.

The BRC sub-module provides 12 input channels as well as 22 output channels. In order to clone an incoming data stream, the corresponding input channel can be mapped to zero or more output channels.

When mapped to zero no channel is read.

To destroy an incoming data stream, the **EN_TRASHBIN** bit inside the **BRC_SRC_[x]_DEST** register has to be set.

The total number of output channels that are assigned to a single input channel is variable. However, the total number of assigned output channels must be less than or equal to 22.

4.2 BRC Configuration

As it is the case with all other sub-modules connected to the ARU, the input channels can read arbitrary ARU address locations and the output channels provide the broadcast data to fixed ARU write address locations.

The associated write addresses for the BRC sub-module are fixed and can be obtained from Chapter 23.

The read address for each input channel is defined by the corresponding register **BRC_SRC_[x]_ADDR** (x: 0..11).

The mapping of an input channel to several output channels is defined by setting the appropriate bits in the register **BRC_SRC_[x]_DEST** (x: 0..11). Each output channel is represented by a single bit in the register **BRC_SRC_[x]_DEST**. The address of the output channel is defined in Chapter 23.

If no output channel bit is set within a register **BRC_SRC_[x]_DEST**, no data is provided to the corresponding ARU write address location from the defined read input specified by **BRC_SRC_[x]_ADDR**. This means that the channel does not broadcast any data and is disabled (reset state).

Besides the possibility of mapping an input channel to several output channels, the bit **EN_TRASHBIN** of register **BRC_SRC_[x]_DEST** may be set, which results in dropping an incoming data stream. In this case the data of an input channel defined by **BRC_SRC_[x]_ADDR** is consumed by the BRC module and not routed to any succeeding sub-module. In consequence, the output channels defined in the register **BRC_SRC_[x]_DEST** are ignored. Therefore, the bits 0 to 21 are set to zero (0) when trash bin functionality is enabled.

In general, the BRC sub-module can work in two independent operation modes. In the first operation mode the data consistency is guaranteed since a BRC channel requests only new data from a source when all destination channels for the BRC have consumed the old data value. This mode is called *Data Consistency Mode* (DCM).

In a second operation mode the BRC channel always requests data from a source and distributes this data to the destination regardless whether all destinations have already consumed the old data. This mode is called *Maximum Throughput Mode* (MTM).

MTM ensures that always the newest available data is routed through the system, while it is not guaranteed data consistency since some of the destination channels can be provided with the old data while some other destination channels are provided with the new data. If this is the case, the Data Inconsistency Detected Interrupt $BRC_DID_IRQ[x]$ is raised but the channel continues to work.

Furthermore in MTM mode it is guaranteed that it is not possible to read a data twice by a read channel. This is blocked.

The channel mode can be configured inside the **BRC_SRC_[x]_ADDR** register. To avoid invalid configurations of the registers **BRC_SRC_[x]_DEST**, the BRC also implements a plausibility check for these configurations. If the software assigns an already used output channel to a second input channel, BRC performs an auto correction of the lastly configured register **BRC_SRC_[x]_DEST** and it triggers the interrupt *BRC_DEST_ERR*.

Consider the following example for clarification of the auto correction mechanism. Assume that the following configuration of the 22 lower significant bits for the registers **BRC_SRC_[x]_DEST**:

BRC_SRC_0_DEST:	00 0000 0000 1000 1000 0000 (binary)
BRC_SRC_1_DEST:	00 0000 0000 0100 0000 0100 (binary)
BRC_SRC_2_DEST:	00 0000 0000 0001 0100 0010 (binary)
BRC_SRC_3_DEST:	00 0000 0000 0010 0001 1001 (binary)

If the software overwrites the value for register **BRC_SRC_2_DEST** with

BRC_SRC_2_DEST: 00 0000 0000 <u>1</u>001 0<u>01</u>0 0010 (binary)

Specification

(changed bits are underlined), then the BRC releases a *BRC_DEST_ERR* interrupt since bit 11 is already assigned in register **BRC_SRC_0_DEST**. The auto correction forces bit 11 to be cleared. The modifications of the bits 5 and 6 are accepted, since there is no violation with previous configurations. So the result of the write access mentioned above results in the following modified register configuration:

BRC_SRC_2_DEST: 00 0000 0000 0001 0010 0010 (binary)

For debug purposes, the interrupt *BRC_DEST_ERR* can also be released by writing to register **BRC_IRQ_FORCINT**. Nevertheless, the interrupt has to be enabled to be visible outside of the GTM-IP.

4.3 BRC Interrupt Signals

Signal	Description
BRC_DEST_ERR_IRQ	Indicating configuration errors for BRC module
BRC_DID_IRQ[x]	Data inconsistency occurred in MTM mode (x:011)

4.4 BRC Configuration Register Overview

4.4.1 BRC Configuration Register Overview Table

Register Name	Description	Details in Section
BRC_SRC_[z]_ADDR (z:011)	BRC read address for input channel z	4.5.1
BRC_SRC_[z]_DEST (z:011)	BRC destination channels for input channel z	4.5.2
BRC_IRQ_NOTIFY	BRC interrupt notification register	4.5.3
BRC_IRQ_EN	BRC interrupt enable register	4.5.4
BRC_EIRQ_EN	BRC error interrupt enable register	4.5.7
BRC_IRQ_FORCINT	BRC force interrupt register	4.5.5
BRC_RST	BRC software reset register	4.5.8
BRC_IRQ_MODE	BRC interrupt mode configuration register	4.5.6

4.5 BRC Configuration Register Description

4.5.1 Register BRC_SRC_[z]_ADDR (z:0...11)

Address Offset:	see Appendix B	Initial	Va	lue:	0x0000_01FE
	31 30 29 27 27 26 26 26 26 26 22 23 23 23 23 23 21 21 18 117 17	15 14 13	12	11 10 9	8 6 6 7 7 8 7 7 0 0
Bit	Reserved		BRC_MODE	Reserved	ADDR
Mode	œ		RW	R	RPw
Initial Value	00000 0		0	000	0x1FE
Bit 8:0	ADDR: Source ARU address. Define source for input channel z (z:011). Note: this bit field is only writable if c				
Bit 11:9	Reserved: Reserved Note: Read as zero, should be writte	n as z	erc)	
Bit 12	BRC_MODE: BRC Operation mode 0 = Consistency Mode (DCM) selected 1 = Maximum Throughput Mode (MT Note: this bit field is only writable if c	select ed ⁻ M) se	:. lec	ted	ed.
Bit 31:13	Reserved: Reserved Note: Read as zero, should be writte				

4.5.2 Register BRC_SRC_[z]_DEST (z:0...11)

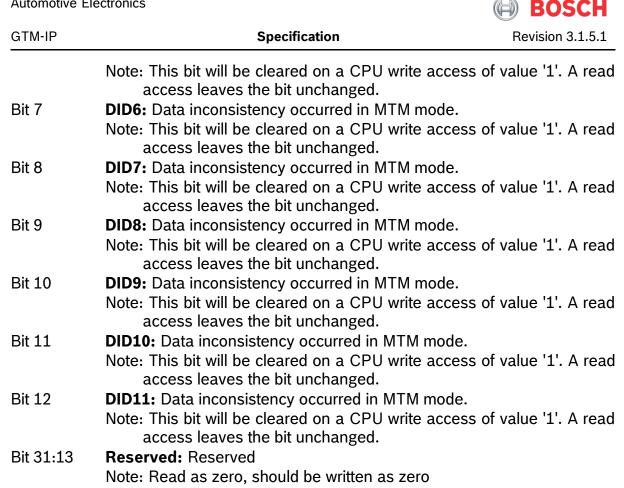
Specification

Revision 3.1.5.1

Address Offset:	see Appendix B											Initial Value:								0x0000_0000							
	31 30 29 28 27 26 25 25 25 23 23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	6	5	4	3	2	1	0			
Bit	Reserved	EN_TRASHBIN	EN_DEST21	EN_DEST20			EN_DEST17	EN_DEST16		EN_DEST14	EN_DEST13	EN_DEST12	EN_DEST11	EN_DEST10	EN_DEST9	EN_DEST8	EN_DEST7	EN_DEST6	EN_DEST5		EN_DEST3	EN_DEST2	EN_DEST1	EN_DEST0			
Mode	٣	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW			
Initial Value	00×0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
Bit 1	0 = Destination add 1 = Destination add Note: The destination 23.3 EN_DEST1: Enable	lre ion e E	ss a BR	0 r ddi C c	na res les	pp s tir	0 nat	d t fo tio	r E	so 3R ad	uro RC	ce ch es	Bl nar s 1	RC nne	el i see	SR is e k	de bit	_ [efir 0.	z]_	Α	D	DR					
Bit 2 Bit 3 Bit 4 Bit 5	 EN_DEST2: Enable BRC destination address 2, see bit 0. EN_DEST3: Enable BRC destination address 3, see bit 0. EN_DEST4: Enable BRC destination address 4, see bit 0. EN_DEST5: Enable BRC destination address 5, see bit 0. 																										
Bit 6 Bit 7 Bit 8 Bit 9	EN_DEST6: Enable BRC destination address 5, see bit 0. EN_DEST6: Enable BRC destination address 6, see bit 0. EN_DEST7: Enable BRC destination address 7, see bit 0. EN_DEST8: Enable BRC destination address 8, see bit 0. EN_DEST9: Enable BRC destination address 9, see bit 0.																										
Bit 10 Bit 11 Bit 12 Bit 13	EN_DEST10: Enab EN_DEST11: Enab EN_DEST12: Enab EN_DEST13: Enab	ole ole	BF BF	RC RC	de de	est est	tina tina	ati ati	ior ior	n a n a	dd dd	lre Ire	SS SS	1: 1:	1, s 2, s	se se	e k e k	oit oit	0. 0.								
Bit 14 Bit 15 Bit 16 Bit 17	EN_DEST13: Enab EN_DEST14: Enab EN_DEST15: Enab EN_DEST16: Enab EN_DEST17: Enab	ole ole ole	BF BF BF	7C 7C 7C	de de de	est est	tina tina tina	ati ati ati	ior ior ior	n a n a n a	dd dd	lre Ire Ire	SS SS SS	14 15 16	1, 9 5, 9 5, 9	se se	ek ek ek	oit oit oit	0. 0. 0.								
Bit 18 Bit 19 Bit 20 Bit 21 Bit 22	EN_DEST18: Enab EN_DEST19: Enab EN_DEST20: Enab EN_DEST21: Enab EN_TRASHBIN: C	ole ole ole ole on	BF BF BF BF	RC RC RC RC I tr	de de de de asl	est est est est	tina tina tina tina bin	ati ati ati ati	ior ior ior	n a n a n a n a	dd dd dd	lre Ire Ire Ire	SS SS SS SS	18 19 20 21	3, 9 9, 9 0, 9	se se	ek ek ek	oit oit oit	0. 0. 0.								
	0 = Trash bin functi 1 = Trash bin functi Note: When bit EN this input cha when trash bin	on _ T nn	ali R/ el.	ty e AS Th	ena HB her	ab SIN ef	leo Ni or	d s e,	th	e	bit	ts								<u> </u>							

Specification

Bit 31:23 Reserved: Reserved


Note: Read as zero, should be written as zero

Note: The bits 0 to 21 are cleared by auto correction mechanism if a destination channel is assigned to multiple source channels.

Note: When a BRC input channel is disabled (all **EN_DESTz** (z:0...21) bits are reset to zero) the internal states are reset to their reset value.

4.5.3 Register BRC_IRQ_NOTIFY

Address Offset:	see Appendix B	Initia	IV	alı	ie:			0x0	00	0_	00)0()	
	31 30 29 27 27 26 26 26 26 26 26 26 26 22 23 23 23 23 23 21 9 19 11 8	15 14	12	11	10	6	8	7 6	5	4	3	2	1	0
Bit	Reserved		DID11	DID10	DID9	DID8	DID7	DID6 DID5	DID4	DID3	DID2	DID1	DIDO	DEST_ERR
Mode	٢		RCw	RCw	RCw	RCw	RCw	ROW NOW	RCw	RCw	RCw	RCw	RCw	RCw
Initial Value	000000 000000		0	0	0	0	0	0 0	0	0	0	0	0	0
Bit 0	 DEST_ERR: Configuration error interrupt for BRC sub-module 0 = No BRC configuration error occurred 1 = BRC configuration error occurred Note: This bit will be cleared on a CPU write access of value '1'. A read access leaves the bit unchanged. 													
Bit 1	DID0: Data inconsistency occurred Note: This bit will be cleared on a C	in MT CPU w					s of	f va	lue	e '1	L ' .	A	rea	ad
Bit 2	access leaves the bit unchanged. DID1: Data inconsistency occurred in MTM mode. Note: This bit will be cleared on a CPU write access of value '1'. A read													
Bit 3	access leaves the bit unchanged. DID2: Data inconsistency occurred in MTM mode. Note: This bit will be cleared on a CPU write access of value '1'. A read													
Bit 4	access leaves the bit unchanged. DID3: Data inconsistency occurred in MTM mode. Note: This bit will be cleared on a CPU write access of value '1'. A read													
Bit 5	access leaves the bit unchanged. DID4: Data inconsistency occurred in MTM mode. Note: This bit will be cleared on a CPU write access of value '1'. A read		ıd											
Bit 6	access leaves the bit unchang DID5: Data inconsistency occurred		M r	no	de	•								

4.5.4 Register BRC_IRQ_EN

Address Offset:	see Appendix B Ini	tial	Va	alı	ie:	:		0x	(00	00	0_	00)00)
	31 30 29 27 27 26 26 26 25 25 25 23 23 23 23 21 21 21 21 21 21 21 21 21 21 21 21 21	14 13	12	11	10	6	8	7	9	5	4	З	2	1
Bit	Reserved		DID_IRQ_EN11	DID_IRQ_EN10	DID_IRQ_EN9	DID_IRQ_EN8	DID_IRQ_EN7	DID_IRQ_EN6	DID_IRQ_EN5	DID_IRQ_EN4	DID_IRQ_EN3	DID_IRQ_EN2	DID_IRQ_EN1	DID_IRQ_EN0
Mode	۲		RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW
Initial Value	0 0 0 0 0		0	0	0	0	0	0	0	0	0	0	0	0 0
Bit 0	0 DEST_ERR_IRQ_EN: <i>BRC_DEST_ERR_IRQ</i> interrupt enable 0 = Disable interrupt, interrupt is not visible outside GTM-IP 1 = Enable interrupt, interrupt is visible outside GTM-IP													
Bit 1 Bit 2 Bit 3	DID_IRQ_EN0: Enable DID interrupt, s DID_IRQ_EN1: Enable DID interrupt, s DID_IRQ_EN2: Enable DID interrupt, s	see	bit	0	fo	r de	es	cri	pti	ion	۱.			

Automotive Ele	ectronics	BOSCH
GTM-IP	Specification	Revision 3.1.5.1
Bit 4 Bit 5	DID_IRQ_EN3: Enable DID interrupt, see bit 0 for de DID_IRQ_EN4: Enable DID interrupt, see bit 0 for de	escription.
Bit 6 Bit 7	DID_IRQ_EN5: Enable DID interrupt, see bit 0 for de DID_IRQ_EN6: Enable DID interrupt, see bit 0 for de	escription.
Bit 8 Bit 9	DID_IRQ_EN7: Enable DID interrupt, see bit 0 for de DID_IRQ_EN8: Enable DID interrupt, see bit 0 for de	escription.
Bit 10 Bit 11 Bit 12	DID_IRQ_EN9: Enable DID interrupt, see bit 0 for de DID_IRQ_EN10: Enable DID interrupt, see bit 0 for de DID_IRQ_EN11: Enable DID interrupt, see bit 0 for de	description.
Bit 31:13	Reserved: Reserved Note: Read as zero, should be written as zero	

4.5.5 Register BRC_IRQ_FORCINT

Address Offset:	see Appendix B	Init	tial	Va	alu	ie:		C)x0	00	0_	00)0()
	31 30 29 27 27 27 26 26 25 25 23 23 23 23 23 23 23 23 21 19 11 11	15 14	14 13	12	11	10	6	8	, 6	5	4	3	2	1 0
Bit	Reserved			TRG_DID11	TRG_DID10	TRG_DID9	TRG_DID8	TRG_DID7	TRG DID5	TRG_DID4	TRG_DID3	TRG_DID2	TRG_DID1	TRG_DID0 TRG_DEST_ERR
Mode	α			RAw	RAw	RAw	RAw	RAw	RAw	RAw	RAw	RAw	RAw	RAw RAw
Initial Value	00000 00000000000000000000000000000000			0	0	0	0	0	0	0	0	0	0	0 0
Bit 1 Bit 2 Bit 3	 0 = corresponding bit in status register will not be forced 1 = Assert corresponding field in BRC_IRQ_NOTIFY register Note: This bit is cleared automatically after write. Note: This bit is write protected by bit RF_PROT of register GTM_CTRL TRG_DID0: Trigger DID interrupt, see bit 0 for description. TRG_DID1: Trigger DID interrupt, see bit 0 for description. TRG DID2: Trigger DID interrupt, see bit 0 for description. 													
Bit 4 Bit 5 Bit 6 Bit 7 Bit 8 Bit 9 Bit 10 Bit 11 Bit 12	TRG_DID4: Trigger DID interrupt, s TRG_DID4: Trigger DID interrupt, s TRG_DID5: Trigger DID interrupt, s TRG_DID6: Trigger DID interrupt, s TRG_DID7: Trigger DID interrupt, s TRG_DID8: Trigger DID interrupt, s TRG_DID9: Trigger DID interrupt, s TRG_DID10: Trigger DID interrupt, TRG_DID11: Trigger DID interrupt,	ee b ee b ee b ee b ee b ee b see b see b	oit (oit (oit (oit (oit (oit (oit (oit () fo) fo) fo) fo) fo) fo) fo) fo	or or or or or or or for	de de de de de de r d	scr scr scr scr scr scr scr	ipti ipti ipti ipti ipti ipti crip	on on on on on tio	n .				

Confidential

BOSCH Revision 3.1.5.1

GTM-IP

Specification

Bit 31:13 **Reserved:** Reserved Note: Read as zero, should be written as zero

4.5.6 Register BRC_IRQ_MODE

Address Offset:	see Appendix B Initial Value: 0x0000_0002	x
	31 30 29 28 27 28 27 26 25 24 25 23 23 25 24 21 19 11 11 11 11 11 11 11 11 11 12 12 12 21 23 23 23 23 23 23 23 26 27 26 27 26 27 26 27 26 26 26 27 26 26 26 27 26 26 26 27 26 27 26 26 27 26 26 26 26 27 26 26 26 26 26 26 26 26 26 26 26 26 26	1 0
Bit	Reserved	IRQ_MODE
Mode	۵۲	RW
Initial Value	00000 00000	0b X X
Bit 1:0	IRQ_MODE: IRQ mode selection 0b00 = Level mode 0b01 = Pulse mode 0b10 = Pulse-Notify mode 0b11 = Single-Pulse mode Note: The interrupt modes are described in section 2.5.	
Bit 31:2	Reserved Note: Read as zero, should be written as zero	

4.5.7 Register BRC_EIRQ_EN

Address Offset:	see Appendix B	Initial Value:	0x0000_0000
	31 30 29 28 27 26 25 25 25 25 23 23 23 23 23 21 21 21 21 21 21 21 21 21 21 21 21 21	15 14 13 13 12 11 11 10 9	8 6 5 5 4 4 4 3 3 3 3 2 2 2 1 1
Bit	Reserved	EIRQ I EIRQ I EIRQ	DID_EIRQ_EN7 DID_EIRQ_EN6 DID_EIRQ_EN3 DID_EIRQ_EN3 DID_EIRQ_EN3 DID_EIRQ_EN1 DID_EIRQ_EN1 DID_EIRQ_EN1 DID_EIRQ_EN1 DID_EIRQ_EN0
Mode	۵	RW RW RW	RW RW RW RW RW RW RW RW RW
Initial Value	00000 00000	0000	• • • • • • • • • •
Bit 0	DEST ERR EIRQ EN: BRC DES	T ERR EIRQ err	or interrupt enable

GTM-IP	Specification Revision 3.1.	5.1
	0 = Disable error interrupt, error interrupt is not visible outside GTM- 1 = Enable error interrupt, error interrupt is visible outside GTM-IP	IP
Bit 1	DID_EIRQ_EN0: Enable DID interrupt, see bit 0 for description. 0 = Disable error interrupt, error interrupt is not visible outside GTM- 1 = Enable error interrupt, error interrupt is visible outside GTM-IP	IP
Bit 2	DID EIRQ EN1: Enable DID interrupt, see bit 0 for description.	
Bit 3	DID_EIRQ_EN2: Enable DID interrupt, see bit 0 for description.	
Bit 4	DID_EIRQ_EN3: Enable DID interrupt, see bit 0 for description.	
Bit 5	DID_EIRQ_EN4: Enable DID interrupt, see bit 0 for description.	
Bit 6	DID_EIRQ_EN5: Enable DID interrupt, see bit 0 for description.	
Bit 7	DID_EIRQ_EN6: Enable DID interrupt, see bit 0 for description.	
Bit 8	DID_EIRQ_EN7: Enable DID interrupt, see bit 0 for description.	
Bit 9	DID_EIRQ_EN8: Enable DID interrupt, see bit 0 for description.	
Bit 10	DID_EIRQ_EN9: Enable DID interrupt, see bit 0 for description.	
Bit 11	DID_EIRQ_EN10: Enable DID interrupt, see bit 0 for description.	
Bit 12	DID_EIRQ_EN11: Enable DID interrupt, see bit 0 for description.	
Bit 31:13	Reserved: Reserved	
	Note: Read as zero, should be written as zero	

4.5.8 Register BRC_RST

see Appendix B Initial Value: 0x0000_0000	
31 30 28 27 27 26 26 25 26 25 26 23 25 23 25 21 19 11 11 11 11 11 11 11 11 11 11 11 11	0
Reserved	RST
٢	RAw
000000000000000000000000000000000000000	0
	31 32 33 34 4 5 5 33 33 33 33 34 4 5

Bit 0 **RST:** Software reset

0 = No action

1 = Reset BRC

Note: This bit is cleared automatically after write by CPU. The channel registers are set to their reset values and channel operation is stopped immediately.

Bit 31:1 **Reserved:** Reserved

Note: Read as zero, should be written as zero

BOSCH

5 First In First Out Module (FIFO)

5.1 Overview

The FIFO unit is the storage part of the PSM sub-module. The F2A described in chapter 7 and the AFD described in chapter 6 implement the interface part of the FIFO sub-module to the ARU and the AEI bus. Each FIFO unit embeds eight logical FIFOs. These logical FIFOs are configurable in the following manner:

- FIFO size (defines start and end address)
- FIFO operation modes (normal mode or ring buffer operation mode)
- Fill level control / memory region read protection

Each logical FIFO represents a data stream between the sub-modules of the GTM and the microcontroller connected to AFD sub-module (see section 6). The FIFO RAM counts 1K words, where the word size is 29 bit. This gives the freedom to program or receive 24 bit of data together with the five control bits inside an ARU data word.

The FIFO unit provides three ports for accessing its content. One port is connected to the F2A interface, one port is connected to the AFD interface and one port has its own AEI bus interface.

The AFD interface has always the highest priority. Accesses to the FIFO from AFD interface and direct AEI interface in parallel - which means at the same time - is not possible, because both interfaces are driven from the same AEI bus interface of the GTM.

The priority between F2A and direct AEI interface can be defined by software. This can be done by using the register **FIFO[i]_CH[x]_CTRL** for all FIFO channels of the submodule.

The FIFO is organized as a single RAM that is also accessible through the FIFO AEI interface connected to one of the FIFO ports. To provide the direct RAM access, the RAM is mapped into the address space of the microcontroller. The addresses for accessing the RAM via AEI can be found in [1].

After reset, the FIFO RAM isn't initialized by hardware.

The FIFO channels can be flushed individually. Each of the eight FIFO channels can be used either in normal FIFO operation mode or in ring buffer operation mode.

Beside the possibility of flushing each FIFO channel directly, a write access to $FIFO[i]_CH[x]_END_ADDR$ or to $FIFO[i]_CH[x]_START_ADDR$ will also flush the regarding channel which means that the read and write pointer and also the fill level of the regarding channel will be reset. In consequence of this existing data in the concerned FIFO channel are not longer valid- thereafter the channel is empty.

Specification

5.2 Operation Modes

5.2.1 FIFO Operation Mode

In normal FIFO operation mode the content of the FIFO is written and read in first-in first-out order, where the data is destroyed after it is delivered to the system bus or the F2A sub-module (see section 7).

The upper and lower watermark registers (registers **FIFO[i]_CH[x]_UPPER_WM** and **FIFO[i]_CH[x]_LOWER_WM**) are used for controlling the FIFO's fill level. If the fill level falls below the lower watermark or it exceeds the upper watermark, an interrupt signal is triggered by the FIFO sub-module if enabled inside the **FIFO[i]_IRQ_EN**.

The interrupt signals are sent to the Interrupt Concentrator Module (ICM) (see chapter 20). The ICM can also initiate specific DMA transfers.

5.2.2 Ring Buffer Operation Mode

The ring buffer mode can be used to provide a continuous data or configuration stream to the other GTM sub-modules without CPU interaction. In ring buffer mode the FIFO provides a continuous data stream to the F2A sub-module. The first word of the FIFO is delivered first and after the last word is provided by the FIFO to the ARU, the first word can be obtained again.

If in ring buffer mode the read pointer reaches the write pointer it will be set again to the configured start address. So the read pointer always rotates cyclic between the configured start address of the regarding FIFO channel (first written data) and the write pointer which points to the last written data of the channel.

It is possible to add data to the FIFO channel via the AEI to FIFO interface (AFD) using the register **AFD[i]_CH[x]_BUF_ACC** while running in ring buffer mode. The new written data will be added in the next ring buffer cycle. However, the register **AFD[i]_CH[x]_BUF_ACC** should not be read in ring buffer mode.

It is recommended to fill the FIFO channel first before enabling the data stream in the FIFO to ARU interface (F2A).

Modifications of the continuous data stream can be achieved by using direct memory access which is provided by the FIFO AEI interface.

Specification

5.2.3 DMA Hysteresis Mode

The DMA hysteresis mode can be enabled by setting bit DMA_HYSTERESIS=1 in the **FIFO[i]_CH[x]_IRQ_MODE** register.

In the DMA hysteresis mode the lower and upper watermark will be masked to generate the DMA request (*=fifo_irq*) in the following manner.

If a DMA is writing data to a FIFO (configured by setting bit DMA_HYST_DIR=1 in register **FIFO[i]_CH[x]_IRQ_MODE**), the DMA request will be generated by the lower watermark. The upper watermark does not generate a DMA request. The next DMA request will be generated by the next lower watermark until the upper watermark was reached.

If a DMA is reading data from a FIFO (configured by setting bit DMA_HYST_DIR=0 in register **FIFO[i]_CH[x]_IRQ_MODE**), the DMA request will be generated by the upper watermark. The lower watermark does not generate a DMA request. The next DMA request will be generated by the next upper watermark until the lower watermark was reached.

Note that the watermarks have to achieve the following condition depending on the irq mode.

- Level / Pulse / Pulse-Notify mode : upper watermark > lower watermark
- Single-Pulse mode : upper watermark > lower watermark + 1

5.3 FIFO Interrupt Signals

Signal	Description
FIFO[i]_CH[x]_EMPTY	Indicating empty FIFO x (x:07) was reached
FIFO[i]_CH[x]_FULL	Indicating full FIFO x (x:07) was reached
FIFO[i]_CH[x]_LOWER_WM	Indicating FIFO x (x:07) reached lower watermark.
FIFO[i]_CH[x]_UPPER_WM	Indicating FIFO x (x:07) reached upper watermark.

5.4 FIFO Configuration Register Overview

GTM-IP

Revision 3.1.5.1

BOSCH

Register Name	Description	Details in Section
FIFO[i]_CH[z]_CTRL (z:07)	FIFOi channel z control register	5.5.1
FIFO[i]_CH[z]_END_ADDR	FIFOi channel z end address	5.5.2
(z:07)	register	
FIFO[i]_CH[z]_START_ADDR	FIFOi channel z start address	5.5.3
(z:07)	register	
FIFO[i]_CH[z]_UPPER_WM	FIFOi channel z upper	5.5.4
(z:07)	watermark register	
FIFO[i]_CH[z]_LOWER_WM	FIFOi channel z lower	5.5.5
(z:07)	watermark register	
FIFO[i]_CH[z]_STATUS	FIFOi channel z status register	5.5.6
(z:07) FIFO[i]_CH[z]_FILL_LEVEL	FIFO: channel = fill lovel register	5.5.7
(z:07)	FIFOi channel z fill level register	5.5.7
FIFO[i]_CH[z]_WR_PTR	FIFOi channel z write pointer	5.5.8
(z:07)	register	0.0.0
FIFO[i]_CH[z]_RD_PTR	FIFOi channel z read pointer	5.5.9
(z:07)	register	
FIFO[i]_CH[z]_IRQ_NOTIFY	FIFOi channel z interrupt	5.5.10
(z:07)	notification register	
FIFO[i]_CH[z]_IRQ_EN	FIFOi channel z interrupt enable	5.5.11
(z:07)	register	
FIFO[i]_CH[z]_EIRQ_EN	FIFOi channel z error interrupt	5.5.14
(z:07)	enable register	5.5.4.0
FIFO[i]_CH[z]_IRQ_FORCINT	FIFOi channel z force interrupt	5.5.12
(z:07)	register	
FIFO[i]_CH[z]_IRQ_MODE (z:07)	FIFOi channel z interrupt mode	5.5.13
(2:07)	control register	

5.5 FIFO Configuration Registers Description

5.5.1 Register FIFO[i]_CH[z]_CTRL (z:0...7)

Specification

Revision 3.1.5.1

Address Offset:	see Appendix B Initial Value: 0x0000_0000						
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
Bit	Reserved WULOCK FLUSH RAP RAP						
Mode	R RAW RAW						
Initial Value							
Bit 0 Bit 1	 RBM: Ring buffer mode enable 0 = Normal FIFO operation mode 1 = Ring buffer mode RAP: RAM access priority 0 = FIFO ports have higher access priority than AEI-IF 1 = AEI-IF has higher access priority than FIFO ports 						
Bit 2	 Note: RAP bit is only functional in register FIFO_0_CTRL. The priority is defined for all FIFO channels there FLUSH: FIFO Flush control 0 = Normal operation 1 = Execute FIFO flush (bit is automatically cleared after flush). Note: A FIFO Flush operation resets the FIFO[i]_CH[z]_FILL_LEVEL, FIFO[i]_CH[z]_WR_PTR and FIFO[i]_CH[z]_RD_PTR registers to their initial values. 						
Bit 3	 WULOCK: RAM write unlock. Enable/disable direct RAM write access to the memory mapped FIFO region. 0 = Direct RAM write access disabled 1 = Direct RAM write access enabled Note: Only the bit WULOCK of register FIFO[i]_CH0_CTRL enables/disables the direct RAM write access for all FIFO channel (whole FIFO RAM). The WULOCK bits of the other channels are writeable but have no effect. 						
Bit 31:4	Reserved: reserved Note: read as zero, should be written as zero						

5.5.2 Register FIFO[i]_CH[z]_END_ADDR (z:0...7)

Specification

Revision 3.1.5.1

Address Offset:	see Appendix B	Initial Value:	0x0000_0XXX
	31 31 29 28 28 27 26 27 26 26 22 22 23 23 23 23 23 21 19 11 11	15 14 13 13 12 11 10	9 8 6 6 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Bit	Reserved		ADDR
Mode	Ľ		RW
Initial Value	0000×0		XXXX0
Bit 9:0 Bit 31:10	ADDR: End address for FIFO channels Note: value for ADDR is calculated Note: A write access will flush the re Reserved: reserved Note: read as zero, should be writte	as ADDR = 12 egarding chan	

5.5.3 Register FIFO[i]_CH[z]_START_ADDR (z:0...7)

Address Offset:	see Appendix B	Initial Value:	0x0000_0XXX
	31 30 29 27 26 26 26 26 25 22 23 23 23 23 23 21 19 11 11 11	15 14 13 13 12 11 11	9 88 88 0 0 1 1 1 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0
Bit	Reserved		ADDR
Mode	۲		RW
Initial Value			
Bit 9:0	ADDR: Start address for FIFO char Note: Initial value for ADDR is calcu Note: A write access will flush the re	lated as ADD	R = 128*z

Bit 31:10 **Reserved:** reserved Note: read as zero, should be written as zero

5.5.4 Register FIFO[i]_CH[z]_UPPER_WM (z:0...7)

Specification

	1		
Address Offset:	see Appendix B In	itial Value:	0x0000_0060
	31 31 30 29 28 27 26 27 26 26 26 22 23 23 23 23 23 21 19 117 17 17 17 17 17 17 17 17 17 17 17 17	14 13 12 11 10	9 8 6 6 7 7 7 7 7 0
Bit	Reserved		ADDR
Mode	٣		RW
Initial Value	00000 00		0×60
Bit 9:0	ADDR: Upper watermark address. Note: The upper watermark is config FIFO. ADDR must be in range: 0 <= ADDR <= FI FIFO[i]_CH[z]_START_ADDR.		

Initial value for ADDR is defined as ADDR = 0x60.

Bit 31:10 **Reserved:** reserved

Note: read as zero, should be written as zero

5.5.5 Register FIFO[i]_CH[z]_LOWER_WM (z:0...7)

Address Offset:	see Appendix B Initial Value	: 0x0000_0020
	31 33 30 29 27 27 26 26 25 25 22 23 23 23 23 21 19 11 11 11 11 11 11 11 11 11 11 11 11	9888 666 44 333 22 2 0
Bit	Reserved	ADDR
Mode	۳	R K
Initial Value	00000	0x20
Bit 9:0	ADDR: Lower watermark address. Note: The lower watermark is configured as a FIFO. ADDR must be in range: 0 <= ADDR <= FIFO[i]_CH[
	FIFO[i]_CH[z]_START_ADDR . Initial value for ADDR is defined as ADDR = 0x20).

Revision 3.1.5.1

GTM-IP

Specification

Bit 31:10 **Reserved:** reserved Note: read as zero, should be written as zero

5.5.6 Register FIFO[i]_CH[z]_STATUS (z:0...7)

Address Offset:	see Appendix B Initial Value: 0x0	000_	.00	05	
	31 33 30 29 27 28 26 25 26 25 26 23 23 23 23 21 17 11 17 11 17 11 11 11 11 11 11 11 11	5 4	3	2	1 0
Bit	Reserved		UP_WM	LOW_WM	FULL EMPTY
Mode	۵		Я	ж	ж к
Initial Value	000000 000000		0	1	0 1
Bit 0 Bit 1	EMPTY: FIFO is empty. 0 = Fill level > 0 1 = Fill level = 0 Note: Bit only applicable in normal mode FULL: FIFO is full. 0 = Fill level < FIFO[i]_CH[z]_END FIFO[i]_CH[z]_START_ADDR + 1 1 = Fill level = FIFO[i]_CH[z]_END FIFO[i]_CH[z]_START_ADDR + 1	_			_
Bit 2	Note: Bit only applicable in normal mode LOW_WM: Lower watermark reached 0 = Fill level > lower watermark 1 = Fill level <= lower watermark				
Bit 3	Note: Bit only applicable in normal mode UP_WM: Upper watermark reached 0 = Fill level < upper watermark 1 = Fill level >= upper watermark Note: Bit only applicable in normal mode				
Bit 31:4	Reserved: reserved Note: read as zero, should be written as zero				

5.5.7 Register FIFO[i]_CH[z]_FILL_LEVEL (z:0...7)

Specification

Revision 3.1.5.1

Address Offset:	see Appendix B	Initial Valu	ue: 0x0000_0000	
	31 30 29 27 27 26 26 26 25 23 23 23 23 23 21 21 21 19 11	15 14 13 12 11	10 9 8 8 6 6 6 7 7 7 7 7 7 7 7 7 7 0 0	
Bit	Reserved		ГЕЛЕГ	
Mode	٢		۵	
Initial Value	0000 0 0000		000×0	
Bit 10:0	LEVEL: Fill level of the current FIFC Note: LEVEL is in range:)		

Note: LEVEL is in range: $0 \leq LEVEL$

≤ LEVEL ≤ FIFO[i]_CH[z]_END_ADDR -FIFO[i]_CH[z]_START_ADDR + 1.

Register content is compared to the upper and lower watermark values for this channel to detect watermark over- and underflow.

Bit 31:11 **Reserved:** reserved

Note: read as zero, should be written as zero

5.5.8 Register FIFO[i]_CH[z]_WR_PTR (z:0...7)

Address Offset:	see Appendix B	Initial Value:	0x0000_0XXX		
	31 30 29 27 27 26 26 25 25 25 24 25 21 23 23 23 21 19 117	15 14 13 12 11 10	9 8 8 6 6 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Bit	Beserved		ADDR		
Mode	۲ ۲ ۲		ĸ		
Initial Value	0000 0 0		XXXXX0		

Bit 9:0 ADDR: Position of the write pointer Note: ADDR must be in range 0 ≤ ADDR ≤ 1023. Initial value for ADDR is defined as ADDR = FIFO[i]_CH[z]_START_ADDR

Bit 31:10 **Reserved:** reserved Note: read as zero, should be written as zero

5.5.9 Register FIFO[i]_CH[z]_RD_PTR (z:0...7)

Address Offset:	see Appendix B	Initial Value	0x0000_0XXX
	31 30 29 27 27 26 26 25 23 23 23 23 23 23 23 23 21 21 19 11	15 14 13 12 11 10	9 8 6 6 7 7 7 8 8 3 3 3 3 3 2 2 1 1
Bit	Reserved		ADDR
Mode	۵		۲
Initial Value	00 XX X		XX XX0
Bit 9:0	ADDR: Position of the read pointer		

Note: ADDR must be in range 0 ≤ ADDR ≤ 1023. Initial value for ADDR is defined as ADDR = **FIFO[i]_CH[z]_START_ADDR**

Bit 31:10 **Reserved:** reserved Note: read as zero, should be written as zero

5.5.10 Register FIFO[i]_CH[z]_IRQ_NOTIFY (z:0...7)

Address Offset:	see Appendix B Initial Value: 0x0000_	0005	
	31 30 29 29 27 27 26 26 25 25 25 23 25 21 23 21 19 11 11 11 11 11 11 11 11 11 11 11 11	3 2	1 0
Bit	Reserved		FIFO_FULL FIFO_EMPTY
Mode	٣	RCw RCw	RCw NCw
Initial Value	00000 0000 000	0	1
Bit 0 Bit 1	 FIFO_EMPTY: FIFO is empty 0 = No interrupt occurred. 1 = FIFO is empty interrupt occurred. Note: This bit will be cleared on a CPU write access of value 2 access leaves the bit unchanged. FIFO_FULL: FIFO is full. See bit 0. 	1. A r	ead

GTM-IP	Specification Revision	۱3.
Bit 2	FIFO_LWM: FIFO Lower watermark was under-run. See bit 0.	
Bit 3	FIFO_UWM: FIFO Upper watermark was overrun. See bit 0.	
Bit 31:4	Reserved: reserved	
	Note: read as zero, should be written as zero	

5.5.11 Register FIFO[i]_CH[z]_IRQ_EN (z:0...7)

Address Offset:	see Appendix B Initial Value: 0x0000_	0000
	31 33 33 33 33 33 33 33 33 23 23 25 25 25 25 25 25 25 25 25 25 21 15 11 11 11 11 11 11 11 20 26 27 26 27 26 27 26 27 26 27 26 27 26 26 27 27 26 27 26 27 27 26 26 27 26 26 27 27 26 27 27 26 26 27 26 26 27 27 26 27 27 26 26 27 27 26 26 27 26 26 27 27 26 26 27 27 26 27 26 27 27 26 27 27 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27	3 2 0
Bit	Reserved	FIFO_UWM_IRQ_ FIFO_LWM_IRQ_ FIFO_FULL_IRQ_ FIFO_EMPTY_IRQ
Mode	۲. ۲	RW RW RW
Initial Value	00000×0	0 0 0
Bit 0	FIFO_EMPTY_IRQ_EN: interrupt enable 0 = Disable interrupt, interrupt is not visible outside GTM-IP. 1 = Enable interrupt, interrupt is visible outside GTM-IP.	
Bit 1 Bit 2 Bit 3 Bit 31:4	FIFO_FULL_IRQ_EN: interrupt enable. See bit 0. FIFO_LWM_IRQ_EN: interrupt enable. See bit 0. FIFO_UWM_IRQ_EN: interrupt enable. See bit 0. Reserved: reserved Note: read as zero, should be written as zero	

5.5.12 Register FIFO[i]_CH[z]_IRQ_FORCINT (z:0...7)

Confidential

Specification

Revision 3.1.5.1

Address Offset:	see Appendix B Initial Value: 0x0000	_0000
	31 33 33 33 33 33 33 33 33 23 24 24 25 25 23 23 23 23 23 23 23 23 23 23 23 23 23	3 2 1 0
Bit	Reserved	TRG_FIFO_UWM TRG_FIFO_LWM TRG_FIFO_FULL TRG_FIFO_EMPT
Mode	Ľ	RAW RAW RAW RAW
Initial Value	0000 000 000	0000
Bit 0	TRG_FIFO_EMPTY: Force interrupt of FIFO empty status. 0 = corresponding bit in status register will not be forced 1 = Assert corresponding field in FIFO[i]_CH[z]_IRQ_NOTIFY	register
Bit 1	Note: This bit is cleared automatically after write. Note: This bit is write protected by bit RF_PROT of register GT TRG_FIFO_FULL: Force interrupt of FIFO full status. See bit 0).
Bit 2 Bit 3	TRG_FIFO_LWM: Force interrupt of lower watermark. See bit TRG_FIFO_UWM: Force interrupt of upper watermark. See bit	

Bit 31:4 **Reserved:** reserved

Note: read as zero, should be written as zero

5.5.13 Register FIFO[i]_CH[z]_IRQ_MODE (z:0...7)

Address Offset:	see Appendix B	Initial Value:	0x0000_	000X
	31 30 29 27 28 26 26 26 25 25 23 23 23 23 23 23 21 19 11 11 11	15 14 13 13 12 11 10 9 8	7 6 5 4	3 1 0
Bit	Reserved			DMA_HYST_DIR DMA_HYSTERESI IRQ_MODE
Mode	۲			RW RW RW
Initial Value	0000×0			0 0 X
Bit 1:0	IRQ_MODE : IRQ mode selection 0b00 = Level mode 0b01 = Pulse mode 0b10 = Pulse-Notify mode 0b11 = Single-Pulse mode			

95/868

GTM-IP	Specification	Revision 3.1.5.1
	Note: The interrupt modes are described in section 2	2.5.
Bit 2	DMA_HYSTERESIS : Enable DMA hysteresis mode.	
	0 = Disable FIFO hysteresis for DMA access.	
	1 = Enable FIFO hysteresis for DMA access.	
Bit 3	DMA_HYST_DIR: DMA direction in hysteresis mode	
	0 = DMA direction read in hysteresis mode.	
	1 = DMA direction write in hysteresis mode.	
	Note: In the case of DMA writing data to a FIFO the I be generated by the lower watermark. If the enabled, the FIFO does not generate a new DM upper watermark is reached.	DMA hysteresis is
	Note: In the case of DMA reading data from FIFO the be generated by the upper watermark. If the enabled, the FIFO does not generate a new DM lower watermark is reached.	DMA hysteresis is
Bit 31:4	Reserved	

Note: Read as zero, should be written as zero

Address Offset:	see Appendix B	Initial Value:	0x0000_	00)00)	
	31 30 29 27 27 26 26 25 25 23 23 23 23 23 23 23 23 21 21 19 11 11	15 14 13 12 11 11 10 9 8	7 6 5 4	3	2	1	0
Bit	Reserved			FIFO_UWM_EIRQ	FIFO_LWM_EIRQ	FULL_EI	FIFO_EMPTY_EIR
Mode	۲			RW	RW	RW	RW
Initial Value	0000 000000000000000000000000000000000			0	0	0	0
Bit 0	FIFO_EMPTY_EIRQ_EN: error int 0 = Disable error interrupt, error inter 1 = Enable error interrupt, error inte	errupt is not visible				IP.]
Bit 1 Bit 2 Bit 3	FIFO_FULL_EIRQ_EN: interrupt er FIFO_LWM_EIRQ_EN: interrupt e FIFO_UWM_EIRQ_EN: interrupt e	nable. See bit 0.					

5.5.14 Register FIFO[i]_CH[z]_EIRQ_EN (z:0...7)

BOSCH

6 AEI to FIFO Data Interface (AFD)

6.1 Overview

The AFD sub-module implements a data interface between the AEI bus and the FIFO sub-module, which consists of eight logical FIFO channels.

The AFD sub-module provides one buffer registers that are dedicated to the logical channels of the FIFO. Access to the corresponding FIFO channel is given by reading or writing this buffer registers **AFD[i]_CH[x]_BUF_ACC**.

An AEI write access to the buffer register where the corresponding FIFO channel is full will be ignored. The data will be lost.

An AEI read access to the buffer register where the corresponding FIFO channel is empty will be served with zero data.

6.2 AFD Register overview

Register Name	Description	Details in Section
AFD[i]_CH[z]_BUF_ACC (z:07)	AFD i FIFO z buffer access register	6.3.1

6.3 AFD Register description

6.3.1 Register AFD[i]_CH[z]_BUF_ACC (z:0...7)

Confidential

Specification

Revision 3.1.5.1

Address Offset:	see A	ppendix B	Initial Value:	0x0000_0000
	31 30 29	28 27 26 25 25 23 23 23 23 21 21 21 19 11 17	16 15 14 13 13 13 12 11 10 9 9	8 6 7 7 8 1 1 1 5 5 6 7 4 8 0 1 1 1 5 5 6 7 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Bit	Reserved		рата	
Mode	£		RW	
Initial Value	0×0		0000×0	
Bit 28:0		A: Read/write data from/to FI	FO	

Bit 31:29 **Reserved:** reserved

Note: Read as zero, should be written as zero

7 FIFO to ARU Unit (F2A)

7.1 Overview

The F2A is the interface between the ARU and the FIFO sub-module. Since the data width of the ARU (ARU word) is 53 bit (two 24 bit values and five control bits) and the data width of the FIFO is only 29 bit, the F2A has to distribute the data from and to the FIFO channels in a configurable manner.

The data transfer between FIFO and ARU is organized with eight different streams that are connected to the eight different channels of the corresponding FIFO module. A stream represents a data flow from/to ARU to/from the FIFO via the F2A.

The general definition of 'channels' and 'streams' in the ARU context is done in section 2.3.

Each FIFO channel can act as a write stream (data flow from FIFO to ARU) or as a read stream (data flow from ARU to FIFO).

Within these streams the F2A can transmit/receive the lower, the upper or both 24 bit values of the ARU together with the ARU control bits according to the configured transfer modes as described in section 7.2

Each stream can be enabled/disabled separately within the register **F2A[i]_ENABLE**. If a stream will be disabled, the stream data which are stored inside the F2A will be deleted. This is necessary to ensure, that no old data are transferred after enabling a stream.

7.2 Transfer modes

The F2A unit provides several transfer modes to map 29 bit data of the FIFO from/to 53 bit data of the ARU. E.g. it is configurable that the 24 bit FIFO data is written to the lower ARU data entry (means bits 0 to 23) or to the higher 24 bit ARU data entry (means bits 24 to 47). Bits 24 to 28 of the FIFO data entry (the five control bits) are written/read in both cases to/from bits 48 to 52 of the ARU entry.

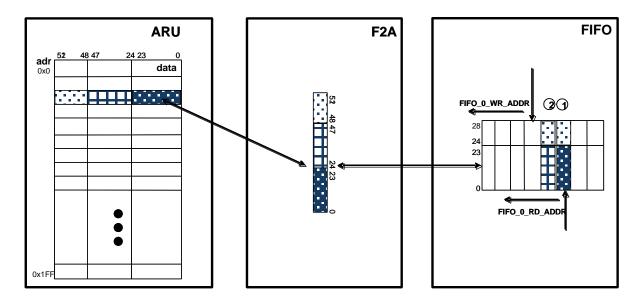
When both values of the ARU have to be stored in the FIFO the values are stored behind each other inside the FIFO if the FIFO is not full.

If there is only space for one 24 bit data word plus the five control bits, the F2A transfers one part of the 53 bits first and then waits for transferring the second part before new data is requested from the ARU.

Specification

When two values from the FIFO have to be written to one ARU location the words have to be located behind each other inside the FIFO.

The transfer to ARU is only established when both parts could be read out of the FIFO otherwise if only one 29 bit word was provided by the FIFO the F2A waits until the second part is available before the data is made available at the ARU.


Figure 7.2.1 shows the data ordering of the FIFO when both ARU values must be transferred between ARU and FIFO.

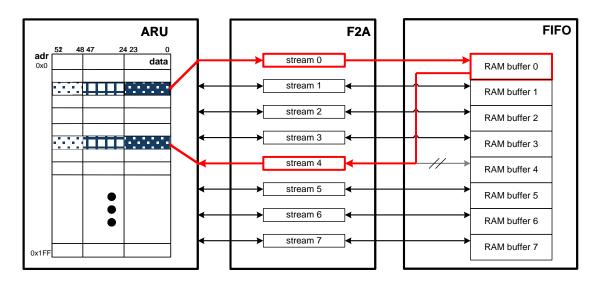
When reading from the ARU the F2A first writes the lower word to the FIFO. In case of writing to the ARU the F2A reads the lower word first from the FIFO, thus the lower word must be written first to the FIFO through the AFD interface.

Please note, that the five control bits (bits 48 to 52 of the ARU data word) are duplicated as bit 24 to 28 of both FIFO words in case of reading from ARU.

In the case of writing to the ARU, bits 24 to 28 of the last written FIFO word (the higher ARU word) are copied to bits 48 to 52 of the corresponding ARU location.

The transfer modes can be configured with the **TMODE** bits of registers $F2A[i]_CH[x]_STR_CFG$ (x: 0..7).

7.2.1 Data transfer of both ARU words between ARU and FIFO


7.3 Internal buffer mode

Specification

It is possible to use a FIFO channel as a buffer which is accessed only internally from ARU side. To do this, a read and a write stream of the F2A to one FIFO channel are needed. Therefore it is possible to reconfigure the upper 4 F2A streams 4..7 to the lower 4 FIFO channels 0..3 in the following manner :

F2A stream 4 (+ F2A stream 0) -> FIFO channel 0 F2A stream 5 (+ F2A stream 1) -> FIFO channel 1 F2A stream 6 (+ F2A stream 2) -> FIFO channel 2 F2A stream 7 (+ F2A stream 3) -> FIFO channel 3

7.3.1 Reconfiguration of F2A stream 4 to FIFO channel 0

The configuration of each 4 upper F2A streams can be done separately for each stream in the configuration register **F2A[i]_CTRL**.

Note that the corresponding upper FIFO channel (4..7) cannot be used in this configuration.

7.4 F2A Configuration Register Overview

Register name	Description	Details in Section
F2A[i]_ENABLE	F2Ai stream activation register	7.5.1
F2A[i]_CH[z]_ARU_RD_FIFO (z:07)	F2Ai channel z read address register	7.5.2
F2A[i]_CH[z]_STR_CFG (z:07)	F2Ai stream z configuration register	7.5.3
F2A[i]_CTRL	F2Ai stream control register	7.5.4

7.5 F2A Configuration Register description

7.5.1 Register F2A[i]_ENABLE

Address Offset:	see Appendix B	Initi	ial Va	alue	:	0x0	000_	_000	0
	31 33 30 30 27 27 27 26 26 26 26 26 27 27 26 27 26 27 26 27 26 27 27 26 27 27 27 26 27 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27	15 14	13 12	11 10	6 8	7 6	4 5	м с	1 0
Bit	Reserved	STR7_EN	STR6_EN	STR5_EN	STR4_EN	STR3_EN	STR2_EN	STR1_EN	STR0_EN
Mode	Ľ	RW	RW	RW	RW	RW	RW	RW	RW
Initial Value	000 00×0	00	00	00	00	00	00	00	00
	Write / Read: 0b00 = Don't care, bits 1:0 will not b 0b01 = Stream 0 is disabled and inte 0b10 = Stream 0 is enabled / 0b11 = Don't care, bits 1:0 will not b	ernal be ch	state ange	es ar ed / S	e res Strea	set / m er	 nable	d	
Bit 3:2	Note : stream data inside F2A will k STR1_EN : Enable/disable stream 1 See bits 1:0		letec	lon	strea	ım di	sabli	ng.	
Bit 5:4	Stream 2 Stream 2 See bits 1:0	2							
Bit 7:6	STR3_EN: Enable/disable stream 3 See bits 1:0	}							
Bit 9:8	STR4_EN : Enable/disable stream 4 See bits 1:0	Ļ							
Bit 11:10		STR5_EN: Enable/disable stream 5							
Bit 13:12	See bits 1:0 STR6_EN: Enable/disable stream 6 See bits 1:0								
Bit 15:14	STR7_EN : Enable/disable stream 7 See bits 1:0	7							
Bit 31:16	Reserved Note: Read as zero, should be writt	en a	s zer	0					

Specification

7.5.2 Register F2A[i]_CH[z]_ARU_RD_FIFO (z: 0...7)

Address Offset:	see Appendix B Initial Value:	0x0000_01FE
	31 31 30 29 27 27 26 26 25 25 25 23 23 23 23 23 23 21 19 11 11 11 11 11 11 11 11 11 11 11 11	8 8 6 6 7 7 7 8 3 3 3 3 3 3 2 2 2 0
Bit	Reserved	ADDR
Mode	٣	RPw
Initial Value	000 0 000 0 000 0	0x1FE
Bit 8:0 Bit 31:9	ADDR: ARU Read address Note: this bit field is only writable if channel is disat Reserved Note: Read as zero, should be written as zero	led.

7.5.3 Register F2A[i]_CH[z]_STR_CFG (z: 0...7)

Address Offset:	see Appendix B		Initial Value: 0x0000_0000			
	31 30 29 27 27 26 26 25 25 24 25 23 23 23 23 23 21 21 21	18 17	16 15 14 13 13 13 12 10 9 8 8 8 8 8 7 7 7 5 5 4 4 2 3 3 2	0		
Bit	Reserved	DIR TMODE	Reserved			
Mode	۲	RPw RPw	٣			
Initial Value	0000×0	00	000000000000000000000000000000000000000			
Bit 15:0 Bit 17:16	Note: Read as zero, should be written as zero					
Bit 18	DIR : Data transfer direction 0 = Transport from ARU to FIFO					

Specification

1 = Transport from FIFO to ARU

Bit 31:19 Reserved

Note: Read as zero, should be written as zero

Note: The write protected bits of register **F2A_STR_[x]_CFG** are only writable if the corresponding enable bit STRx_EN of register **F2A_ENABLE** is cleared.

7.5.4 Register F2A[i]_CTRL

Address Offset:	see Appendix B	Initial Value:	0x0	000_	0000)
	31 30 29 28 27 26 26 25 25 25 23 23 23 23 21 21 19 117 16	15 14 13 13 12 11 10 9 8	7 6	5 4	3	1 0
Bit	Reserved		STR7_CONF	STR6_CONF	STR5_CONF	STR4_CONF
Mode	۳		RPw	RPw	RPw	RPw
Initial Value	00000 00		00	00	00	00
	 STR4_CONF: Reconfiguration of stream 4 to FIFO channel 0 Write / Read: 0b00 = Don't care, bits 1:0 will not be changed / Stream 4 is mapped to FIFO buffer 4 0b01 = Stream 4 is mapped to FIFO buffer 4 / 0b10 = Stream 4 is mapped to FIFO buffer 0 / 0b11 = Don't care, bits 1:0 will not be changed / Stream 4 is mapped to FIFO buffer 0 Note: The write protected bits of register F2A[i]_CTRL are only writable if the corresponding enable bit STR0_EN and STR4_EN of register F2A_ENABLE is cleared. 					
Bit 3:2	<pre>STR5_CONF: Reconfiguration of st Write / Read: 0b00 = Don't care, bits 1:0 will not FIFO buffer 5 0b01 = Stream 5 is mapped to FIFO 0b10 = Stream 5 is mapped to FIFO 0b11 = Don't care, bits 1:0 will not FIFO buffer 1</pre>	be changed / Strea D buffer 5 / D buffer 1 /	am 5	is m		

GTM-IP	Specification	Revision 3.1.5.1
	Note: The write protected bits of register F2A[i]_C if the corresponding enable bit STR1_EN and F2A_ENABLE is cleared.	
Bit 5:4	<pre>STR6_CONF: Reconfiguration of stream 6 to FIFO Write / Read: 0b00 = Don't care, bits 1:0 will not be changed / S FIFO buffer 6 0b01 = Stream 6 is mapped to FIFO buffer 6 / 0b10 = Stream 6 is mapped to FIFO buffer 2 / 0b11 = Don't care, bits 1:0 will not be changed / S FIFO buffer 2</pre>	Stream 6 is mapped to
	Note: The write protected bits of register F2A[i]_0 if the corresponding enable bit STR2_EN and F2A_ENABLE is cleared.	
Bit 7:6	 STR7_CONF: Reconfiguration of stream 7 to FIFO Write / Read: 0b00 = Don't care, bits 1:0 will not be changed / S FIFO buffer 7 0b01 = Stream 7 is mapped to FIFO buffer 7 / 0b10 = Stream 7 is mapped to FIFO buffer 3 / 0b11 = Don't care, bits 1:0 will not be changed / S FIFO buffer 3 Note: The write protected bits of register F2A[i]_C if the corresponding enable bit STR3 EN and 	Stream 7 is mapped to Stream 7 is mapped to CTRL are only writable
Bit 31:8	F2A_ENABLE is cleared.	
DIL 31:0	Νεβεινεμ	

Note: Read as zero, should be written as zero

BOSCH

8 Clock Management Unit (CMU)

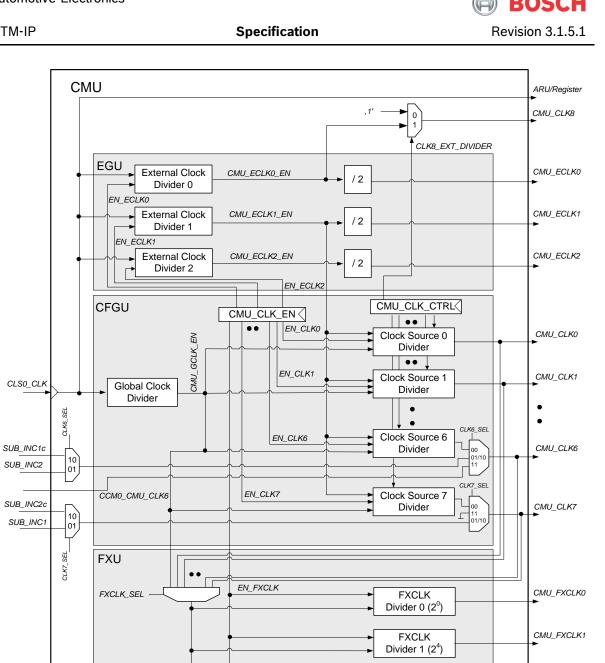
8.1 Overview

The Clock Management Unit (CMU) is responsible for clock generation of the counters and of the GTM-IP. The CMU consists of three sub-units that generate different clock sources for the whole GTM-IP. The primary clock source for this sub-module is the cluster 0 clock signal *cls0_clk* which is defined by the value of bit field CLS0_CLK_DIV in register **GTM_CLS_CLK_CFG**. Figure 8.1.1 shows a block diagram of the CMU.

The Configurable Clock Generation (CFGU) sub-unit provides eight dedicated clock sources for the following GTM modules: TIM, ATOM, TBU, and MON. Each instance of such a module can choose an arbitrary clock source, in order to specify wide-ranging time bases.

The Fixed Clock Generation (FXU) sub-unit generates predefined non-configurable clocks $CMU_FXCLK[y]$ (y: 0..4) for the TOM modules and the MON module. The $CMU_FXCLK[y]$ signals are derived from the CMU_GCLK_EN signal generated by the Global Clock Divider. The dividing factors are defined as 2^0 , 2^4 , 2^8 , 2^{12} , and 2^{16} .

The External Clock Generation (EGU) sub-unit is able to generate up to three chip external clock signals visible at $CMU_ECLK[z]$ (z: 0..2) with a duty cycle of about 50%.


The External Clock Generation (EGU) sub-unit is able to generate clock *CMU_CLK8* for module CCM to manage 2 clock domains.

The clock source signals $CMU_CLK[x]$ (x: 0..7) and $CMU_FXCLK[y]$ are implemented in form of enable signals for the corresponding registers, which means that the actual clock signal of all registers always use the $CLS0_CLK$ signal.

The four configurable clock signals *CMU_CLK0*, *CMU_CLK1*, *CMU_CLK6* and *CMU_CLK7* are used for the TIM filter counters.

8.1.1 CMU Block Diagram

AEI

107/868

CMU_FXCLK2

CMU_FXCLK3

CMU_FXCLK4

FXCLK Divider 2 (2⁸)

FXCLK

Divider 3 (2¹²)

FXCLK Divider 4 (2¹⁶)

GTM-IP

The sub block Global Clock Divider can be used to divide the CMU primary source signal *CLSO_CLK* into a common subdivided clock signal.

The divided clock signal of the sub block Global Clock Divider is implemented as an enable signal that enables dedicated clocks from the *CLS0_CLK* signal to generate the user specified divided clock frequency.

The resulting fractional divider (*Z/N*) specified through equation: $T_{CMU_GCLK_EN} = (Z/N)^* T_{CLS0_CLK}$

is implemented according the following algorithm

(*Z*: *CMU_GCLK_NUM*(23:0) ; *N*: *CMU_GCLK_DEN*(23:0) ; *Z*,*N* >0):

(1) Set remainder (*R*), operand1 (*OP1*) and operand2 (*OP2*) register during INIT-phase (with implicit conversion to signed):

R=Z, *OP1=N*, *OP2=N-Z*;

(2) After leaving INIT-phase (at least one *CMU_CLK[x]* has been enabled) the sign of remainder R for each *CLS0_CLK* cycle will be checked:

- (3) If R>0 keep updating remainder and keep CMU_GCLK_EN='0': R=R-OP1;
- (4) If R<0 update remainder and set CMU_GCLK_EN='1': R=R-OP2;

After at most (Z/N+1) subtractions (3) there will be a negative R and an active phase of the generated clock enable (for one cycle) will be triggered (4). The remainder R is a measure for the distance to a real Z/N clock and will be regarded for the next generated clock enable cycle phase. The new R value will be R=R+(Z-N). In the worst case the remainder R will sum up to an additional cycle in the generated clock enable period after Z-cycles. In the other cases equally distributed additional cycles will be inserted for the generated clock enable. If Z is an integer multiple of N no additional cycles will be included for the generated clock enable at all.

Note that for a better resource sharing all arithmetic has been reduced to subtractions and the initialization of the remainder R uses the complement of (*Z*-*N*).

8.3 Configurable Clock Generation sub-unit (CFGU)

The CMU sub-unit CFGU provides up to eight configurable clock divider blocks that divide the common CMU_GCLK_EN signal into dedicated enable signals for the GTM-IP sub blocks.

The configuration of the eight different clock signals $CMU_CLK[x]$ (x: 0...7) always depends on the configuration of the global clock enable signal CMU_GCLK_EN . Additionally, each clock source has its own configuration data, provided by the control register **CMU_CLK_[x]_CTRL** (x: 0...7).

According to the configuration of the Global Clock Divider, the configuration of the Clock Source x Divider is done by setting an appropriate value in the bit field **CLK_CNT[x]** of the register **CMU_CLK_[x]_CTRL**.

The frequency $f_x = 1/T_x$ of the corresponding clock enable signal $CMU_CLK[x]$ can be determined by the unsigned representation of **CLK_CNT[x]** of the register **CMU_CLK_[x]_CTRL** in the following way:

 $T_{CMU_CLK[x]}$ =(**CLK_CNT[x]**+1)* $T_{CMU_GCLK_EN}$ The corresponding wave form is shown in Figure 8.3.1

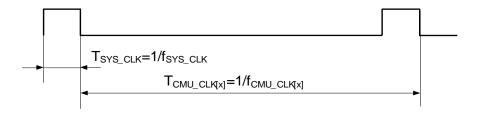
Each clock signal $CMU_CLK[x]$ can be enabled individually by setting the appropriate bit field **EN_CLK[x]** in the register **CMU_CLK_EN**. Except for CMU_CLK6 and CMU_CLK7 individual enabling and disabling is active only if **CLK6_SEL** and **CLK7_SEL** is reset.

Alternatively, clock source six and seven (*CMU_CLK6* and *CMU_CLK7*) may provide the signal *SUB_INC1* and *SUB_INC2* coming from module DPLL as clock enable signal depending on the bit field **CLK6_SEL(1:0)** of the register **CMU_CLK_6_CTRL** and on the bit field **CLK7_SEL(1:0)** of the register **CMU_CLK_7_CTRL**.

CMU_CLK8 is switched by **CLK8_EXT_DIVIDER** of the register **CMU_CLK_CTRL** between *CLS0_CLK* and *CMU_ECLK0*.

To switch the clock reference CMU_GCLK_EN with CMU_ECLK1_EN an input selector are used in all Clock Source Divider. The CMU_ECLK1_EN source is enabled by setting the appropriate bit field **CMU[x]_EXT_DIVIDER** in the register **CMU_CLK_CTRL**.

To avoid unexpected behavior of the hardware, the configuration of register $CMU_CLK_[x]_CTRL$ and CMU_CLK_CTRL can only be changed, when the corresponding clock signal $CMU_CLK[x]$ and $CMU_ECLK[1]$ is disabled.


Further, any changes to the registers **CMU_GCLK_NUM** and **CMU_GCLK_DEN** can only be performed, when all clock enable signals *CMU_CLK[x]* and the **EN_FXCLK** bit inside the **CMU_CLK_EN** register are disabled.

The clock source signals $CMU_CLK[x]$ (x: 0..7) and $CMU_FXCLK[y]$ are implemented in form of enable signals for the corresponding registers, which means that the actual clock signal of all registers always use the $CLS0_CLK$ signal.

The hardware guarantees that all clock signals $CMU_CLK[x]$ (x: 0..7), which were enabled simultaneous, are synchronized to each other. Simultaneous enabling does mean that the bits **EN_CLK[x]** in the register **CMU_CLK_EN** are set by the same write access.

Specification

8.3.1 Wave Form of Generated Clock Signal CMU_CLK[x]

8.4 Fixed Clock Generation (FXU)

The FXU sub-unit generates fixed clock enables out of the CMU_GCLK_EN or one of the eight $CMU_CLK[x]$ enable signal depending on the **FXCLK_SEL** bit field of the **CMU_FXCLK_CTRL** register. These clock enables are used for the PWM generation inside the TOM modules.

All clock enables *CMU_FXCLK[y]* can be enabled or disabled simultaneous by setting the appropriate bit field **EN_FXCLK** in the register **CMU_CLK_EN**.

The dividing factors are defined as 2^0 , 2^4 , 2^8 , 2^{12} , and 2^{16} . The signals *CMU_FXCLK[y]* are implemented in form of enable signals for the corresponding registers (see also Chapter 8.3.1)

8.5 External Generation Unit (EGU)

The EGU sub-unit generate up to three separate clock output signals *CMU_ECLK[z]* (z: 0..2).

Each of these clock signals is derived from the corresponding External Clock Divider z sub block, which generates a clock signal derived from the GTM-IP input clock *CLS0_CLK*.

In contrast to the signals *CMU_CLK[x]* and *CMU_FXCLK[y]*, which are treated as simple enable signals for the registers, the signals *CMU_ECLK[z]* have a duty cycle of about 50% that is used as a true clock signal for external peripheral components.

To manage a second global frequency CMU_GCLK_EN could be replaced by $ECLK[1]_EN$ for CMU_CLK[x](x:0..7). Also the all-time enabled CMU_CLK8 could be replaced by $ECLK[0]_EN$.

Each of the external clocks divider are enabled and disabled by setting the appropriate bit field **EN_ECLK[z]** in the register **CMU_CLK_EN**.

The clock frequencies $f_{CMU_ECLK[z]} = 1/T_{CMU_ECLK[z]}$ of the external clocks are controlled with the registers **CMU_ECLK_[z]_NUM** and **CMU_ECLK_[z]_DEN** as follows:

T_{CMU_ECLK[z]_EN}=(ECLK[z]_NUM/ECLK[z]_DEN)**T_{CLS0_CLK}*

and is implemented according the following algorithm (*Z*: *CMU_ECLK_[z]_NUM(23:0)*; *N*: *CMU_ECLK_[z]_DEN(23:0)*; *Z*,*N* >0; *Z*>=*N*; *CMU_ECLK[z]*='0'):

(1) Set remainder (*R*), operand1 (*OP1*) and operand2 (*OP2*) register during INIT-phase (with implicit conversion to signed): R=Z, OP1=N, OP2=N-Z;

(2) After leaving INIT-phase (*CMU_ECLK[z]* has been enabled) the sign of remainder R for each *CLS0_CLK* cycle will be checked:

(3) If *R*>0 keep updating remainder and keep *CMU_ECLK[z]*:

R=R-OP1;

(4) If *R*<0 update remainder and toggle *CMU_ECLK[z]*: *R*=*R*-*OP2*:

After at most (Z/N+1) subtractions (3) there will be a negative R and an active phase of the generated clock enable (for one cycle) will be triggered (4). The remainder R is a measure for the distance to a real Z/N clock and will be regarded for the next generated clock toggle phase. The new R value will be R=R+(Z-N). In the worst case the remainder R will sum up to an additional cycle in the generated clock toggle period after Z-cycles. In the other cases equally distributed additional cycles will be inserted for the generated clock toggle. If Z is an integer multiple of N no additional cycles will be included for the generated clock toggle at all.

Note that for a better resource sharing all arithmetic has been reduced to subtractions and the initialization of the remainder R uses the complement of (*Z*-*N*).

The default value of the CMU_ECLK[z] output is low.

8.6 CMU Configuration Register Overview

8.6.1 CMU Configuration Register Overview Table

Register Name	Description	Details in Section
CMU_CLK_EN	CMU clock enable	8.7.1
CMU_GCLK_NUM	CMU global clock control numerator	8.7.2

G	тι	٧ŀ	IP.)
G	11	v١	.16	

Specification

Revision 3.1.5.1

CMU GCLK DEN	CMU global clock control	8.7.3
	denominator	
CMU_CLK_[z]_CTRL	CMU control for clock source z	8.7.4
(z:05)		
CMU_CLK_6_CTRL	CMU control for clock source 6	8.7.5
CMU_CLK_7_CTRL	CMU control for clock source 7	8.7.6
CMU_ECLK_[z]_NUM	CMU external clock z control	8.7.7
(z:02)	numerator	
CMU_ECLK_[z]_DEN	CMU external clock z control	8.7.8
(z:02)	denominator	
CMU_FXCLK_CTRL	CMU control FXCLK sub-unit input	8.7.9
	clock	
CMU_GLB_CTRL	CMU synchronizing ARU and clock	8.7.10
	source	
CMU_CLK_CTRL	CMU control for clock source	8.7.11
	selection	

8.7 CMU Configuration Register Description

8.7.1 Register CMU_CLK_EN

Address Offset:	see Appendix B					Initi	ial Va	alue	8	0x0	000_	_000	0
	31 30 29 28 27 26 25 25	23 22	21 20	19 18	17 16	15 14	13 12	11 10	6 8	7 6	5 4	3 2	1 0
Bit	Reserved	EN_FXCLK	EN_ECLK2	EN_ECLK1	EN_ECLK0	EN_CLK7	EN_CLK6	EN_CLK5	EN_CLK4	EN_CLK3	EN_CLK2	EN_CLK1	EN_CLK0
Mode	۲	RW	RW	RW	RW	RW	RW						
Initial Value	0000×0	00	00	00	00	00	00	00	00	00	00	00	00

Bit 1:0 **EN_CLK0:** Enable clock source 0

0b00 = clock source is disabled (ignore write access)

0b01 = disable clock signal and reset internal states

0b10 = enable clock signal

0b11 = clock signal enabled (ignore write access)

Note: Any read access to an **EN_CLK[z]**, **EN_ECLK[z]** or **EN_FXCLK** bit field will always result in a value 00 or 11 indicating current state.

Confidential

(\mathbf{H})	BOSCH
Re	evision 3.1.5.1

Specification

A modification of the state is only performed with the values 01 and 10. Writing the values 0b00 and 0b11 is always ignored.

Note: Any disabling to **EN_CLK[x]** will be reset internal counters for configurable clocks.

- Bit 3:2 **EN_CLK1:** Enable clock source 1, see bits 1:0
- Bit 5:4 **EN_CLK2:** Enable clock source 2, see bits 1:0
- Bit 7:6 **EN_CLK3:** Enable clock source 3, see bits 1:0
- Bit 9:8 **EN_CLK4:** Enable clock source 4, see bits 1:0
- Bit 11:10 **EN_CLK5:** Enable clock source 5, see bits 1:0
- Bit 13:12 **EN_CLK6:** Enable clock source 6, see bits 1:0
- Bit 15:14 **EN_CLK7:** Enable clock source 7, see bits 1:0
- Bit 17:16 **EN_ECLK0:** Enable ECLK 0 generation sub-unit, see bits 1:0
- Bit 19:18 **EN_ECLK1:** Enable ECLK 1 generation sub-unit, see bits 1:0
- Bit 21:20 **EN_ECLK2:** Enable ECLK 2 generation sub-unit, see bits 1:0
- Bit 23:22 **EN_FXCLK:** Enable all CMU_FXCLK, see bits 1:0

Note: An enable to **EN_FXCLK** from disable state will be reset internal fixed clock counters.

Bit 31:24 **Reserved:** Reserved bits Note: Read as zero, should be written as zero

8.7.2 Register CMU_GCLK_NUM

Address Offset:	see Appendix B Initial Value: 0x0000_0001
	31 32 33 30 29 27 28 27 27 27 27 27 27 27 27 27 27 27 27 27 28 9 9 9 11 11 11 11 11 11 11 11 11 11 12 13 13 13 14 13 14 15 16 9 3 3 1 1 1 1 1 1 1 1 1 <tr td=""></tr>
Bit	GCLK_NUM
Mode	ж ^ж
Initial Value	0×00 01 00 01

Bit 23:0 Numerator for global clock divider. Defines numerator of the fractional divider.

Note: Value can only be modified when all clock enables **EN_CLK[x]** and the **EN_FXCLK** are disabled.

Note: The CMU hardware alters the content of CMU_GCLK_NUM and CMU_GCLK_DEN automatically to 0x1, if CMU_GCLK_NUM is specified less than CMU_GCLK_DEN or one of the values is specified with a value zero. Thus, a secure way for altering the

Specification

values is writing twice to the register **CMU_GCLK_NUM** followed by a single write to register **CMU_GCLK_DEN**.

Bit 31:24 Reserved Note: Read as zero, should be written as zero

8.7.3 Register CMU_GCLK_DEN

Address Offset:	see Appendix B		Initial Value:	0x0000_0001
	31 30 29 28 27 26 25 25 25	23 22 21 21 20 19 18 18 17 16	15 14 13 13 12 11 10 9	8 6 6 4 3 3 3 2 2 1 0
Bit	Reserved		GCLK_DEN	
Mode	٣		RPw	
Initial Value	00 X0		01 01	

Bit 23:0 Denominator for global clock divider. Defines denominator of the fractional divider

Note: Value can only be modified when all clock enables **EN_CLK[x]** and the **EN_FXCLK** are disabled.

Note: The CMU hardware alters the content of CMU_GCLK_NUM and CMU_GCLK_DEN automatically to 0x1, if CMU_GCLK_NUM is specified less than CMU_GCLK_DEN or one of the values is specified with a value zero. Thus, a secure way for altering the values is writing twice to the register CMU_GCLK_NUM followed by a single write to register CMU_GCLK_DEN.

Bit 31:24 Reserved

Note: Read as zero, should be written as zero

8.7.4 Register CMU_CLK_[z]_CTRL (z:0...5)

Specification

Revision 3.1.5.1

Address Offset:	see Appendix B		Initial Value:	0x0000_0000
	31 30 29 28 27 26 25 25 25	23 22 21 21 20 19 18 17 17	15 14 13 13 12 11 10 9 8	7 6 7 4 4 3 3 3 3 0
Bit	Reserved		CLK_CNT	
Mode	٣		RPw	
Initial Value	00×0		00000 00	
Bit 23:0	Note: Value can o	c count. Defines co only be modified wl LK1 are disabled.		lock divider. N_CLK[z] (z:05)

Reserved: Reserved bits Bit 31:24 Note: Read as zero, should be written as zero

8.7.5 Register CMU_CLK_6_CTRL

Address Offset:	see Append	ix B		Initial Value:	0x0000_0000
	31 30 29 28 28 27 26	25 24	23 22 21 21 20 19 18 17 17	15 14 13 13 12 11 10 9	6 6 7 0 1 1 2 3 3 4 4 5 5 6 6 7 7 0
Bit	Reserved	CLK6_SEL		CLK_CNT	
Mode	Ľ	RPw		RPw	
Initial Value	00×00	00		000000 00	
Bit 23:0	source CMU	_CL	K6.		ock divider of clock ble EN_CLK6 and

EN_ECLK1 are disabled.

CLK6_SEL: Clock source selection for CMU CLK6. Bit 25:24 0b00 = use Clock Source 6 Divider 0b01 = use signal *SUB_INC2* of module DPLL 0b10 = use signal *SUB_INC1c* of module DPLL 0b11 = use signal CCM0_CMU_CLK6 of sub-module CCM0

GTM-IP

Specification

Note: Value can only be modified when clock enable **EN_CLK6** and **EN_ECLK1** are disabled.

Bit 31:26 **Reserved:** Reserved bits Note: Read as zero, should be written as zero

8.7.6 Register CMU_CLK_7_CTRL

Address Offset:	see Appendix B Initial Value: 0x0000_0000				
	31 33 33 33 33 33 33 33 34 36 37 35 33 33 33 33 33 33 33 33 33 33 33 33				
Bit	Reserved CLK7_SEL CLK7_CNT				
Mode	R R R R R				
Initial Value	0×00 000000 000000				
Bit 23:0 Bit 25:24	 CLK_CNT: Clock count. Define count value for the clock divider of clock source CMU_CLK7. Note: Value can only be modified when clock enable EN_CLK7 and EN_ECLK1 are disabled. CLK7_SEL: Clock source selection for CMU_CLK7. Ob00 = use Clock Source 7 Divider Ob01 = use signal SUB_INC1 of module DPLL Ob10 = use signal SUB_INC2c of module DPLL Ob11 = Reserved, no clock is selected 				
Bit 31:26	Note: Value can only be modified when clock enable EN_CLK7 and EN_ECLK1 are disabled. Reserved: Reserved bits Note: Read as zero, should be written as zero				

8.7.7 Register CMU_ECLK_[z]_NUM (z:0...2)

Specification

Address Offset:	see Appendix B		Initial Value:	0x0000_0001
	31 30 29 28 27 26 25 25	23 22 21 21 20 19 18 17 17	15 14 13 13 12 11 10 9	0 6 5 4 4 3 3 3 2 2 1 1
Bit	Reserved		ECLK_NUM	
Mode	٣		RPw	
Initial Value	00×0		0x0000 01	

Bit 23:0 Numerator for external clock divider. Defines numerator of the fractional divider.

Note: Value can only be modified when clock enable **EN_ECLK[z]** is disabled.

Note: The CMU hardware alters the content of CMU_ECLK_[z]_NUM and CMU_ECLK_[z]_DEN automatically to 0x1, if CMU_ECLK_[z]_NUM is specified less than CMU_ECLK_[z]_DEN or one of the values is specified with a value zero. Thus, a secure way for altering the values is writing twice to the register CMU_ECLK_[z]_NUM followed by a single write to register CMU_ECLK_[z]_DEN.

Bit 31:24 Reserved

Note: Read as zero, should be written as zero

8.7.8 Register CMU_ECLK_[z]_DEN (z:0...2)

Address Offset:	see Appendix B		Initial Value:	0x0000_0001
	31 30 29 28 27 26 25 25 25	23 22 21 21 20 19 18 17 17	15 14 13 13 12 11 10 9 8	6 6 6 7 7 7 7 7 7 7 0 0
Bit	Reserved		ECLK_DEN	
Mode	۲		RPw	
Initial Value	00×0		0x0000 01	
Bit 23:0	fractional divider			enominator of the

Specification

Note: The CMU hardware alters the content of CMU_ECLK_[z]_NUM and CMU_ECLK_[z]_DEN automatically to 0x1, if CMU_ECLK_[z]_NUM is specified less than CMU_ECLK_[z]_DEN or one of the values is specified with a value zero. Thus, a secure way for altering the values is writing twice to the register CMU_ECLK_[z]_NUM followed by a single write to register CMU_ECLK_[z]_DEN.

8.7.9 Register CMU_FXCLK_CTRL

Address Offset:	see Appendix B	Initial Value:	0x0000_0000
	31 30 29 27 28 28 26 25 25 24 25 23 23 23 23 23 21 21 19 119 118	15 14 13 13 12 11 11 9 8	7 5 3 3 3 3 1 1 0
Bit	Reserved		FXCLK_SEL
Mode	۳		RPw
Initial Value	0000×0		0×0
Bit 3:0	 FXCLK_SEL: Input clock selection for EN_FXCLK line. Ob0000 = CMU_GCLK_EN selected. Ob0011 = CMU_CLK0 selected. Ob0010 = CMU_CLK1 selected. Ob0101 = CMU_CLK2 selected. Ob0100 = CMU_CLK3 selected. Ob0101 = CMU_CLK4 selected. Ob0110 = CMU_CLK5 selected. Ob0111 = CMU_CLK6 selected. Ob1000 = CMU_CLK7 selected. Note: This value can only be written, when the CMU_FXCLK generation is disabled. See bits 2322 in register CMU_CLK_EN. 		
Bit 31:4	Note: Other values for FXCLK_SEL are reserved and should not be used, but they behave like FXCLK_SEL = 0. Reserved: Reserved bits Note: Read as zero, should be written as zero		

Bit 31:24 Reserved Note: Read as zero, should be written as zero

Specification

8.7.10 Register CMU_GLB_CTRL

Address Offset:	see Appendix B Initial Value: 0x0000_0000	
	31 32 33 33 33 33 33 28 27 28 27 27 28 11 11 11 11 11 11 11 11 12 13 13 14 11 11 11 11 11 12 13 14 14 15 16 17 18 19 10 10 11 11 12 13 14 15 16 17 18 19 10 10 11 11 12 13 14 15 16 17 18 19 10 10 11 <td>0</td>	0
Bit	Reserved	ARU ADDR RST
Mode	٣	RPw
Initial Value	00000 00000	0
Bit 0	 ARU_ADDR_RSTGLB: Reset ARU caddr counter and ARU dynamic route counter Note: Writing value 1 to this bit field results in a request to reset the ARU caddr counter and ARU dynamic route counter. The next following write access to register CMU_CLK_EN applies the ARU caddr counter reset, ARU dynamic route counter reset and resets this bit. This feature can be used to synchronize the ARU round trip time to the CMU clocks. Note: This bit is write protected. Before writing to this bit set bit RF_PROT of register GTM_CTRL to 0. 	

Bit 31:1 **Reserved:** Reserved bits

Note: Read as zero, should be written as zero

8.7.11 Register CMU_CLK_CTRL

Address Offset:	see Appendix B	Initial Value:	0x0000_0000
	31 30 29 27 27 26 26 25 25 25 23 23 23 23 23 21 21 21 21 17 16	15 14 13 13 12 11 10 9	8 6 6 7 7 8 7 7 8 7 7 8 7 8 7 8 7 8 7 8
Bit	Reserved		CLK8_EXT_DIVID CLK7_EXT_DIVID CLK6_EXT_DIVID CLK5_EXT_DIVID CLK4_EXT_DIVID CLK4_EXT_DIVID CLK1_EXT_DIVID CLK1_EXT_DIVID CLK0_EXT_DIVID
Mode	٢		RPw RPw RPw RPw RPw RPw RPw RPw RPw
Initial Value	00000 000000		• • • • • • • • •
Bit 0	CLK0_EXT_DIVIDER: Clock source	e selection for CI	MU_CLK_0_CTRL.

GTM-IP	Specification	Revision 3.1.5.1
	0 = use Clock Source CMU_GCLK_EN 1 = use Clock Source CMU_ECLK1 Note: Value can only be modified when clock enable	EN_CLK0 and
Bit 1 See bit 0.	EN_ECLK1 are disabled. CLK1_EXT_DIVIDER: Clock source selection for CMU_	CLK_1_CTRL
	Note: Value can only be modified when clock enable EN_ECLK1 are disabled.	EN_CLK1 and
Bit 2 See bit 0.	CLK2_EXT_DIVIDER: Clock source selection for CMU_	CLK_2_CTRL.
	Note: Value can only be modified when clock enable EN_ECLK1 are disabled.	EN_CLK2 and
Bit 3 See bit 0.	CLK3_EXT_DIVIDER: Clock source selection for CMU_	CLK_3_CTRL.
	Note: Value can only be modified when clock enable EN ECLK1 are disabled.	EN_CLK3 and
Bit 4 See bit 0.	CLK4_EXT_DIVIDER: Clock source selection for CMU_	CLK_4_CTRL.
	Note: Value can only be modified when clock enable EN_ECLK1 are disabled.	EN_CLK4 and
Bit 5 See bit 0.	CLK5_EXT_DIVIDER: Clock source selection for CMU_	CLK_5_CTRL
	Note: Value can only be modified when clock enable EN ECLK1 are disabled.	EN_CLK5 and
Bit 6 See bit 0.	CLK6_EXT_DIVIDER: Clock source selection for CMU_	CLK_6_CTRL
	Note: Value can only be modified when clock enable EN ECLK1 are disabled.	EN_CLK6 and
Bit 7 See bit 0.	CLK7_EXT_DIVIDER: Clock source selection for CMU_	CLK_7_CTRL.
	Note: Value can only be modified when clock enable EN_ECLK1 are disabled.	EN_CLK7 and
Bit 8	CLK8_EXT_DIVIDER: Clock source selection for CMU_ 0 = use Clock Source CLS0_CLK 1 = use Clock Source CMU_ECLK0	_CLK8.
Bit 31:9	Note: Value can only be modified when EN_ECLK0 is d Reserved: Reserved bits Note: Read as zero, should be written as zero	isabled.

BOSCH

9 Cluster Configuration Module (CCM)

9.1 Overview

As already mentioned in chapter 2, each submodule of the GTM is aligned explicitly to a cluster. The Cluster Configuration Module (CCM) enables the configuration of several cluster specific options namely

- cluster's clock frequency,
- module clock gating,
- Status observation of the cluster's MCS bus master (AEM),
- address range protection, and
- global architecture configuration.

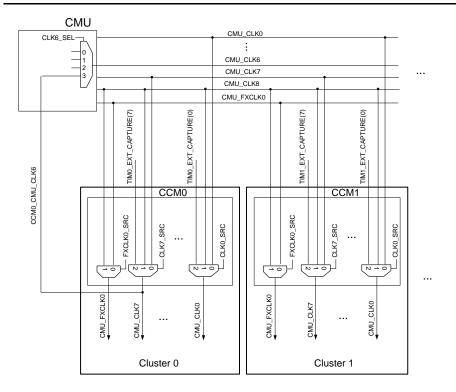

The register **CCM[i]_CFG** allows disabling the system clock signal for unused sub modules of the i-th cluster. The registers **CCM[i]_CMU_CLK_CFG** and **CCM[i]_CMU_FXCLK_CFG** allows the configuration of various cluster clock frequencies.

Figure 9.1.1 shows important details about the wiring of the cluster's local clock signals.

9.1.1 Cluster Clock Signal Wiring

Specification

The register **CCM[i]_AEIM_STA** captures the address and the reason of the first invalid AEIM bus master access of the cluster's MCS module.

The registers **CCM[i]_HW_CONF**, **CCM[i]_AUX_IN_SRC**, **CCM[i]_EXT_CAP_EN**, **CCM[i]_TOM_OUT**, and **CCM[i]_ATOM_OUT** are global status and configuration registers that are mirrored from the group of TOP-Level registers. The intention of these registers is to bring up cluster specific configuration registers into the address space of the bus master of the cluster's MCS module.

9.2 Address Range Protection

The CCM also provides up to NARP so called address range protectors (ARPs), where the number NARP depends on the actual device configuration (defined in Appendix B). An ARP can be used to define a configurable write protected address range in order to support enhanced safety features. The address width of and ARP is also device dependent and it is determined by the parameter AAW as defined in Appendix B.

The protected address range is mapped to the address range of the cluster's MCS RAM port.

Each ARP z (with z = 0 ... NARP-1) can be configured by the registers **CCM[i]_ARP[z]_CTRL** and **CCM[i]_ARP[z]_PROT**, where the register **CCM[i]_ARP[z]_CTRL** enables to configure the size and base address offset for an ARP and the register **CCM[i]_ARP[z]_PROT** configures, that an MCS channel x with a set bit field **WPROTx** cannot write to the corresponding z-th ARP. Whenever an MCS channel x is writing to an ARP that does not allow a write access from channel x by the configuration register **CCM[i]_ARP[z]_PROT**, the write access is discard. The bit field

BOSCH

Revision 3.1.5.1

WPROT_AEI of register **CCM[i]_ARP[z]_CTRL** allows to configure if a CPU write access (via AEI slave interface) to the z-th ARP is protected. If the CPU wants to write to the z-th ARP while **WPROT_AEI** is set, the write access will be discard and the AEI status signal will signalize an invalid module access.

Considering the size and base address of an ARP, it should be noted that the configuration possibilities are limited. Details about the configuration can be found in the register description of **MCS[i]_ARP[z]_CTRL**.

The bit field **DIS_PROT** of register **CCM[i]_ARP[z]_CTRL** changes the meaning of an ARP configuration in a way that it explicitly allows an MCS channel x with a set bit field **WPROTx** to write to the z-th ARP. Accordingly, if the bit **DIS_PROT** is set while the bit **WPROT_AEI** is also set in the register **CCM[i]_ARP[z]_CTRL**, the z-th ARP explicitly allows a write access from the CPU to the z-th ARP. A meaningful application of an ARP z with a set bit field **DIS_PROT** for an MCS channel x has another ARP with a surrounding wider address range that is defining a write protection for MCS channel x and some other MCS channels.

Since the address range of an ARP can surround another ARP it is possible to configure contradictory conditions for MCS channels or the CPU within the overlapping area (e.g. if ARP y surrounds ARP z and ARP y allows a write access for an MCS channel x but ARP z prohibits a write access for MCS channel x). In order to resolve this ambiguity, the following rule is defined: A write protection for a specific address c concerning MCS channel x (the CPU) is active, if and only if, address c is covered by at least one ARP with a cleared bit **DIS_PROT** and a set bit **WPROTx** (**WPROT_AEI**) and there exists no ARP covering address c with a set bit field **DIS_PROT** and a set bit field **WPROTx** (**WPROT_AEI**).

9.3 CCM Configuration Register Overview

9.3.1 CCM Configuration Register Overview Table

Register name	Description	Details in Section
CCM[i]_PROT	CCMi Protection Register	9.4.1
CCM[i]_CFG	CCMi Configuration Register	9.4.2
CCM[i]_CMU_CLK_CFG	CCMi CMU Clock Configuration Register	9.4.3
CCM[i]_CMU_FXCLK_CFG	CCMi CMU Fixed Clock Configuration Register	9.4.4
CCM[i]_AEIM_STA	CCMi MCS Bus Master Status Register	9.4.5

CCM[i]_ARP[z]_CTRL (z:0NARP-1)	CCMi Address Range Protector z Control Register	9.4.6
CCM[i]_ARP[z]_PROT (z:0NARP-1)	CCMi Address Range Protector z Protection Register	9.4.7
CCM[i]_HW_CONF	CCMi Hardware Configuration Register	9.4.8
CCM[i]_TIM_AUX_IN_SRC	CCMi TIM AUX input source Register.	9.4.9
CCM[i]_EXT_CAP_EN	CCMi External Capture Enable Register.	9.4.10
CCM[i]_TOM_OUT	CCMi TOM Output Register.	9.4.11
CCM[i]_ATOM_OUT	CCMi ATOM Output Register.	9.4.12

Specification

9.4 CCM Configuration Register description

9.4.1 Register CCM[i]_PROT

Address Offset:	see Appendix B Initial Value: 0x0000_0001	
	31 30 29 28 27 28 26 25 26 25 22 23 23 23 23 23 13 11 11 15 12 12 13 11 11 15 12 13 13 15 15 15 23 23 23 23 23 23 23 23 23 23 25 25 25 25 25 25 25 25 26 26 26 26 26 26 26 27 26 26 26 26 26 26 26 26 26 26 26 26 26	10
Bit	Reserved	CLS_PROT
Mode		RW
Initial Value	00000 0000 0000	1
Bit 0	CLS_PROT: Cluster Protection	

0 = Write Protection of cluster configuration registers disabled.

1 = Write Protection of cluster configuration registers enabled.

Bit 31:1 **Reserved:** Read as zero, should be written as zero.

9.4.2 Register CCM[i]_CFG

Specification

Revision 3.1.5.1

Address Offset:	S	ee	Appendix B		Initial Value:	03	x0	00	0X_00FF									
	31	30	29 27 26 26 26 26 26 26 26 26 22 23 23 23 23 23 21 21 21 21 21 21 21 21 21 23 23 23 23 23 26 26 26 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 26 27 26 26 27 26 27 26 26 27 26 26 27 26 26 27 26 26 26 26 26 26 27 26 26 26 26 26 26 26 26 26 26 26 26 26	17 16	15 14 13 13 13 11 10 8 8	7	9	5	4	m	, 2	- 0						
Bit	TBU_DIR2	TBU_DIR1	Reserved	CLS_CLK_DIV	Reserved	EN_CMP_MON	EN_PSM	EN_BRC	EN_DPLL_MAP	EN_MO	EN_ATOM_ADTM	EN TIM						
Mode	Я	Я		Я		RPw	RPw	RPw	RPw	RPw	RPw	RPw						
Initial Value	0b0	0d0	00000×0	0bxx	00×0	х	х	×	×	×	××	< ×						
Bit 0	0 1	=	_TIM: Enable TIM Disable clock signal for sub Enable clock signal for sub TE: This bit is only writa CCM[i]_PROT is cleared.	mod ble	ule TIM.	PR	80	т	of	re	egis	ster						
Bit 1	0	=	 TOM_SPE_TDTM: Enable Disable clock signal for m modules. Enable clock signal for m modules. TE: This bit is only writa CCM[i]_PROT is cleared. 	odul odul ble	es TOM, SPE, an es TOM, SPE, an	d d	its	re	elat	ed	D	тм						
Bit 2	 t 2 EN_ATOM_ADTM: Enable ATOM and ADTM 0 = Disable clock signal for modules ATOM and its related DTM modules. 1 = Enable clock signal for modules ATOM and its related DTM modules. NOTE: This bit is only writable if bit field CLS_PROT of register CCM[i] PROT is cleared. 																	
Bit 3	0 1	=	_MCS Enable MCS Disable clock signal for mod Enable clock signal for mod TE: This bit is only writa CCM[i]_PROT is cleared.	lule ble	MCS.	PR	80	т	of	re	egis	ster						
Bit 4	0 1	=	_ DPLL_MAP: Enable DPLL Disable clock signal for mod Enable clock signal for mod TE: This bit is only writa CCM[i]_PROT is cleared.	dules lules lble	DPLL and MAP. DPLL and MAP.		80	т	of	re	egis	ster						

GTM-IP	Specification	Revision 3.1.5.1
Bit 5	 EN_BRC: Enable BRC 0 = Disable clock signal for module BRC. 1 = Enable clock signal for module BRC. NOTE: This bit is only writable if bit field CLS_PICCM[i]_PROT is cleared. 	ROT of register
Bit 6	 EN_PSM: Enable PSM 0 = Disable clock signal for module PSM. 1 = Enable clock signal for module PSM. NOTE: This bit is only writable if bit field CLS_PICCM[i]_PROT is cleared. 	ROT of register
Bit 7	 EN_CMP_MON: Enable CMP and MON 0 = Disable clock signal for modules CMP and MON. 1 = Enable clock signal for modules CMP and MON. NOTE: This bit is only writable if bit field CLS_PICCM[i]_PROT is cleared. 	ROT of register
Bit 15:8 Bit 17:16	Reserved: Read as zero, should be written as zero. CLS_CLK_DIV: Cluster Clock Divider. 0b00 = Cluster is disabled 0b01 = Cluster is enabled without clock divider 0b10 = Cluster is enabled with clock divider 2 0b11 = Reserved	
	NOTE: The value of this bit field mirrors the bit field CLS register GTM_CLS_CLK_CFG , whereas i equals t	
Bit 29:18 Bit 30	Reserved: Read as zero, should be written as zero. TBU_DIR1: DIR1 input signal of module TBU. 0b0 = indicating forward direction 0b1 = indicating backward direction	
Bit 31	TBU_DIR2: DIR2 input signal of module TBU. 0b0 = indicating forward direction 0b1 = indicating backward direction	

NOTE: The module specific clock enable registers (bit field **EN_***) are only implemented if the corresponding module is available in the i-th cluster.

9.4.3 Register CCM[i]_CMU_CLK_CFG

BOSCH

Specification

Revision 3.1.5.1

Address Offset:	see Appendix B								Init	ial V	alue	:	0x0000_0000						
	31 30	29 28	27 26	25 24	23 22	21 20	19 18	17 16	15 14	13 12	11 10	68	7 6	5 4	3	1 0			
Bit	Reserved	CLK7_SRC	Reserved	CLK6_SRC	Reserved	CLK5_SRC	Reserved	CLK4_SRC	Reserved	CLK3_SRC	Reserved	CLK2_SRC	Reserved	CLK1_SRC	Reserved	CLK0_SRC			
Mode	ж	RPw	£	RPw	Ж	RPw	ж	RPw	ж	RPw	щ	RPw	æ	RPw	ж	RPw			
Initial Value	0090	0090	0090	0090	0090	0090	0090	0090	0090	0090	0090	0090	0000	0090	0090	0090			

Bit 1:0 CLK0_SRC: Clock 0 source signal selector

0b00 = Use CMU_CLK0 signal of CMU as CMU_CLK0 signal within Cluster.

0b01 = Use CMU_CLK8 signal of CMU as CMU_CLK0 signal within Cluster.

0b10 = Use TIM[i]_EXT_CAPTURE(0) signal as CMU_CLK0 signal within cluster.

0b11 = Reserved

Bit 3:2 **Reserved:** Read as zero, should be written as zero.

- Bit 5:4 **CLK1_SRC:** Clock 1 source signal selector
 - 0b00 = Use CMU_CLK1 signal of CMU as CMU_CLK1 signal within Cluster.
 - 0b01 = Use CMU_CLK8 signal of CMU as CMU_CLK1 signal within Cluster.
 - 0b10 = Use TIM[i]_EXT_CAPTURE(1) signal as CMU_CLK1 signal within cluster.

0b11 = Reserved

Bit 7:6 **Reserved:** Read as zero, should be written as zero.

Bit 9:8 CLK2_SRC: Clock 2 source signal selector

- 0b00 = Use CMU2_CLK signal of CMU as CMU_CLK2 signal within Cluster.
- 0b01 = Use CMU_CLK8 signal of CMU as CMU_CLK2 signal within Cluster.
- 0b10 = Use TIM[i]_EXT_CAPTURE(2) signal as CMU_CLK2 signal within cluster.
- 0b11 = Reserved
- Bit 11:10 **Reserved:** Read as zero, should be written as zero.
- Bit 13:12 **CLK3_SRC:** Clock 3 source signal selector

Θ	BOSCH
Re	evision 3.1.5.1

Specification

0b00 = Use CMU CLK3 signal of CMU as CMU CLK3 signal within

Cluster.

- 0b01 = Use CMU_CLK8 signal of CMU as CMU_CLK3 signal within Cluster.
- 0b10 = Use TIM[i]_EXT_CAPTURE(3) signal as CMU_CLK3 signal within cluster.
- 0b11 = Reserved
- Bit 15:14 **Reserved:** Read as zero, should be written as zero.
- Bit 17:16 **CLK4_SRC:** Clock 4 source signal selector
 - 0b00 = Use CMU_CLK4 signal of CMU as CMU_CLK4 signal within Cluster.
 - 0b01 = Use CMU_CLK8 signal of CMU as CMU_CLK4 signal within Cluster.
 - 0b10 = Use TIM[i]_EXT_CAPTURE(4) signal as CMU_CLK4 signal within cluster.
 - 0b11 = Reserved
- Bit 19:18 **Reserved:** Read as zero, should be written as zero.
- Bit 21:20 **CLK5_SRC:** Clock 5 source signal selector
 - 0b00 = Use CMU_CLK5 signal of CMU as CMU_CLK5 signal within Cluster.
 - 0b01 = Use CMU_CLK8 signal of CMU as CMU_CLK5 signal within Cluster.
 - 0b10 = Use TIM[i]_EXT_CAPTURE(5) signal as CMU_CLK5 signal within cluster.
 - 0b11 = Reserved
- Bit 23:22 **Reserved:** Read as zero, should be written as zero.
- Bit 25:24 **CLK6_SRC:** Clock 6 source signal selector
 - 0b00 = Use CMU_CLK6 signal of CMU as CMU_CLK6 signal within Cluster.
 - 0b01 = Use CMU_CLK8 signal of CMU as CMU_CLK6 signal within Cluster.
 - 0b10 = Use TIM[i]_EXT_CAPTURE(6) signal as CMU_CLK6 signal within cluster.
 - 0b11 = Reserved
- Bit 27:26 **Reserved:** Read as zero, should be written as zero.
- Bit 29:28 CLK7_SRC: Clock 7 source signal selector
 - 0b00 = Use CMU_CLK7 signal of CMU as CMU_CLK7 signal within Cluster.

0b01 = Use CMU_CLK8 signal of CMU as CMU_CLK7 signal withi Cluster.	n
0b10 = Use TIM[i]_EXT_CAPTURE(7) signal as CMU_CLK7 signa within cluster.	al
0b11 = Reserved	

Reserved: Read as zero, should be written as zero. Bit 31:30 NOTE: The bit fields of this register are only writable if bit field CLS_PROT of register CCM[i]_PROT is cleared.

9.4.4 Register CCM[i] CMU FXCLK CFG

Address Offset:	see Appendix B Initial Value: 0x0000_	_0000									
	31 30 29 28 27 27 26 26 25 22 22 23 23 23 23 23 23 23 23 21 21 21 21 21 21 21 21 21 21 21 21 21	3 2 1 0									
Bit	Reserved										
Mode											
Initial Value	0000×0										
Bit 3:0	FXCLK0_SRC: Fixed clock 0 source signal selector	·]									

0 = Use CMU_FXCLK0 signal of CMU as CMU_FXCLK0 signal within Cluster.

1 = Use CMU CLK8 signal of CMU as CMU FXCLK0 signal within Cluster.

NOTE: Bit field values that are not mentioned above are reserved.

NOTE: These bits are only writable if bit field CLS_PROT of register CCM[i]_PROT is cleared.

Bit 31:4 **Reserved:** Read as zero, should be written as zero.

9.4.5 Register CCM[i]_AEIM_STA

Specification

Address Offset:	see Append	ix B		Initial Value:	0x0000_0000						
	31 30 29 28 28 28 28 28	25 24	23 22 21 20 20 19 18 17 17	15 14 13 13 12 11 10 9	8 6 6 7 7 7 0 1 1 1 0						
Bit	Reserved	AEIM_XPT_STA	Reserved	AEIM_XPT_ADDR							
Mode		RAw		RAw							
Initial Value	00×0	0090	000X0	00000×0							
Bit 15:0 AEIM_XPT_ADDR: Exception Address. Invalid bus master (AEIM) address of MCS module.											
Bit 23:16Reserved: Read as zero, should be written as zero.Bit 25:24AEIM_XPT_STA: AEIM Exception status.											

0b00 = No invalid MCS bus master access occurred

0b01 = Invalid byte addressing of MCS bus master access.

0b10 = Illegal module access of MCS bus master access.

0b11 = Invalid MCS bus master access to an unsupported address.

Bit 31:26 **Reserved:** Read as zero, should be written as zero.

NOTE: Only the first invalid AEIM bus master access of the MCS is updating this register with the invalid AEIM address (bit field **AEIM_XPT_ADDR**) and the reason of the invalid access (bit field **AEIM_XPT_STA**). A write access to this register (independent of the written data), always resets the bit fields **AEIM_XPT_STA** and **AEIM_XPT_ADDR** and the next invalid AEIM access is captured by this register, again.

NOTE: If the i-th cluster does not provide an MCS module, this register is not available.

9.4.6 Register CCM[i]_ARP[z]_CTRL (z: 0..NARP-1)

Specification

Address Offset:	see Appendix B											Initial Value: 0x0								(00	0003_0000										
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	9	5	4	з	2	Т 0
Bit	WPROT_AEI			Decented	nevelveu			DIS_PROT		Docociod				SIZE	011		ADDA														
Mode	RPw			۵	C			RPw		٥	1			RPW			ک بر														
Initial Value	0				0020			0		0.00	040			0x3	000		00000×0														

Bit 15:0 **ADDR**: ARP base address.

Base address for address range protector z.

- **Note:** Only the bits 5 to AAW-1 of this bit field are implemented as registers. The bits AAW to 15 are reserved bits and always read and written as zeros. The bits 0 to 4 are functionally used for the definition of an ARP but they are always read and written as zeros.
- **Note:** The actual base address for a protected address range is only defined by the upper AAW-(**SIZE**+2) bits (bit position 2+**SIZE** to bit position AAW-1) of bit field **ADDR**. The lower **SIZE**+2 bits (bit 0 to **SIZE**+1) are ignored for the address calculation and assumed as zeros.
- **NOTE:** This bit field is only writable if bit field **CLS_PROT** of register **CCM[i]_PROT** is cleared.

Bit 19:16 **SIZE:** Size of ARP

Size of memory range protector z.

- **Note:** The actual size of a protected memory range is defined as 2^{SIZE} address locations, whereas the bit field **SIZE** is interpreted as an unsigned integer number.
- **Note:** The values 0, 1 and 2 are not supported for this bit field and cannot be configured. A write access with such a value to this register signalizes an invalid modue access at the AEI status signal and it sets the bit field **SIZE** to the value 3.
- **NOTE:** This bit field is only writable if bit field **CLS_PROT** of register **CCM[i]_PROT** is cleared.
- Bit 23:20 **Reserved:** Reserved
- Bit 24 **DIS_PROT**: Disable ARP protection.
 - 0 = Bit **WPROTx** (**WPROT_AEI**) defines write protection for selected address range.

Automotive E	lectronics	BOSCH
GTM-IP	Specification	Revision 3.1.5.1
	1 = Bit WPROTx (WPROT_AEI) explicitly allows write address range.	te access to selected
	NOTE: This bit field is only writable if bit field CL CCM[i]_PROT is cleared.	S_PROT of register
Bit 30:25	Reserved: Reserved	
Bit 31	WPROT_AEI : AEI slave write protection.	
	0 = Write protection to address range from AEI slav	
	1 = Write protection to address range from AEI slav	e is enabled.
	Note : The address range interval that is protected calculated as [(ADDR AND NOT 4*(2 ^{SIZE} -1)) 4*(2 ^{SIZE} -1)) + 4*(2 ^{SIZE} -1)] assuming a byte wounsigned integer representation for the bit fiel NOT and AND are bitwise logical operators.	; (ADDR AND NOT wise addressing, an ds SIZE and ADDR.

NOTE: This bit field is only writable if bit field CLS_PROT of register CCM[i]_PROT is cleared.

interval for neighboring memory location is always 4.

Address Offset:	see Appendix B	Initial Value:	0x0	000	_00	000	
	31 30 29 27 28 28 26 26 26 25 25 25 23 23 23 21 21 19 11 11 16	15 14 13 13 13 11 10 9 9	7	5.	4 ω	2	0 1
Bit	Reserved		WPROT7 WPROT6	WPROT5	WPRO14 WPROT3	WPROT2	WPRO11 WPROT0
Mode	۵		RPw	RPw	RPw W	RPw	RPw
Initial Value	000000 00		0 0	0	0 0	0 0	0 0
Bit 0	WPROT0: Write Protection MCS ch	nannel 0.	1 1	1 1	I	1 1	
	0 = Write protection to ARP's ad disabled.	dress range for I	MCS	cha	ann	el C) is
	1 = Write protection to ARP's ad enabled.	dress range for I	MCS	cha	ann	el C) is
Bit 1	WPROT1: Write Protection MCS ch	nannel 1.					
	0 = Write protection to ARP's ad disabled.	dress range for I	MCS	cha	ann	el 1	l is
	1 = Write protection to ARP's ad enabled.	dress range for I	MCS	cha	ann	el 1	L is

9.4.7 Register CCM[i]_ARP[z]_PROT (z:0...NARP-1)

GTM-IP	Specification	Revision 3.1.5.1
Bit 2	 WPROT2: Write Protection MCS channel 2. 0 = Write protection to ARP's address range for disabled. 1 = Write protection to ARP's address range for enabled. 	
Bit 3	 WPROT3: Write Protection MCS channel 3. 0 = Write protection to ARP's address range for disabled. 1 = Write protection to ARP's address range for enabled. 	
Bit 4	 WPROT4: Write Protection MCS channel 4. 0 = Write protection to ARP's address range for disabled. 1 = Write protection to ARP's address range for enabled. 	
Bit 5	 WPROT5: Write Protection MCS channel 5. 0 = Write protection to ARP's address range for disabled. 1 = Write protection to ARP's address range for enabled. 	
Bit 6	 WPROT6: Write Protection MCS channel 6. 0 = Write protection to ARP's address range for disabled. 1 = Write protection to ARP's address range for enabled. 	
Bit 7	 WPROT7: Write Protection MCS channel 7. 0 = Write protection to ARP's address range for disabled. 1 = Write protection to ARP's address range for enabled. 	
Bit 31:8	Reserved: Reserved	

Note: Only the first T bits of this register (bit 0 to T-1) are functionally implemented. The other bits (bit T to 31) are reserved bits. Parameter T reflects the number of available MCS channels in the cluster's MCS module.

NOTE: This bit fields of this register are only writable if bit field **CLS_PROT** of register **CCM[i]_PROT** is cleared.

NOTE: The meaning of the bit fields **WPROTx** can be changed by the bit field **DIS_PROT** of register **CCM[i]_ARP[z]_CTRL**.

BOSCH

9.4.8 Register CCM[i]_HW_CONF

Address Offset:	see	A	ppendi	хE	3								Initial Value:						0xXXXX_XXXX									
	31 30	29	28 27 26	25	24	ς ζ	27	20	19	18	17	16	15	14	13	12	11	10	6	80	7	9	5	4	З	2	1	0
Bit	Reserved	INT_CLK_EN_GE	TOM_TRIG_INTC - HAIN			TOM TOLO INT	CHAIN		IRQ MODE SING	IRQ_MODE_PULS	IRQ_MODE_PULS	IRQ_MODE_LEVE	Reserved	ARU_CONNECT_		RAM_INIT_RST		TOM_TRIG_CHAI	2	TOM_OUT_RST	ALLO OLDE MOTA			ATOM_OUT_RST	CFG_CLOCK_RAT	SYNC_INPUT_RE	BRIDGE_MODE_R	GRSTEN
Mode	œ	Я	Я				Щ		н	ы	Я	R	Я	Я	ы	ы		£		ы		щ		Я	Я	Я	Я	щ
Initial Value	0090	×	XX×0				0×X		×	×	×	×	0	×	×	×		0×X		×		0×X		×	×	×	×	×
Bit 0 Bit 1	0 = Global GTM reset register disabled 1 = Global GTM reset register enabled																											
Bit 2	mo 0 = 1 =	de No ac r e:	C_INPU o additiona dditiona mode w this re mode	ona I pi vill I	al p pel pe i	ip ine	elir ed cre	nec sta aso	d s age ed	ta e ir by	ge np / 0	im lei ne	npl me e cl	en ent	ne æc ck	nte I. A cy	ed. All cle	ac	ce	ess	es	in	S	yn	ch	roi	าอเ	us
Bit 3	0 =	Ea E	CLOCI ach sys Each se transfer	ten eco	n cl nd	loc s	ck a yst	an :em	Al 1 c	RŪ clo	l tr ck	an a	sfe n	er AF	is RU	sc I ti	he rai	าร	fer	is	5 S	ch	ec	luk	ed	. /	AR	U
Note: This GTM_CLS_ if CFG_CL0	CLK	_C	FG.																							_		

if CFG_CLOCK_RATE=0, only the values 0b00 and 0b01 are valid for bit fields CLS[x]x_CLK_DIV.

if CFG_CLOCK_RATE=1, only the values 0b00, 0b01 and 0b10 are valid for bit fields CLS[x]x_CLK_DIV.

Bit 4 ATOM_OUT_RST: ATOM_OUT reset level 0 = ATOM_OUT reset level is '0'

Automotive Ele	ectronics	BOSCH
GTM-IP	Specification	Revision 3.1.5.1
	1 = ATOM_OUT reset level is '1' Note: This value represents the ATOM output level inverse value of this bit is the reset value of the channels.	
Bit 7:5	ATOM_TRIG_CHAIN: ATOM trigger chain synchronization register It defines after which ATOM instance count a synchro- introduced into trigger chain (after <i>ATOM_T</i> instance i and <i>ATOM_TRIG_<i+1></i+1></i> input of insta- Valid values are 1 to 7. 1 means that after synchronization register is placed.	<i>RIG_<i></i> output if ance i+1).</i>
Bit 8	<pre>TOM_OUT_RST: TOM_OUT reset level 0 = TOM_OUT reset level is '0' 1 = TOM_OUT reset level is '1' Note: This value represents the TOM output level afte value of this bit is the reset value of bit SL in all</pre>	
Bit 11:9	TOM_TRIG_CHAIN: TOM trigger chain length with register It defines after which TOM instance count a synchron introduced into trigger chain (after TOM_T instance i and TOM_TRIG_ <i+1> input of instant Valid values are 1 to 7. 1 means that after synchronization register is placed.</i+1>	onization register is <i>RIG_<i></i> output if nce i+1).</i>
Bit 12	RAM_INIT_RST : RAM initialization from reset 0 = RAM is not initialized after reset 1 = RAM is initialized after reset	
Bit 13	ERM : enable RAM1 MSB for available MCS modules 0 = MSB of MCS RAM1 address not used 1 = MSB of MCS RAM1 address used	
Note: The b specification Bit 14	it reflects the state of the configuration parameter ER	
	0 = 2 ARU ports available (two independent counter) 1 = 1 ARU port available	
Bit 15	Reserved Note: Read as zero, should be written as zero.	
Bit 16	IRQ_MODE_LEVEL 0 = level mode not available	

1 = level mode available

GTM-IP	Specification	Revision 3.1.5.1
Bit 17	IRQ_MODE_PULSE 0 = pulse mode not available 1 = pulse mode available	
Bit 18	IRQ_MODE_PULSE_NOTIFY 0 = pulse notify mode not available 1 = pulse notify mode available	
Bit 19	IRQ_MODE_SINGLE_PULSE 0 = single pulse mode not available 1 = single pulse mode available	
Bit 23:20	 ATOM_TRIG_INTCHAIN: ATOM internal trigger synchronization register It defines after which ATOM channel count a synchroduced into trigger chain. Valid values are 1 to 8. 4 means that in channel 4 a synchronization register is placed. 	chronization register is
Bit 28:24	 TOM_TRIG_INTCHAIN: TOM internal trigger synchronization register It defines after which TOM channel count a synchroduced into trigger chain. Valid values are 1 to 16. 8 means that in channel a synchronization register is placed. 	chronization register is
Bit 29	INT_CLK_EN_GEN : Internal clock enable genera 0 = GTM external clock enable signals in use 1 = GTM internal clock enable signals in use	tion
Bit 31:30	Reserved Note: Read as zero, should be written as zero.	

Note: Reset value depends on the hardware configuration chosen by silicon vendor.

9.4.9 Register CCM[i]_TIM_AUX_IN_SRC

BOSCH

Specification

Address Offset:	see Appendix B									Initial Value:															
	31 30 29 28 28 27 26 25 25 21	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	6	5	4	3	2	1	0
Bit	Reserved	SEL_OUT_N_CH7	SEL_OUT_N_CH6	SEL_OUT_N_CH5	SEL_OUT_N_CH4	SEL_OUT_N_CH3	SEL_OUT_N_CH2	SEL_OUT_N_CH1	SEL_OUT_N_CH0				Received	10001				SRC_CH7	SRC_CH6	SRC_CH5	SRC_CH4	SRC_CH3	SRC_CH2	SRC_CH1	SRC_CH0
Mode	۲	RW	RW	RW	RW	RW	RW	RW	RW				α	1				RW							
Initial Value	0000	0	0	0	0	0	0	0	0				0000	0000				0	0	0	0	0	0	0	0
Bit 0	<pre>SRC_CH0: Defines AUX_IN source of TIM[i] channel 0 SEL_OUT_N_CH0 = 0 / SEL_OUT_N_CH0 = 1: 0 = CDTM[i].DTM0 Output DTM_OUT0 selected / CDTM[i].DTM0 Output DTM_OUT1_N selected 1 = CDTM[i].DTM4 Output DTM_OUT0 selected / CDTM[i].DTM4 Output DTM_OUT1_N selected</pre>																								
Bit 1	<pre>SRC_CH1: Defines AUX_IN source of TIM[i] channel 1 SEL_OUT_N_CH1 = 0 / SEL_OUT_N_CH1 = 1: 0 = CDTM[i].DTM0 Output DTM_OUT1 selected / CDTM[i].DTM0 Output DTM_OUT2_N selected 1 = CDTM[i].DTM4 Output DTM_OUT1 selected / CDTM[i].DTM4 Output DTM_OUT2_N selected</pre>																								
Bit 2	SRC_CH2: Defines AUX_IN source of TIM[i] channel 2 SEL_OUT_N_CH2 = 0 / SEL_OUT_N_CH2 = 1: 0 = CDTM[i].DTM0 Output DTM_OUT2 selected / CDTM[i].DTM0 Output DTM_OUT3_N selected 1 = CDTM[i].DTM4 Output DTM_OUT2 selected / CDTM[i].DTM4 Output DTM_OUT3_N selected																								
Bit 3	<pre>SRC_CH3: Defines AUX_IN source of TIM[i] channel 3 SEL_OUT_N_CH3 = 0 / SEL_OUT_N_CH3 = 1: 0 = CDTM[i].DTM0 Output DTM_OUT3 selected / CDTM[i].DTM1 Output DTM_OUT0_N selected 1 = CDTM[i].DTM4 Output DTM_OUT3 selected / CDTM[i].DTM5 Output DTM_OUT0_N selected</pre>																								
Bit 4	SRC_CH4: Defir SEL_OUT_N_CI 0 = CDTM[i].DTM DTM_OUT 1 = CDTM[i].DTM DTM_OUT	44 /11 1_1 /15	= (Ou N s Ou	0 / itp ele itp	SI ut ect ut	EL D ⁻ tec D ⁻	C TN 1 TN	DU 1_(т <u></u> วเ	_N_ JTC	_C) s(H4 ele	4 = ec	= 1 te	L: d /	С	D	ГМ						-	

Specification

Bit 5	<pre>SRC_CH5: Defines AUX_IN source of TIM[i] channel 5 SEL_OUT_N_CH5 = 0 / SEL_OUT_N_CH5 = 1: 0 = CDTM[i].DTM1 Output DTM_OUT1 selected / CDTM[i].DTM1 Output DTM_OUT2_N selected 1 = CDTM[i].DTM5 Output DTM_OUT1 selected / CDTM[i].DTM5 Output DTM_OUT2_N selected</pre>
Bit 6	<pre>SRC_CH6: Defines AUX_IN source of TIM[i] channel 6 SEL_OUT_N_CH6 = 0 / SEL_OUT_N_CH6 = 1: 0 = CDTM[i].DTM1 Output DTM_OUT2 selected / CDTM[i].DTM1 Output DTM_OUT3_N selected 1 = CDTM[i].DTM5 Output DTM_OUT2 selected / CDTM[i].DTM5 Output DTM_OUT3_N selected</pre>
Bit 7	<pre>SRC_CH7: Defines AUX_IN source of TIM[i] channel 7 SEL_OUT_N_CH7 = 0 / SEL_OUT_N_CH7 = 1: 0 = CDTM[i].DTM1 Output DTM_OUT3 selected / CDTM[i].DTM0 Output DTM_OUT0_N selected 1 = CDTM[i].DTM5 Output DTM_OUT3 selected / CDTM[i].DTM4 Output DTM_OUT0_N selected</pre>
Bit 15:8	Reserved
Bit 15:8 Bit 16	Note: Read as zero, should be written as zero. SEL_OUT_N_CH0: Use DTM_OUT or DTM_OUT_N signals as AUX_IN source of TIM[i] channel 0 0 = Use DTM_OUT signal as AUX_IN source of TIM[i]
	Note: Read as zero, should be written as zero. SEL_OUT_N_CH0: Use DTM_OUT or DTM_OUT_N signals as AUX_IN source of TIM[i] channel 0 0 = Use DTM_OUT signal as AUX_IN source of TIM[i] 1 = Use DTM_OUT_N signal as AUX_IN source of TIM[i] SEL_OUT_N_CH1: Use DTM_OUT or DTM_OUT_N signals as AUX_IN
Bit 16	Note: Read as zero, should be written as zero. SEL_OUT_N_CH0: Use DTM_OUT or DTM_OUT_N signals as AUX_IN source of TIM[i] channel 0 0 = Use DTM_OUT signal as AUX_IN source of TIM[i] 1 = Use DTM_OUT_N signal as AUX_IN source of TIM[i] SEL_OUT_N_CH1: Use DTM_OUT or DTM_OUT_N signals as AUX_IN source of TIM[i] channel 1 SEL_OUT_N_CH2: Use DTM_OUT or DTM_OUT_N signals as AUX_IN
Bit 16 Bit 17	Note: Read as zero, should be written as zero. SEL_OUT_N_CH0: Use DTM_OUT or DTM_OUT_N signals as AUX_IN source of TIM[i] channel 0 0 = Use DTM_OUT signal as AUX_IN source of TIM[i] 1 = Use DTM_OUT_N signal as AUX_IN source of TIM[i] SEL_OUT_N_CH1: Use DTM_OUT or DTM_OUT_N signals as AUX_IN source of TIM[i] channel 1 SEL_OUT_N_CH2: Use DTM_OUT or DTM_OUT_N signals as AUX_IN source of TIM[i] channel 2 SEL_OUT_N_CH3: Use DTM_OUT or DTM_OUT_N signals as AUX_IN
Bit 16 Bit 17 Bit 18	Note: Read as zero, should be written as zero. SEL_OUT_N_CH0: Use DTM_OUT or DTM_OUT_N signals as AUX_IN source of TIM[i] channel 0 0 = Use DTM_OUT signal as AUX_IN source of TIM[i] 1 = Use DTM_OUT_N signal as AUX_IN source of TIM[i] SEL_OUT_N_CH1: Use DTM_OUT or DTM_OUT_N signals as AUX_IN source of TIM[i] channel 1 SEL_OUT_N_CH2: Use DTM_OUT or DTM_OUT_N signals as AUX_IN source of TIM[i] channel 2 SEL_OUT_N_CH3: Use DTM_OUT or DTM_OUT_N signals as AUX_IN source of TIM[i] channel 3 SEL_OUT_N_CH4: Use DTM_OUT or DTM_OUT_N signals as AUX_IN
Bit 16 Bit 17 Bit 18 Bit 19	Note: Read as zero, should be written as zero. SEL_OUT_N_CH0: Use DTM_OUT or DTM_OUT_N signals as AUX_IN source of TIM[i] channel 0 0 = Use DTM_OUT signal as AUX_IN source of TIM[i] 1 = Use DTM_OUT_N signal as AUX_IN source of TIM[i] SEL_OUT_N_CH1: Use DTM_OUT or DTM_OUT_N signals as AUX_IN source of TIM[i] channel 1 SEL_OUT_N_CH2: Use DTM_OUT or DTM_OUT_N signals as AUX_IN source of TIM[i] channel 2 SEL_OUT_N_CH3: Use DTM_OUT or DTM_OUT_N signals as AUX_IN source of TIM[i] channel 3 SEL_OUT_N_CH4: Use DTM_OUT or DTM_OUT_N signals as AUX_IN source of TIM[i] channel 4 SEL_OUT_N_CH5: Use DTM_OUT or DTM_OUT_N signals as AUX_IN
Bit 16 Bit 17 Bit 18 Bit 19 Bit 20	Note: Read as zero, should be written as zero. SEL_OUT_N_CH0: Use DTM_OUT or DTM_OUT_N signals as AUX_IN source of TIM[i] channel 0 0 = Use DTM_OUT signal as AUX_IN source of TIM[i] 1 = Use DTM_OUT_N signal as AUX_IN source of TIM[i] SEL_OUT_N_CH1: Use DTM_OUT or DTM_OUT_N signals as AUX_IN source of TIM[i] channel 1 SEL_OUT_N_CH2: Use DTM_OUT or DTM_OUT_N signals as AUX_IN source of TIM[i] channel 2 SEL_OUT_N_CH3: Use DTM_OUT or DTM_OUT_N signals as AUX_IN source of TIM[i] channel 3 SEL_OUT_N_CH4: Use DTM_OUT or DTM_OUT_N signals as AUX_IN source of TIM[i] channel 4 SEL_OUT_N_CH5: Use DTM_OUT or DTM_OUT_N signals as AUX_IN source of TIM[i] channel 4 SEL_OUT_N_CH5: Use DTM_OUT or DTM_OUT_N signals as AUX_IN source of TIM[i] channel 5 SEL_OUT_N_CH6: Use DTM_OUT or DTM_OUT_N signals as AUX_IN
Bit 16 Bit 17 Bit 18 Bit 19 Bit 20 Bit 21	Note: Read as zero, should be written as zero. SEL_OUT_N_CH0: Use DTM_OUT or DTM_OUT_N signals as AUX_IN source of TIM[i] channel 0 0 = Use DTM_OUT signal as AUX_IN source of TIM[i] 1 = Use DTM_OUT_N signal as AUX_IN source of TIM[i] SEL_OUT_N_CH1: Use DTM_OUT or DTM_OUT_N signals as AUX_IN source of TIM[i] channel 1 SEL_OUT_N_CH2: Use DTM_OUT or DTM_OUT_N signals as AUX_IN source of TIM[i] channel 2 SEL_OUT_N_CH3: Use DTM_OUT or DTM_OUT_N signals as AUX_IN source of TIM[i] channel 3 SEL_OUT_N_CH4: Use DTM_OUT or DTM_OUT_N signals as AUX_IN source of TIM[i] channel 4 SEL_OUT_N_CH5: Use DTM_OUT or DTM_OUT_N signals as AUX_IN source of TIM[i] channel 4

9.4.10 Register CCM[i]_EXT_CAP_EN

see Appendix B	Initial Value:							
31 30 29 27 27 26 26 25 25 23 23 23 23 23 23 23 21 21 19 11 11	15 14 13 12 11 10 9 8	7 6 5 4 3 3 2 2 1 0						
Reserved	TIM_IP1_EXT_CA P_EN	TIM_L_EXT_CAP_						
œ	RŴ	КW						
0 0000×0	0×00	00×0						
	0x0000 R Reserved 23 27 23 23 23 23 23 23 23 23 23 23 23 23 23	0x0000 R Reserved 23 0x0000 R Reserved 23 11 11 11 13 11 11 0x00 RW TIM_IP1_EXT_CA 11 0x00 RW TIM_IP1_EXT_CA 11 0x00 RW TIM_IP1_EXT_CA 11 9 9 9						

Bit 7:0 **TIM_EXT_CAP_EN:** TIM[i]_EXT_CAPTURE signal forwarding enable 0 = disable forwarding of signal TIM[i]_EXT_CAPTURE to MCS[i] 1 = enable forwarding of signal TIM[i]_EXT_CAPTURE to MCS[i]

Note: The trigger event forwarding is possible from TIM[i] and TIM[i+1] to MCS[i].

Bit 15:8 **TIM_IP1_EXT_CAP_EN:** TIM[i+1]_EXT_CAPTURE signal forwarding enable

0 = disable forwarding of signal TIM[i+1]_EXT_CAPTURE to MCS[i]

1 = enable forwarding of signal TIM[i+1]_EXT_CAPTURE to MCS[i]

Bit 31:16 Reserved

Note: Read as zero, should be written as zero.

9.4.11 Register CCM[i]_TOM_OUT

Address Offset:	see Appendix B	Initial Value:									
	31 30 29 27 28 26 26 26 25 26 23 23 23 23 21 21 21 21 21 21 21 21 21 21 21 21 21	15 14 13 13 11 11 10 9 8 8 8 8 8 6 6 5 5 5 3 3 3 2 1 0									
Bit	TOM_OUT_N	TOM_OUT									
Mode	۳	٣									
Initial Value	XXX XXX	XXXX XXX0									
	15.0 TOM OUT: Output lovel energebet of TOM[2] OUT all sharpede										

Bit 15:0 **TOM_OUT:** Output level snapshot of TOM[i]_OUT all channels

actual level of primary output ports TOM[i]_OUT of channel 0 to 15 (after DTM)

Note: Reset value depends on the hardware configuration chosen by silicon vendor. See CCM[i]_HW_CONF for chosen value.

Bit 31:16 **TOM_OUT_N:** Output level snapshot of TOM[i]_OUT_N all channels actual level of primary output ports TOM[i]_OUT_N of channel 0 to 15 (after DTM)

Note: Reset value depends on the hardware configuration chosen by silicon vendor. See CCM[i]_HW_CONF for chosen value.

9.4.12 Register CCM[i]_ATOM_OUT

Address Offset:	see Appendix B		Initial Value:								
	31 30 29 28 27 26 25 25	23 22 21 20 20 19 18 17 17	15 14 13 12 11 10 9 8	7 5 3 3 3 2 1 1							
Bit	ATOM_IP1_OUT_	ATOM_IP1_OUT	ATOM_I_OUT_N	ATOM_I_OUT							
Mode	٣	۲	٣	٣							
Initial Value	XXXXO	XX XX0	XX X0	XXXX0							

Bit 7:0 ATOM_I_OUT: Output level snapshot of ATOM[i]_OUT all channels actual level of primary output ports ATOM[i]_OUT of channel 0 to 7 (after DTM)

Note: Reset value depends on the hardware configuration chosen by silicon vendor. See CCM[i]_HW_CONF for chosen value.

Bit 15:8 ATOM_I_OUT_N: Output level snapshot of ATOM[i]_OUT_N all channels actual level of primary output ports ATOM[i]_OUT_N of channel 0 to 7 (after DTM)

Note: Reset value depends on the hardware configuration chosen by silicon vendor. See CCM[i]_HW_CONF for chosen value.

Bit 23:16 ATOM_IP1_OUT: Output level snapshot of ATOM[i+1]_OUT all channels actual level of primary output ports ATOM[i+1]_OUT of channel 0 to 7 (after DTM)

Note: Reset value depends on the hardware configuration chosen by silicon vendor. See CCM[i]_HW_CONF for chosen value.

Bit 31:24	ATOM_IP1_OUT_N: Output level snapshot of ATOM[i+1]_OUT_N all channels
	actual level of primary output ports ATOM[i+1]_OUT_N of channel 0 to 7 (after DTM)

Specification

Note: Reset value depends on the hardware configuration chosen by silicon vendor. See CCM[i]_HW_CONF for chosen value.

10 Time Base Unit (TBU)

10.1 Overview

The Time Base Unit TBU provides common time bases for the GTM-IP. The TBU submodule is organized in channels, where the number of channels is device dependent. There are up to four channels implemented inside the TBU.

The time base register **TBU_CH0_BASE** of TBU channel 0 is 27 bits wide and it is configurable whether the lower 24 bit or the upper 24 bit are provided to the GTM as signal *TBU_TS0*.

The two TBU channels 1 and 2 have a time base register **TBU_CH[y]_BASE** (y: 1, 2) of 24 bit length. The time base register value $TBU_TS[y]$ is provided to subsequent sub-modules of the GTM.

The time base register of TBU channel 3 **TBU_CH3_BASE** is 24 bits wide. It is used as a modulo counter by **TBU_CH3_BASE_MARK** to get a relative angle clock to **TBU_CH[y]_BASE**. The absolute angle clock value for the current **TBU_CH3_BASE** is captured in **TBU_CH3_BASE_CAPTURE**.

TBU_CH[y]_BASE = TBU_CH3_BASE_CAPTURE + ...

... + TBU_CH3_BASE - DIRy * TBU_CH3_BASE_MARK

DIRy : direction value for time base y (y:1..2)

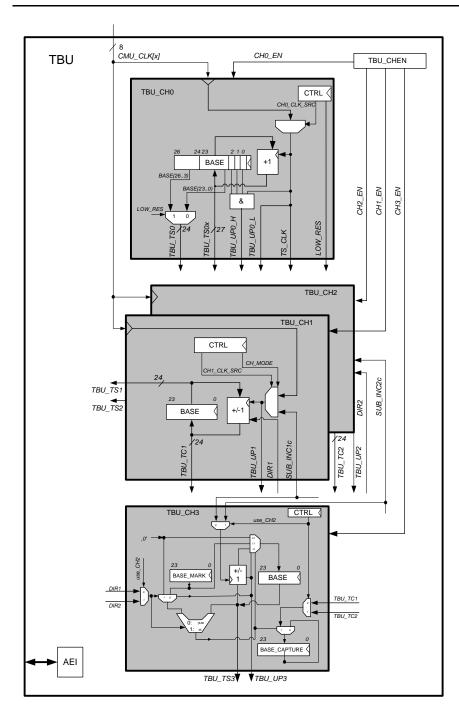
0 up counter

1 down counter

Note: the right-hand sum is limited to 24 bit.

The $TBU_UP[y]$ (y: 1..2) signals are set to high for a single SYS_CLK period, whenever the corresponding signal $TBU_TS[y]$ (y: 1..2) is getting updated. The signal TBU_UPO_L is set to high for a single SYS_CLK period if the signal TBU_TS0 and TBU_TS0x is getting updated and TBU_UPO_H is set to high for a single SYS_CLK period, whenever the upper 24 bit of TBU_TS0 are updated.

The time base channels can run independently of each other and can be enabled and disabled synchronously by control bits in a global TBU channel enable register **TBU_CHEN**. Chapter 10.1.1 shows a block diagram of the Time Base Unit.


10.1.1 TBU Block Diagram

Automotive Electronics

GTM-IP

BOSCH

Dependent on the device a third TBU channel exists which offers the same functionality as the time base channel 1.

The configuration of the independent time base channels TBU_CH[z]_BASE is done via the AEI interface. The TBU channel 0 to 2 may select one of the eight $CMU_CLK[x]$ (x: 0..7) signals coming from the CMU sub-module.

For TBU channels 1 and 2 an additional clock signal $SUB_INC[y]c$ (y: 1, 2) coming from the DPLL can be selected as input clock for the TBU_CH[y]_BASE. This clock in combination with the DIR[y] signals determines the counter direction of the TBU_CH[y]_BASE.

143/868

The selected time stamp clock signal for the TBU_CH0 sub-unit is served via the *TS_CLK* signal line to the DPLL sub-module. The *TS_CLK* signal equals the signal *TBU_UP0*.

10.2TBU Channels

The time base values are generated within the TBU time base channels in two independent and one dependent operation modes.

In all modes, the time base register **TBU_CH[z]_BASE** (z: 0..3) can be initialized with a start value just before enabling the corresponding TBU channel.

Moreover, the time base register **TBU_CH[z]_BASE** (z: 0..3) can always be read in order to determine the actual value of the counter.

10.2.1 Independent Modes

10.2.1.1 Free Running Counter Mode

TBU channel 0 provides a 27 bit counter in a free running counter mode. Dependent on the bit field **LOW_RES** of register **TBU_CH0_CTRL**, the lower 24 bits (bit 0 to 23) or the upper 24 bits (bits 3 to 26) are provided to the GTM sub-modules.

TBU channel 1 and 2 provides a 24 bit counter in a free running counter mode enabled by reset CH_MODE of register **TBU_CH[y]_CTRL** (y:1..2).

In TBU Free running counter mode, the time base register **TBU_CH[v]_BASE** (v:0..2) is updated on every specified incoming clock event by the selected signal $CMU_CLK[x]$ (x: 0..8) (dependent on **TBU_CH[v]_CTRL** (v:0..2) register). In general the time base register **TBU_CH[v]_BASE** is incremented on every $CMU_CLK[x]$ clock tick.

10.2.1.2 Forward/Backward Counter Mode

TBU channel 1 and 2 provides a 24 bit forward/backward counter enabled by set CH_MODE of register **TBU_CH[y]_CTRL** (y:1..2). In this mode the *DIR[y]* signal provided by the DPLL is taken into account.

The value of the time base register **TBU_CH[y]_BASE** is incremented in case when the *DIR[y]* signal equals '0' and decremented in case when the *DIR[y]* signal is '1'.

10.2.2 Dependent Mode

10.2.2.1 Modulo Counter Mode

TBU channel 3 provides a 24 bit forward/backward modulo counter. The clock SUB_INC[y]c and counter direction DIR[y] provided by DPLL is selected by use_CH2 of register TBU_CH3_CTRL.

The modulo value is defined in TBU_CH3_BASE_MARK. In forward counter mode if TBU_CH3_BASE value is reaching TBU_CH3_BASE_MARK TBU_CH3_BASE is reset and TBU_TS[y] is captured in TBU_CH3_BASE_CAPTURE. In backward counter mode if TBU_CH3_BASE value is reaching '0' TBU_CH3_BASE is set to TBU_CH3_BASE_MARK and TBU_TS[y] is captured in TBU_CH3_BASE_CAPTURE.

10.3TBU Configuration Register Overview

Register Name	Description	Details in Section
TBU_CHEN	TBU global channel enable	10.4.1
TBU_CH0_CTRL	TBU channel 0 control	10.4.2
TBU_CH0_BASE	TBU channel 0 base	10.4.3
TBU_CH1_CTRL	TBU channel 1 control	10.4.4
TBU_CH1_BASE	TBU channel 1 base	10.4.6
TBU_CH2_CTRL	TBU channel 2 control	10.4.5
TBU_CH2_BASE	TBU channel 2 base	10.4.6
TBU_CH3_CTRL	TBU channel 3 control	10.4.7
TBU_CH3_BASE	TBU channel 3 base	10.4.8
TBU_CH3_BASE_MARK	TBU channel 3 modulo value	10.4.9
TBU_CH3_BASE_CAPTURE	TBU channel 3 base captured	10.4.10

10.3.1 TBU Configuration Register Overview Table

Note: In a typical application the Time Base Unit (TBU) considers channels 0, 1 and 3 only. In this case register addresses 0x20...0x2C are reserved and shall be read as zero. Channel 2 can be additionally implemented on special high-end application requirements.

10.4TBU Register description

10.4.1 Register TBU_CHEN

Address Offset:	see Appendix B	Initial Value:	0x0000_0000							
	31 30 29 27 27 26 25 25 24 25 23 23 23 23 23 21 21 21 21 21 21 21 21 21 21 21 21 21	15 14 13 13 12 11 11 9 8	7 6	5 4	3 2	1 0				
Bit	Reserved	ENDIS_CH3	ENDIS_CH2	ENDIS_CH1	ENDIS_CHO					
Mode	Ľ	RW	RW	RW	RW					
Initial Value	000000 00	00d0	0090	0090	00d0					
Bit 1:0 ENDIS_CH0: TBU channel 0 enable/disable control. Write / Read : 0b00 = don't care, bits 1:0 will not be changed / channel disabled 0b01 = channel disabled: is read as 00 (see below) / 0b10 = channel enabled: is read as 11 (see below) / 0b11 = don't care, bits 1:0 will not be changed / channel enabled										
Bit 3:2ENDIS_CH1: TBU channel 1 enable/disable control. See bits 1:0Bit 5:4ENDIS_CH2: TBU channel 2 enable/disable control. See bits 1:0Bit 7:6ENDIS_CH3: TBU channel 3 enable/disable control. See bits 1:0Note: These bits are only applicable if channel is implemented for this device, otherwise read and write as zero										
Bit 31:8	Reserved: Reserved Note: Read as zero should be writte	en as zero								

10.4.2 Register TBU_CH0_CTRL

Specification

1

Address Offset:	see Appendix B	nitial Value:	0x0000_	0000
	31 30 29 28 28 27 28 27 28 27 27 28 27 27 28 27 27 27 27 27 27 27 27 27 27 27 27 27	11 11 12 13 13 14 11 10 0 9 9	7 6 5 4	0 H 7 0
Bit	Reserved			CH_CLK_SRC
Mode	۳			RPw
Initial Value	0000 X0			00000
Bit 0 Bit 3:1	LOW_RES: TBU_CH0_BASE register 0 = TBU channel uses lower counter 1 = TBU channel uses upper counter Note: The two resolutions for the TBU channel 0 and the DPLL sub-mod Note: This value can only be modified CH_CLK_SRC: Clock source for char 0b000 = CMU_CLK0 selected 0b001 = CMU_CLK1 selected 0b010 = CMU_CLK2 selected 0b010 = CMU_CLK3 selected 0b101 = CMU_CLK4 selected 0b101 = CMU_CLK5 selected 0b101 = CMU_CLK5 selected 0b110 = CMU_CLK6 selected 0b111 = CMU_CLK7 selected	bits (bit 0 to 23) bits (bit 3 to 26) J channel 0 can odules. d if channel 0 is c	lisabled.	
Bit 31:4	Note: This value can only be modified Reserved: Reserved Note: Read as zero should be written		lisabled.	

10.4.3 Register TBU_CH0_BASE

Confidential

Specification

Revision	3.1.5.1
----------	---------

Address Offset:	see Apper	ndix B	Initial Value:	0x0000_0000
	31 30 29 28 28	26 25 24 24 23 23 21 21 20 19 18 16	15 14 13 13 12 11 10 9 8	7 6 6 7 3 3 3 3 2 2 1 1 0
Bit	Reserved		BASE	
Mode	٣		д М	
Initial Value	00×0		00000 00	
Bit 26:0		ne base value for channe value of BASE can onl		TBU channel 0 is

disabled Note: If channel 0 is enabled, a read access to this register provides the current value of the underlying 27 bit counter.

Note: Read as zero should be written as zero

10.4.4 Register TBU_CH1_CTRL

Address Offset:	see Appendix B Initial Value: 0x0000_	_0000	
	31 30 29 28 27 28 26 26 25 26 23 23 23 23 23 21 11 11 11 11 11 11 11 11 11 11 11 11	3 2 1 0	
Bit	Reserved	CH_CLK_SRC CH_MODE	
Mode	٣	RPw RPw	
Initial Value	00000 000000		
Bit 0	CH_MODE: Channel mode 0 = Free running counter mode 1 = Forward/backward counter mode Note: This value can only be modified if channel 1 is disabled running counter mode the CMU clock source spe CH_CLK_SRC is used for the counter. In Forward/R counter mode the SUB_INC1c clock signal in combination DIR1 input signal is used to determine the counter dire clock frequency.	cified by Backward n with the	

Bit 31:27 **Reserved:** Reserved

Revision 3.1.5.1

Bit 3:1	CH_CLK_SRC: Clock source for channel 1 time base counter 0b000 = CMU_CLK0 selected 0b001 = CMU_CLK1 selected 0b010 = CMU_CLK2 selected 0b011 = CMU_CLK3 selected 0b100 = CMU_CLK4 selected 0b101 = CMU_CLK5 selected 0b110 = CMU_CLK6 selected 0b111 = CMU_CLK7 selected

Specification

Note: This value can only be modified if channel 1 was disabled

Bit 31:4 **Reserved:** Reserved Note: Read as zero should be written as zero

10.4.5 Register TBU_CH2_CTRL

Address Offset:	see Appendix B Initial Value: 0x0000_	0000
	31 33 30 29 27 27 26 26 25 25 25 25 25 26 19 11 11 11 11 11 11 11 11 11 11 11 11	3 2 1 0
Bit	Reserved	CH_CLK_SRC CH_MODE
Mode	٣	RPw RPw
Initial Value	0000×0	0b000 0
Bit 0	CH_MODE: Channel mode 0 = Free running counter mode 1 = Forward/backward counter mode Note: This value can only be modified if channel 2 is disabled running counter mode the CMU clock source spee CH_CLK_SRC is used for the counter. In Forward/E counter mode the SUB_INC2c clock signal in combination DIR2 input signal is used to determine the counter direct clock frequency.	cified by Backward h with the
Bit 3:1	CH_CLK_SRC: Clock source for channel 2 time base counter 0b000 = <i>CMU_CLK0</i> selected 0b001 = <i>CMU_CLK1</i> selected 0b010 = <i>CMU_CLK2</i> selected 0b011 = <i>CMU_CLK3</i> selected	

GTM-IP	Specification	Revision 3.1.5.1
	$0b100 = CMU_CLK4$ selected $0b101 = CMU_CLK5$ selected $0b110 = CMU_CLK6$ selected $0b111 = CMU_CLK7$ selected	
Bit 31:4	Note: This value can only be modified if channel 2 wa Reserved: Reserved Note: Read as zero should be written as zero	as disabled

10.4.6 Register TBU_CH[y]_BASE (y:1,2)

Address Offset:	see Appendix B		Initial \	/alue:	0x0000_0000
	31 30 29 28 27 26 25 25 25	23 22 21 21 20 19 18 18 17 16	15 14 13	12 11 10 9 8	7 6 5 3 3 3 2 2 1 1 1
Bit	Reserved			BASE	
Mode	٣			RPw	
Initial Value	00×0			0000X0	

Bit 23:0 **BASE:** Time base value for channel y (y: 1, 2) Note: The value of **BASE** can only be written if the corresponding TBU channel y is disabled

Note: If the corresponding channel y is enabled, a read access to this register provides the current value of the underlying counter.

Bit 31:24 **Reserved:** Reserved Note: Read as zero should be written as zero

10.4.7 Register TBU_CH3_CTRL

BOSCH

Specification

Revision 3.1.5.1

Address Offset:	see Appendix B	Initial Value:	0x0000_	_0001	
	31 30 29 27 28 26 26 26 26 25 22 23 23 23 23 23 21 19 11 11 11	15 14 13 13 13 10 10 8	6 5 4	3 3	0
Bit	Reserved		USE CH2		CH MODE
Mode	Ľ		A R	ш	ж
Initial Value	0000×0		0	00090	1
Bit 0	CH_MODE: Channel mode 1 = Forward/backward counter mod	e			
Bit 3:1	Reserved: Reserved Note: Read as zero should be writte	en as zero			
Bit 4	<pre>USE_CH2: Channel selector for mo 0 = TBU_CH1 values used. (SUB direction, TBU_TC1 for captur 1 = TBU_CH2 values used. (SUB direction, TBU_TC2 for captur</pre>	2_ <i>INC1c</i> for clock ing) 3_ <i>INC2c</i> for clock			
Bit 31:5	Note: This value can only be modifi Reserved: Reserved Note: Read as zero should be writte		s disable	d	

10.4.8 Register TBU_CH3_BASE

Address Offset:	see Appendix B		Initial Value:	0x0000_0000
	31 30 29 28 27 26 25 25	23 22 21 20 20 19 18 17 17	15 14 13 12 11 10 9 8	6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 0
Bit	Reserved		BASE	
Mode	٣		RPw	
Initial Value	00×0		000000	
Bit 23:0	BASE: Time base value for channel 3 Note: The value of BASE can only be written if the corresponding TBU channel 3 is disabled			

Specification

Note: If the corresponding channel 3 is enabled, a read access to this register provides the current value of the underlying counter.

Bit 31:24 **Reserved:** Reserved Note: Read as zero should be written as zero

10.4.9 Register TBU_CH3_BASE_MARK

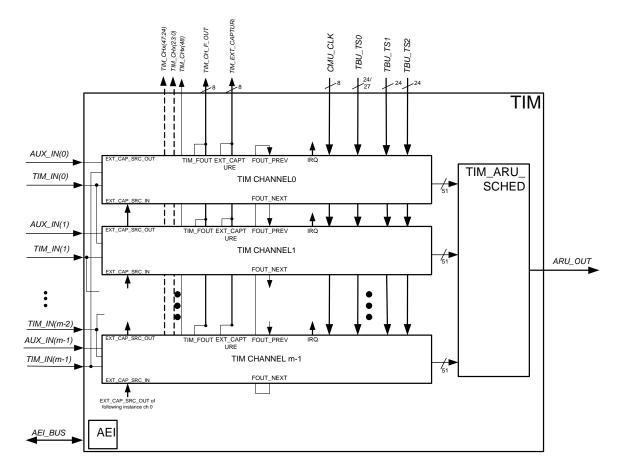
Address Offset:	see Appendix B		Initial Value:	0x0000_0000
	31 30 29 28 27 26 25 25 25	23 22 21 20 20 19 18 17 17	15 14 13 12 11 11 10 9 8	7 6 7 3 3 3 2 2 1 1
Bit	Reserved		BASE_MARK	
Mode	٣		RPw	
Initial Value	00×00		000000	
Bit 23:0 Bit 31:24	Note: The value of TBU channel Reserved: Reserved:	el 3 is disabled	n only be written if	the corresponding

10.4.10 Register TBU_CH3_BASE_CAPTURE

Address Offset:	see Appendix B		Initial Value:	0x0000_0000
	31 30 29 28 27 26 26 26 25 24 23 23	21 20 19 18 17 16	15 14 13 12 12 11 10 9 8	7 6 6 7 3 3 3 3 2 2 1 1
Bit	Reserved		BASE_CAPTURE	
Mode	œ		۲	
Initial Value	00 ×0		000000	
Bit 23.0	BASE CAPTURE	antured value	of time base chan	nel 1 or 2

Bit 23:0 BASE_CAPTURE: Captured value of time base channel 1 or 2

GTM-IP	Specification	Revision 3.1.5.1
	Note: When USE_CH2=0 TBU_TC1 is captured and setting TBU_TC2 is captured.	I if USE_CH2 is
Bit 31:24	Reserved: Reserved	
	Note: Read as zero should be written as zero	


11 Timer Input Module (TIM)

11.1 Overview

The Timer Input Module (TIM) is responsible for filtering and capturing input signals of the GTM. Several characteristics of the input signals can be measured inside the TIM channels. For advanced data processing the detected input characteristics of the TIM module can be routed through the ARU to subsequent processing units of the GTM.

Input characteristics mean either time stamp values of detected input rising or falling edges together with the new signal level or the number of edges received since channel enable together with the actual time stamp or PWM signal duration for a whole PWM period.

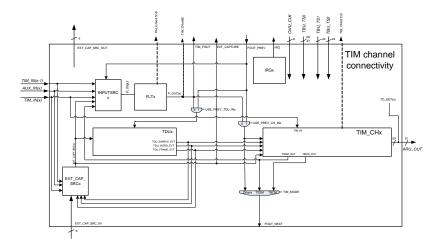
The architecture of TIM is shown in Figure 11.1.1.

11.1.1 TIM Block Diagram

The number of channels *m* inside a TIM sub-module depends on the device.

Confidential

Specification


Each of the *m* dedicated input signals are filtered inside the FLTx sub-unit of the TIM Module. It should be noted that the incoming input signals are synchronized to the clock SYS_CLK, resulting in a delay of two SYS_CLK periods for the incoming signals.

The measurement values can be read by the CPU directly via the AEI-Bus or they can be routed through the ARU to other sub-modules of the GTM.

For the GTM-IP TIM0 sub-module only, the dashed signal outputs $TIM[i]_CH[x](23:0)$, $TIM[i]_CH[x](47:24)$ and $TIM[i]_CH[x](48)$ come from the TIM0 sub-module channels zero (0) to five (5) and are connected to MAP sub-module. There, they are used for further processing and for routing to the DPLL.

The two (three) time bases coming from the TBU are connected to the TIM channels to annotate time stamps to incoming signals. For TIM0 the extended 27 bit width time base TBU_TS0 is connected to the TIM channels, and the user has to select if the lower 24 bits (*TBU_TS0(23..0)*) or the higher 24 bits (*TBU_TS0(26..3)*) are stored inside the **GPR0** and **GPR1** registers.

11.1.2 TIM channel internal connectivity

Above figure gives an overview of the channel internal connectivity of the sub units. The sub units with the major functionality are listed next:

INPUT_SRCx: Select signal for processing by the Filter unit FLTx

FLTx: The filter unit provides different filter mechanisms described in more detail in Chapter 11.2.

TDUx: Timeout detection unit (no subsequent edge detected during a specified duration)

TIM_CHx: Measurement unit; different measurements strategies configurable on the filtered signal

IRQx: Local interrupt controller (enabling, status, ..)

EXT_CAP_SRCx: Selects a local signal ext_capture(x) which is needed by certain functions

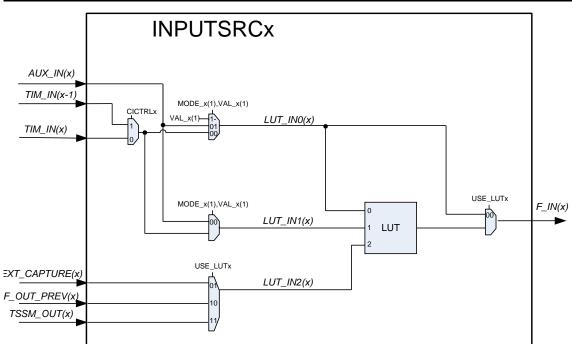
Details are given in the next chapters.

Depending on the values of the configuration bit fields **USE_PREV_TDU_INx**, **USE_PREV_CH_INx** it is possible to operate on the signal of the local channel x or the previous channel x-1.

Depending on the value of the configuration bit field **TIM_MODEx** it is possible to provide different signals (via FOUT_NEXT) to the next channel.

In TBCM mode each capture event selected by the sensitive edges (CNTS) will be forwarded with the value of ECNT[0] to the following channel (via FOUT_NEXT).

11.1.3 Input source selection INPUTSRCx


It can be configured which source shall be used for processing in the FLT,TDU,TIM_CH units. It can be selected by the bit fields **CICTRL** and **MODE_x**, **VAL_x** in the register **TIM[i]_IN_SRC** which source is in use.

Alternatively the signal $F_{IN}(x)$ can be generated by a 8 bit lookup table, which allows to define any function of 3 input sources.

11.1.3.1 INPUTSRC Block Diagram

If **USE_LUT**=b00 is set the lookup table signal generation is bypassed and the signal selection is performed as follows:

In a certain **MODE_x**, **VAL_x** combination the input signal $F_{IN}(x)$ can be driven by **VAL_x(1)** with 0 or 1 directly.

Due to the fact that all 8 channels are bundled in the register **TIM[i]_IN_SRC** a synchronous control of all 8 input channels is possible.

Two adjacent channels can be combined by setting the **CICTRL** bit field in the corresponding **TIM[i]_CH[x]_CTRL** register. This allows for a combination of complex measurements on one input signal with two TIM channels.

The additional signal **AUX_IN[x]** can be selected as an input signal. The source of this signal is defined in the chapter 2.1.4.

If **USE_LUT** !=0b00 is set, the lookup table signal generation with following inputs is in use. See Figure 11.1.3.1:

Input LUT_INO(x) selection: TIM_IN(x) if CICTRLx=0 and MODE_x(1)=0 and VAL_x(1)=0 TIM_IN(x-1) if CICTRLx=1 and MODE_x(1)=0 and VAL_x(1)=0 AUX_IN(x) if MODE_x(1)=0 and VAL_x(1)=1 VAL_x(1) if MODE_x(1)=1

Input LUT_IN1(x) selection: AUX_IN(x) if MODE_x(1)=0 and VAL_x(1)=0 TIM_IN(x) if CICTRLx=0 TIM_IN(x-1) if CICTRLx=1

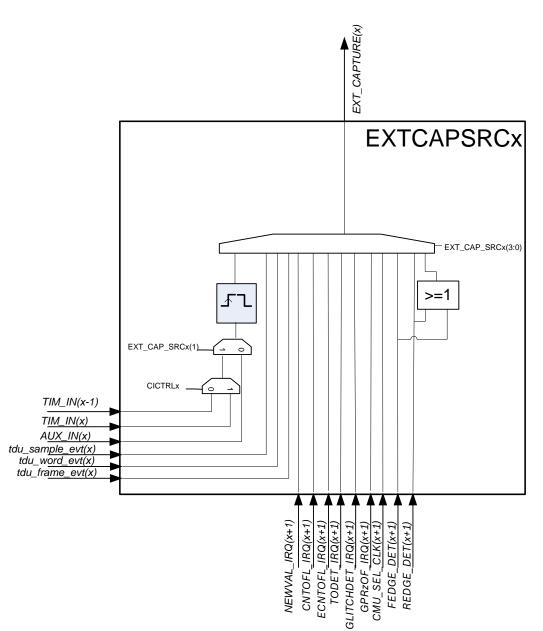
Input LUT_IN2(x) selection: EXT_CAPTURE(x) if USE_LUT=0b01 FOUT_PREV(x) if USE_LUT=0b10 TSSM_OUT(x) if USE_LUT=0b11

The lookup table is defined by the contents of the bit field **TO_CNT2x**. The lookup_table_index is defined by **LUT_IN2(x)** & **LUT_IN1(x)** & **LUT_IN0(x)**. The signal **F_IN(x)** is generated by **TO_CNT2x**[lookup_table_index].

If **USE_LUT** !=0b00 is set, only limited functionality is available in the TDU. See bit field **Slicing** in the register TIM[i]_CH[x]_TDUV.

11.1.4 Input observation

It is possible to observe for all channels of one instance by reading **TIM_INP_VAL** the actual signal values of the following processing stages:


- TIM_IN(7:0) signals after TIM input synchronization
- TIM F_IN(7:0) signals after TIM INPUTSRC selection (input to TIM_FLT)
- TIM F_OUT(7:0) signals after TIM filter functionality (output of TIM_FLT)

11.1.5 External capture source selection EXTCAPSRCx

Each channel can operate on an external capture signal **EXT_CAPTURE**. The source to use for this signal can be configured by the bit field **EXT_CAP_SRCx** in the register $TIM[i]_CH[x]_ECTRL$.

11.1.5.1 EXTCAPSRC Block Diagram

Specification

The external capture functionality can be enabled for the TIM channel **x** with the bit **EXT_CAP_EN** in the register **TIM[i]_CH[x]_CTRL**, it will trigger on each rising edge. A pulse generation for each rising edge of the selected input signal **TIM_IN[x]** and **AUX_IN[x]** is applied.

The six TIM channel interrupt sources can be triggered by the operation in the certain TIM channel modes. Alternatively they can be issued by a soft trigger using the corresponding bits in the register TIM[i]_CH[x+1]_FORCINT.

11.2TIM Filter Functionality (FLT)

11.2.1 Overview

The TIM sub-module provides a configurable filter mechanism for each input signal. These filter mechanism is provided inside the FLT sub-unit.

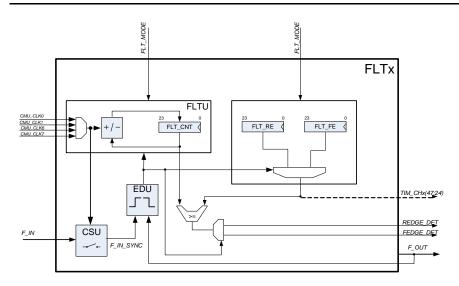
FLT architecture is shown in Figure 11.2.1.1.

The filter includes a clock synchronization unit (CSU), an edge detection unit (EDU), and a filter counter associated to the filter unit (FLTU).

The CSU is synchronizing the incoming signal F_{IN} to the selected filter clock frequency, which is controlled with the bit field **FLT_CNT_FRQ** of register **TIM[i]_CH[x]_CTRL**.

The synchronized input signal F_{IN} SYNC is used for further processing within the filter.

It should be noted that glitches with a duration go less than the selected CMU clock period is lost.


The filter modes can be applied individually to the falling and rising edges of an input signal. The following filter modes are available:

- immediate edge propagation mode,
- individual de-glitch time mode (up/down counter), and
- individual de-glitch time mode (hold counter).
- individual de-glitch time mode (reset counter).

11.2.1.1 FLT Architecture

The filter parameters (deglitch and acceptance time) for the rising and falling edge can be configured inside the two filter parameter registers **FLT_RE** (rising edge) and **FLT_FE** (falling edge). The exact meaning of the parameter depends on the filter mode.

However the delay time T of both filter parameters **FLT_xE** can always be determined by:

 $T=(\mathbf{FLT}_{\mathbf{x}\mathbf{E}}+1)^{*}T_{FLT_CLK},$

whereas T_{FLT_CLK} is the clock period of the selected CMU clock signal in bit field **FLT_CNT_FRQ** of register **TIM[i]_CH[x]_CTRL**.

When a glitch is detected on an input signal a status flag **GLITCHDET** is set inside the **TIM[i]_CH[x]_IRQ_NOTIFY** register.

Table 11.2.1.2 gives an overview about the meanings for the registers **FLT_RE** and **FLT_FE**. In the individual deglitch time modes, the actual filter threshold for a detected regular edge is provided on the $TIM[i]_CH[x](47:24)$ output line. In the case of immediate edge propagation mode, a value of zero is provided on the $TIM[i]_CH[x](47:24)$ output line.

The $TIM[i]_CH[x](47:24)$ output line is used by the MAP sub-module for further processing (please see chapter 17).

11.2.1.2	Filter Parameter summary for	the different Filter Modes
----------	------------------------------	----------------------------

Filter mode		Meaning of FLT_RE	Meaning of FLT_FE
Immediate	edge	Acceptance time for rising	Acceptance time for falling
propagation		edge	edge

Individual time counter)	de-glitch (up/down	De-glitch time for rising edge	De-glitch edge	time	for	falling
Individual time (hold c	de-glitch ounter)	De-glitch time for rising edge	De-glitch edge	time	for	falling
Individual time (reset o	de-glitch counter)	De-glitch time for rising edge	De-glitch edge	time	for	falling

A counter **FLT_CNT** is used to measure the glitch and acceptance times.

The frequency of the **FLT_CNT** counter is configurable in bit field **FLT_CNT_FRQ** of register **TIM[i]_CH[x]_CTRL**.

The counter **FLT_CNT** can either be clock with the *CMU_CLK0*, *CMU_CLK1*, *CMU_CLK6* or the *CMU_CLK7* signal. These signals are coming from the CMU sub-module.

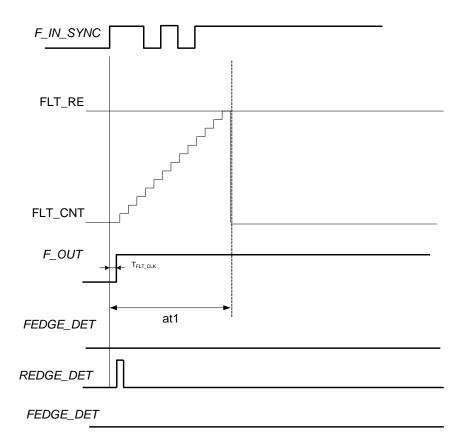
The **FLT_CNT**, **FLT_FE** and **FLT_RE** registers are 24-bit width. For example, when the resolution of the *CMU_CLK0* signal is 50ns this allows maximal de-glitch and acceptance times of about 838ms for the filter.

11.2.2 TIM Filter Modes

11.2.2.1 Immediate Edge Propagation Mode

In immediate edge propagation mode after detection of an edge the new signal level on F_{IN} SYNC is propagated to F_{OUT} with a delay of one $T_{FLT_{CLK}}$ period and the new signal level remains unchanged until the configured acceptance time expires.

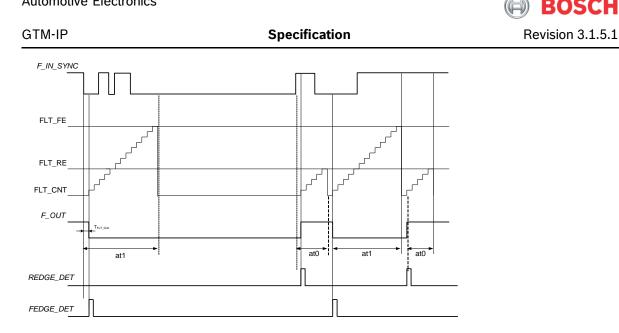
For each edge type the acceptance time can be specified separately in the **FLT_RE** and **FLT_FE** registers.


Each signal change on the input F_{IN} SYNC during the duration of the acceptance time has no effect on the output signal level F_{OUT} of the filter but it sets the glitch **GLITCHDET** bit in the **TIM[i]_CH[x]_IRQ_NOTIFY** register.

After it expires an acceptance time the input signal F_{IN} SYNC is observed and on signal level change the filter raises a new detected edge and the new signal level is propagated to F_{OUT} .

Independent of a signal level change the value of F_OUT is always set to F_IN_SYNC , when the acceptance time expires (see also Figure 11.2.2.1.2).

Figure 11.2.2.1.1 shows an example for the immediate edge propagation mode, in the case of rising edge detection. Both, the signal before filtering (F_IN) and after filtering (F_OUT) are shown. The acceptance time *at1* is specified in the register **FLT_RE**.


11.2.2.1.1 Immediate Edge Propagation Mode in the case of a rising edge

In immediate edge propagation mode the glitch measurement mechanism is not applied to the edge detection. Detected edges on F_{IN}_{SYNC} are transferred directly to F_{OUT} .

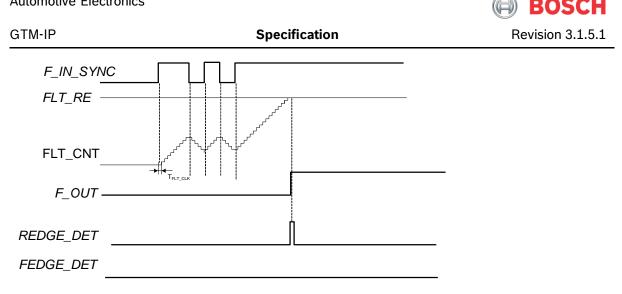
The counter **FLT_CNT** is incremented until acceptance time threshold is reached. Figure 11.2.2.1.2 shows a more complex example of the TIM filter, in which both, rising and falling edges are configured in immediate edge propagation mode.

11.2.2.1.2 Immediate Edge Propagation Mode in the case of a rising and falling edge

If the **FLT CNT** has reached the acceptance time for a specific signal edge and the signal F IN SYNC has already changed to the opposite level of F OUT, the opposite signal level is set to F OUT and the acceptance time measurement is started immediately. Figure 11.2.2.1.2 shows this scenario at the detection of the first rising edge and the second falling edge.

11.2.2.2 Individual De-glitch Time Mode (up/down counter)

In individual de-glitch time mode (up/down counter) each edge of an input signal can be filtered with an individual de-glitch threshold filter value mentioned in the registers FLT_RE and FLT_FE, respectively.


The filter counter register **FLT CNT** is incremented when the signal level on F IN SYNC is unequal to the signal level on F OUT and decremented if F IN SYNC equals F OUT.

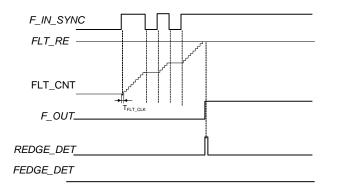
After **FLT_CNT** has reached a value of zero during decrementation the counter is stopped immediately.

If a glitch is detected a glitch detection bit **GLITCHDET** is set in the TIM[i] CH[x] IRQ NOTIFY register.

The detected edge signal together with the new signal level is propagated to F OUT after the individual de-glitch threshold is reached. Figure 11.2.2.2.1 shows the behavior of the filter in individual de-glitch time (up/down counter) mode in the case of the rising edge detection.

11.2.2.2.1 Individual De-glitch Time Mode (up/down counter) in the case of a rising edge

11.2.2.3 Individual De-glitch Time Mode (hold counter)


In individual de-glitch time mode (hold counter) each edge of an input signal can be filtered with an individual de-glitch threshold filter value mentioned in the registers FLT_RE and FLT_FE, respectively.

The filter counter register FLT_CNT is incremented when the signal level on F_{IN} SYNC is unequal to the signal level on F_{OUT} and the counter value of **FLT_CNT** is hold if *F IN* equals *F OUT*.

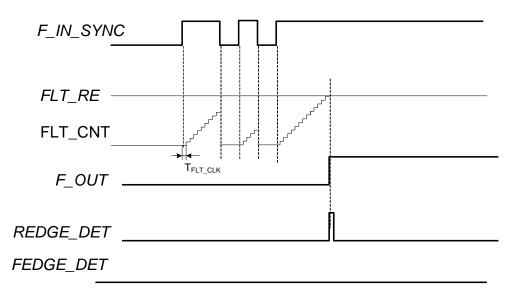
If a glitch is detected the glitch detection bit GLITCHDET is set in the TIM[i]_CH[x]_IRQ_NOTIFY register.

The detected edge signal together with the new signal level is propagated to F OUT after the individual de-glitch threshold is reached. Figure 11.2.2.3.1 shows the behavior of the filter in individual de-glitch time (hold counter) mode in the case of the rising edge detection.

Individual De-glitch Time Mode (hold counter) in the case of a rising edge 11.2.2.3.1

Confidential

11.2.2.4 Individual De-glitch Time Mode (reset counter)


In individual de-glitch time mode (reset counter) each edge of an input signal can be filtered with an individual de-glitch threshold filter value mentioned in the registers **FLT_RE** and **FLT_FE**, respectively.

The filter counter register **FLT_CNT** is incremented when the signal level on F_IN_SYNC is unequal to the signal level on F_OUT and the counter value of **FLT_CNT** is reset to 0x000000 if F_IN equals F_OUT .

If a glitch is detected the glitch detection bit **GLITCHDET** is set in the **TIM[i]_CH[x]_IRQ_NOTIFY** register.

The detected edge signal together with the new signal level is propagated to F_OUT after the individual de-glitch threshold is reached. Figure 11.2.2.4.1 shows the behavior of the filter in individual de-glitch time (reset counter) mode in the case of the rising edge detection.

11.2.2.4.1 Individual De-glitch Time Mode (reset counter) in the case of a rising edge

11.2.2.5 Immediate Edge Propagation and Individual De-glitch Mode

As already mentioned, the four different filter modes can be applied individually to each edge of the measured signal.

Specification


However, if one edge is configured with immediate edge propagation and the other edge with an individual deglitch mode (whether up/down counter, hold counter or reset counter) a special consideration has to be applied.

Assume that the rising edge is configured for immediate edge propagation and the falling edge with individual deglitch mode (up/down counter) as shown in Figure 11.2.2.5.1.

If the falling edge of the incoming signal already occurs during the measuring of the acceptance time of the rising edge, the measurement of the deglitch time on the falling edge is started delayed, but immediately after the acceptance time measurement phase of the rising edge has finished.

Consequently, the deglitch counter cannot measure the time T_{ERROR}, as shown in Figure 11.2.2.5.1.

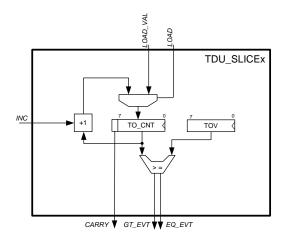
11.2.2.5.1 Mixed mode measurement

11.2.3 TIM Filter reconfiguration

If FLT_EN=1 a change of FLT_RE or FLT_FE will take place immediately.

If **FLT_EN**=1 a change of **FLT_MODE_RE** or **FLT_MODE_FE** will be used with the next occurring corresponding edge. If the mode is changed while the filter unit is processing a certain mode, it will end this edge filtering in the mode as started.

If FLT_EN=1 a change of FLT_CTR_RE, FLT_CTR_FE, EFLT_CTR_RE or EFLT_CTR_FE will take place immediately.


11.3Timeout Detection Unit (TDU)

The Timeout Detection Unit (TDU) is responsible for timeout detection of the TIM input signals.

Each channel of the TIM sub-module has its own Timeout Detection Unit (TDU) where a timeout event can be set up on the filtered input signal of the corresponding channel.

In each timeout unit exist 3 8 bit counter/comparator slices. A counter/comparator slice is shown below. The counter TO_CNT will increment by signal *INC*. The counter can be loaded with the value $LOAD_VAL$ if LOAD = 1. GT_EVT will be 1 if TO_CNT > TOV is fulfilled. EQ_EVT will be 1 if TO_CNT = TOV is fulfilled.

11.3.1 Counter/comparator slice

The counter/comparator slices can be cascaded depending on the application needs to operate as :

3x 8 bit counter

1x 16 bit counter and 1x 8 bit counter

1x 24 bit counter

2x 8 bit counter.

This allows the user to use the functions timeout on input signals

local CMU clock prescaler 8 bit

trigger event generation 8 bit (external capture, todet_irq)

in parallel.

With usage of the 3x 8 bit counter it is possible to define different timeout values for the 2 signal levels.

Following table shows which functions can be used in parallel.

11.3.2 Used parallel functions

Counter type	Timeout functionality	Generate local TIM CMU clk	Source for external capture to previous channel	Source for TODET_IRQ
24 bit	24 bit	no	tdu_timeout_evt tdu_sample_evt	tdu_timeout_evt tdu_sample_evt
1 x 8 bit 1 x 16 bit	16 bit local clk tdu_sample_evt usable	yes	tdu_timeout_evt, tdu_frame_evt, tdu_sample_evt	tdu_timeout_evt, tdu_frame_evt, tdu_sample_evt
3x 8 bit	8 bit local clk tdu_sample_evt usable	yes	tdu_timeout_evt, tdu_sample_evt, tdu_word_evt, tdu_frame_evt	tdu_timeout_evt, tdu_sample_evt, tdu_word_evt, tdu_frame_evt
3x 8 bit	no	yes	tdu_timeout_evt, tdu_sample_evt, tdu_word_evt, tdu_frame_evt	tdu_timeout_evt, tdu_sample_evt, tdu_word_evt, tdu_frame_evt
2x 8 bit	no	no	tdu_timeout_evt, tdu_word_evt, tdu_frame_evt	tdu_timeout_evt, tdu_word_evt, tdu_frame_evt

Next table shows which of the available 8 bit resources are cascaded with a chosen **SLICING**.

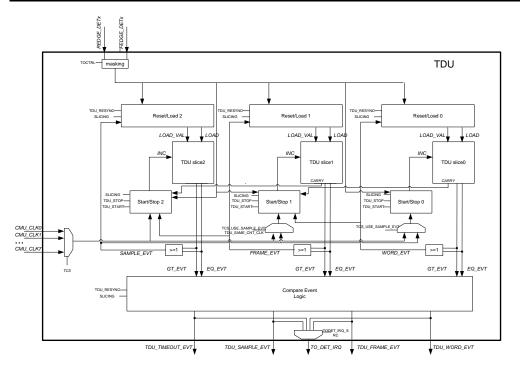
11.3.3 Which of the available 8 bit resources are cascaded with a chosen SLICING

Counter type	Counters count on	Counter resource generates	CLK selection
24 bit	CNT on TCS	CNT= TO_CNT2 & TO_CNT1 & TO_CNT; TCMP = TOV2 & TOV1 & TOV; CNT >= TCMP generates tdu_sample_evt tdu_timeout_evt = tdu_sample_evt tdu_frame_evt = 0 tdu_word_evt = 0	TCS selected
3x 8 bit	TO_CNT2 on TCS TO_CNT on tdu_sample_evt TO_CNT1 on tdu_word_evt	TO_CNT2 >= TOV2 generates tdu_sample_evt TO_CNT >= TOV generates tdu_word_evt TO_CNT1 >= TOV1 generates tdu_frame_evt tdu_timeout_evt = tdu_word_evt	selected with TCS_USE_SAMPLE_EVT=1 TO_CNT1: tdu_word_evt selected with
3x 8 bit	TO_CNT2 on TCS TO_CNT on tdu_sample_evt TO_CNT1 on tdu_sample_evt		TO_CNT: tdu_sample_evt selected with TCS_USE_SAMPLE_EVT=1 TO_CNT1: tdu_sample_evt selected with
3x 8 bit	TO_CNT2 on TCS TO_CNT on TCS TO_CNT1 on tdu_word_evt	TO_CNT2 >= TOV2 generates tdu_sample_evt TO_CNT >= TOV generates tdu_word_evt	TO_CNT2: TCS selected TO_CNT: TCS selected with TCS_USE_SAMPLE_EVT=0 TO_CNT1: tdu_word_evt selected with TDU_SAME_CNT_CLK=0

		TO_CNT1 >=	
		TOV1 generates	
		tdu_frame_evt	
		tdu_timeout_evt =	
		tdu_word_evt	
3x 8 bit	TO_CNT2 on TCS	TO_CNT2 >=	_
	TO_CNT on TCS	TOV2 generates	TO_CNT: TCS selected with
	TO_CNT1 on TCS	tdu_sample_evt	TCS_USE_SAMPLE_EVT=0
		TO_CNT >= TOV	_
		generates	TDU_SAME_CNT_CLK=1
		tdu_word_evt	
		TO_CNT1 >=	
		TOV1 generates	
		tdu_frame_evt	
		tdu_timeout_evt =	
		tdu_word_evt or	
		tdu_frame_evt	
2x 8 bit	TO_CNT on TCS	TO_CNT >= TOV	TO_CNT: TCS selected
	TO_CNT1 on	generates	TO_CNT1: tdu_word_evt
	tdu_word_evt	tdu_word_evt	selected with
		TO_CNT1 >=	TDU_SAME_CNT_CLK=0
		TOV1 generates	
		tdu_frame_evt	
		tdu_timeout_evt =	
		tdu_word_evt	
		tdu_sample_evt = 0	
2x 8 bit	TO_CNT on TCS	TO_CNT >= TOV	TO_CNT: TCS selected
	TO_CNT1 on TCS	generates	TO_CNT1: TCS selected with
		tdu_word_evt	TDU_SAME_CNT_CLK=1
		TO_CNT1 >=	
		TOV1 generates	
		tdu_frame_evt	
		tdu timeout evt =	
		tdu_word_evt	
		tdu_sample_evt = 0	
1 x 8 bit	TO_CNT2 on TCS	TO_CNT2 >=	TO_CNT2: TCS selected
1 x 16 bit	CNT on TCS	TOV2 generates	CNT: TCS selected with
		tdu_sample_evt	TCS_USE_SAMPLE_EVT=0
		CNT = TO CNT1 &	
		TO_CNT; TCMP =	
		TOV1 & TOV; CNT	
		>= TCMP	
		generates	
		tdu_frame_evt	
		tdu_timeout_evt =	
		tdu_frame_evt	
		tdu_word_evt = 0	

GTM-IP		Specification	Revision 3.1.5.1
1 x 8 bit 1 x 16 bit	TO_CNT2 on TCS CNT on tdu_sample_evt	TOV2 generates tdu_sample_evt	
		generates	

tdu_frame_evt tdu_timeout_evt tdu_frame_evt tdu_word_evt = 0


Based on a chosen counter configuration by **SLICING** it is possible to control the start behavior of the counters by **TDU_START** in multiple ways. In addition the stopping of the counters can be controlled by **TDU_STOP**. Depending on the application needs it can be decided how the individual counter slices can be reset/reloaded by the configuration field **TDU_RESYNC**.

Depending on the counter configuration, up to 4 internal compare events tdu_timeout_evt, tdu_sample_evt, tdu_word_evt, tdu_frame_evt out of the 3 comparator slices can be generated. It can be chosen by **TODET_IRQ_SRC** which shall be used as *TIM_TODETx_IRQ* signal which will be accessible by the **TODET** bit inside the **TIM[i]_CH[x]_IRQ_NOTIFY** register

The TDU architecture is shown in 11.3.4.

11.3.4 Architecture of the TDU Sub-unit

Each TDU slice has its own start/stop control, based on the chosen configuration it will decide if the counter inside the TDU slice will increment on the resolution of the applied clock/event. The reset/load control decides based on the configuration settings compare and the result of the TDU slices those the counters TO CNT,TO_CNT1,TO_CNT2 have to be reloaded. Depending on the chosen counter/compare configuration the compare event logic will generate based on the compare results of the 3 TDU slices and the chosen resolution the events tdu sample evt, tdu word evt, tdu frame evt.

The primary resolution on which the TDU is working can be specified with the bit field **TCS** of the register **TIM[i]_CH[x]_TDUV**. The corresponding input signal *CMU_CLKx* will be used to clock the TDU. The individual timeout/counter values have to be specified in number of ticks of the selected input clock signal in the fields **TOV**, **TOV1**, **TOV2** of the timeout value register **TIM[i]_CH[x]_TDUV** of the TIM channel x.

In case of cascading the bit slices by usage of **SLICING** and **TCS_USE_SAMPLE_EVT** and **TDU_SAME_CLK** the resolution for counting can be switched to the events tdu_sample_evt or tdu_word_evt. More details see table above.

The counter compare units start operation on occurrence of the first "start event" configured by **TDU_START**. They continue their operation until the first "stop event" configured by **TDU_STOP** occurs.

In case of occurrence of a start event and a compare/count resolution event in the same clock cycle, the counters will increment or reload/reset based on **TDU_RESYNC** immediately. No *tdu_sample_evt*, *tdu_word_evt*, *tdu_frame_evt* will be generated.

In case of occurrence of a stop event the counters will not change their values. In case of occurrence of a stop event and a compare/count resolution event in the same clock cycle the corresponding events *tdu_sample_evt*, *tdu_word_evt*, *tdu_frame_evt* will be generated.

In case of occurrence of a start event and a stop event in the same clock cycle the counters will not change their values. No *tdu_sample_evt*, *tdu_word_evt*, *tdu_frame_evt* will be generated.

The function of the timeout unit (configured to **TDU_RESYNC**=0000,**TDU_START**=000) can be started or stopped inside the **TIM[i]_CH[x]_CTRL** register by setting/resetting the **TOCTRL** bit.

Timeout detection can be enabled to be sensitive to falling, rising or both edges of the input signal by writing the corresponding values to the bit field **TOCTRL**.

The TDU generates an interrupt signal *TIM_TODETx_IRQ* whenever a timeout is detected for an individual input signal, and the **TODET** bit is set inside the **TIM[i]_CH[x]_IRQ_NOTIFY** register.

In addition, when the ARU access is enabled with the **ARU_EN** bit inside the **TIM[i]_CH[x]_CTRL** register, the actual values stored inside the registers **TIM[i]_CH[x]_GPR0** and **TIM[i]_CH[x]_GPR1** are sent together with the last stored signal level to the ARU if a timeout event *TDU_TIMEOUT_EVT* occurs.

To signal that a timeout occurred, the ARU_OUT(50) bit (ACB(2)) is set. The bit ACB(0) will be updated with the timeout event to the signal level on which the timeout was detected. Timeout signaling with ACB(2) is only possible with **TODET_IRQ_SRC**= 0000.

Thus, a destination could determine if a timeout occurred at the TIM input by evaluating ACB bit 2.

Since the TIM channel still monitors its input pin although the timeout happened, a valid edge could occur at the input pin while the timeout information is still valid at the ARU. In that case, the new edge associated data is stored inside the registers **TIM[i]_CH[x]_GPR0** and **TIM[i]_CH[x]_GPR1**, the GPR overflow detected bit is set together in the ACB field (ACB(1)) with the timeout bit (ACB(2)) and the values are marked as valid to the ARU.

The ACB bit 2 is cleared, when a successful ARU write access by the TIM channel took place.

The ACB bit 1 is cleared, when a successful ARU write access by the TIM channel took place.

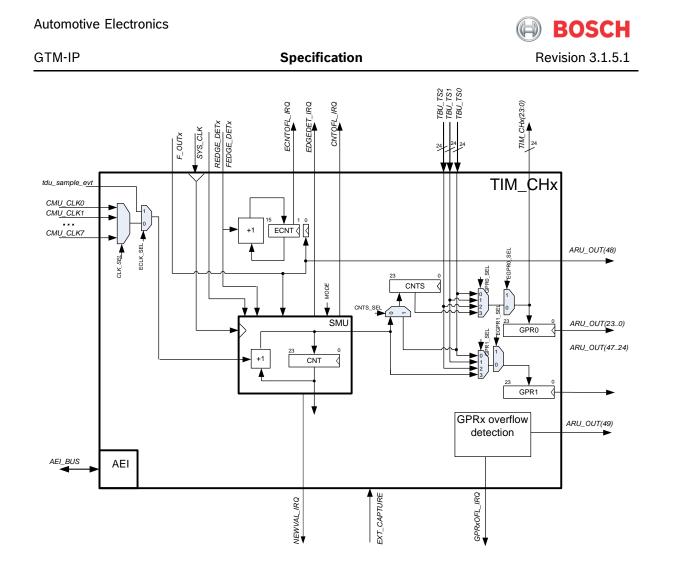
When a valid edge initiates an ARU write access which has not ended while a new timeout occurs the GPR overflow detected bit (ACB(1)) is set. The bit ACB(0) will be updated to the level on which the timeout occurred.

When a timeout occurred and initiates an ARU write access which has not ended while a new timeout occurs the GPR overflow detected bit (ACB(1)) is not set.

The following table clarifies the meaning of the ACB Bits for valid data provided by a TIM channel:

11.3.5 ACB Bits for valid data provided by a TIM channel

ACB4/3	ACB2	ACB1	ACB0	Description
dc	0	0	SL	Valid edge detected
dc	0	1	SL	Input edge overwritten by subsequent edge
dc	1	0	SL	Timeout detected without valid edge
dc	1	1	SL	Timeout detected with subsequent valid edge detected


11.4 TIM Channel Architecture

11.4.1 Overview

Each TIM channel consist of an input edge counter **ECNT**, a Signal Measurement Unit (SMU) with a counter **CNT**, a counter shadow register **CNTS** for SMU counter and two general purpose registers **GPR0** and **GPR1** for value storage.

The value **TOV** of the timeout register **TIM[i]_CH[x]_TDU** is provided to TDU sub-unit of each individual channel for timeout measurement. The architecture of the TIM channel is depicted in Figure 11.4.1.1.

11.4.1.1 TIM Channel Architecture

Each TIM channel receives both input trigger signals $REDGE_DETx$ and $FEDGE_DETx$, generated by the corresponding filter module in order to signalize a detected echo of the input signal F_INx . The signal F_OUTx shows the filtered signal of the channel's input signal F_INx .

The edge counter **ECNT** counts every incoming filtered edge (rising and falling). The counter value is uneven in case of detected rising, and even in case of detected falling edge. Thus, the input signal level is part of the counter and can be obtained by bit 0 of **ECNT**. (However, the actual counter implementation counts only falling edges on ECNT[n:1] bits. It generates **ECNT** by composing the ECNT[n:1] bits with F_OUTx as bit 0).

Thus, the whole ECNT counter value is always odd, when a positive edge was received and always even, when a negative edge was received.

The current **ECNT[7:0]** register content is made visible on the bits 31 down to 24 of the registers **GPR0**, **GPR1**, and **CNTS**. This allows the software to detect inconsistent read accesses to registers **GPR0**, **GPR1**, and **CNTS**. However, the update strategy of these registers depends on the selected TIM modes, and thus the consistency check has to be adapted carefully.

It can be chosen with the bit field **FR_ECNT_OFL** when an **ECNT** overflow is signaled on **ECNTOFL**. An ECNT overflow can be signaled on 8 bit or full range resolution.

While reading the register **TIM[i]_CH[x]_ECNT** the bit **ECNT[0]** shows the input signal value F_OUTx independent of the state (enabled / disabled) of the channel. If a channel gets disabled (OSM mode or resetting TIM_EN) the content of **TIM[i]_CH[x]_ECNT** will be frozen until a read of the register takes place. This read will reset the **ECNT** counter. Continuing reads will show the input signal value in bit **ECNT[0]** again.

When new data is written into **GPR0** and **GPR1** the **NEWVAL** bit is set in **TIM[i]_CH[x]_IRQ_NOTIFY** register and depending on corresponding enable bit value the *NEWVALx_IRQ* interrupt is raised.

Each TIM input channel has an ARU connection for providing data via the ARU to the other GTM sub-modules. The data provided to the ARU depends on the TIM channel mode and its corresponding adjustments (e.g. multiplexer configuration).

The bit **ARU_EN** of register **TIM[i]_CH[x]_CTRL** decides, whether the measurement results of registers **GPR0** and **GPR1** are consumed by another sub-module via ARU (**ARU_EN** = 1) or the CPU via AEI (**ARU_EN** = 0).

To guarantee a consistent delivery of data from the **GPR0** and **GPR1** registers to the ARU or the CPU each TIM channel has to ensure that the data is consumed before it is overwritten with new values.

If new data was produced by the TIM channel (bit **NEWVAL** is set inside **TIM[i]_CH[x]_IRQ_NOTIFY** register) while the old data is not consumed by the ARU (**ARU_EN** = 1) or CPU (**ARU_EN** = 0), the TIM channel sets the **GPROFL** bit inside the status register **TIM[i]_CH[x]_IRQ_NOTIFY** and it overwrites the data inside the registers **GPR0** and **GPR1**. In addition when **ARU_EN**=1 the bit ACB(1) is set to 1 to indicate the overflow in the ARU data.

If the CPU is selected as consumer for the registers **GPR0** and **GPR1** (**ARU_EN** = 0), the acknowledge for reading out data is performed by a read access to the register **GPR0**. Thus, register **GPR1** should be read always before **GPR0**.

If the ARU is selected as consumer for the registers **GPR0** and **GPR1** (**ARU_EN** = 1), the acknowledge for reading out data is performed by the ARU itself. However, the registers **GPR0** and **GPR1** could be read by CPU without giving an acknowledge.

11.4.2 TIM Channel Modes

The TIM provides seven different measurement modes that can be configured with the bit field **TIM_MODE** of register **TIM[i]_CH[x]_CTRL**. The measurement modes are described in the following subsections. Besides these different basic measurement

modes, there exist distinct configuration bits in the register **TIM[i]_CH[x]_CTRL** for a more detailed controlling of each mode. The meanings of these bits are as follows:

• **DSL**: control the signal level for the measurement modes (e.g. if a measurement is started with rising edge or falling edge, or if high level pulses or low level pulses are measured.

• EGPR0_SEL, GPR0_SEL and EGPR1_SEL, GPR1_SEL: control the actual content of the registers GPR0 and GPR1 after a measurement has finished.

• CNTS_SEL: control the content of the registers CNTS. The actual time for updating the CNTS register is mode dependent.

• **OSM**: activate measurement in one-shot mode or continuous mode. In one-shot mode only one measurement cycle is performed and after that the channel is disabled.

• **NEWVAL**: The NEWVAL IRQ interrupt is triggered at the end of a measurement cycle, signaling that the registers GPR0 and GPR1 are updated.

• **ARU_EN**: enables sending of the registers **GPR0** and **GPR1** together with the actual signal level (in bit 48) and the overflow signal GPROFL (in bit 49), and the timeout status information (bit 50) to the ARU.

• **EXT_CAP_EN**: forces an update of the registers **GPR0** and **GPR1** and **CNTS** (TIM channel mode dependent) only on each rising edge of the EXT_CAPTURE signal and triggers a NEWVAL IRQ interrupt. If this mode is disabled the NEWVAL IRQ interrupt is triggered at the end of each measurement cycle.

For each channel the source of the EXT_CAPTURE signal can be configured with the bit fields **EXT_CAP_SRC** in the register **TIM[i]_CH[x]_ECTRL**.

11.4.2.1 TIM PWM Measurement Mode (TPWM)

In TIM PWM Measurement Mode the TIM channel measures duty cycle and period of an incoming PWM signal. The **DSL** bit defines the polarity of the PWM signal to be measured.

When measurement of pulse high time and period is requested (PWM with a high level duty cycle, **DSL**=1) and **IMM_START**=0, the channel starts measuring after the first rising edge is detected by the filter.

If **IMM_START=1** the measurement starts immediately after activating the channel by **TIM_EN=1**.

Measurement is done with the **CNT** register counting with the configured clock coming from **CMU_CLKx** until a falling edge is detected.

Assume: SWAP_CAPTURE=0,ECNT_RESET=0

Then the counter value is stored inside the shadow register **CNTS** (if **CNTS_SEL** = 0) and the counter **CNT** counts continuously until the next rising edge is reached.

On this following rising edge the content of the **CNTS** register is transferred to **GPR0** and the content of **CNT** register is transferred to **GPR1**, assuming settings for the selectors **EGPR0_SEL=**0,**GPR0_SEL=**11 and **EGPR1_SEL=**0,**GPR1_SEL=**11. By this, **GPR0** contains the duty cycle length and **GPR1** contains the period. It should be noted, that the bits 1 to 7 of the **ECNT** may be used to check data consistency of the registers **GPR0** and **GPR1**.

In addition the **CNT** register is cleared **NEWVAL** status bit inside of **TIM[i]_CH[x]_IRQ_NOTIFY** status register and depending on corresponding interrupt enable condition *TIM_NEWVALx_IRQ* interrupt is raised.

The CNTS register update is not performed until the measurement is started. Afterwards each edge leaving the level defined by DSL is performing a CNTS register update.

If a PWM with a low level duty cycle should be measured (DSL = 0) and $IMM_START=0$, the channel waits for a falling edge until measurement is started. On this edge the low level duty cycle time is stored first in CNTS and then finally in GPR0 and the period is stored in GPR1.

When a PWM period was successfully measured, the data in the registers **GPR0** and **GPR1** is marked as valid for reading by the ARU when the **ARU_EN** bit is set inside **TIM[i]_CH[x]_CTRL** register, the **NEWVAL** bit is set inside the **TIM[i]_CH[x]_IRQ_NOTIFY** register, and a new measurement is started.

If the preceding PWM values were not consumed by a reader attached to the ARU (**ARU_EN** bit enabled) or by the CPU the TIM channel set **GPROFL** status bit in **TIM[i]_CH[x]_IRQ_NOTIFY** and depending on corresponding interrupt enable bit value raises a *GPROFL_IRQ* and overwrites the old values in **GPR0** and **GPR1**. A new measurement is started afterwards.

If the register **CNT** produces an overflow during the measurement, the bit **CNTOFL** is set inside the register **TIM[i]_CH[x]_IRQ_NOTIFY** and interrupt *TIM_CNTOFL[x]_IRQ* is raised depending on corresponding interrupt enable condition.

If the register **ECNT** produces an overflow during the measurement, the bit **ECNTOFL** is set inside the register **TIM[i]_CH[x]_IRQ_NOTIFY** and interrupt $TIM_ECNTOFL[x]_IRQ$ is raised depending on corresponding interrupt enable condition.

If **ECNT_RESET**=0 the counter **CNT** will be reset to 0 on active edge (defined by **DSL**) of the input signal. If **ECNT_RESET**=1 the counter **CNT** will be reset to 0 on each edge of the input signal.

Assume **EXT_CAP_EN**=0 and **SWAP_CAPTURE**=0:

On every input edge to the active level defined by **DSL** will capture the data selected by **EGPR1_SEL**, **GPR1_SEL** to the registers **GPR1**. Every edge to the inactive level will capture the data selected by **CNTS_SEL** to the registers **CNTS**.

Assume **EXT_CAP_EN**=0 and **SWAP_CAPTURE**=1:

On every input edge to the inactive level defined by **DSL** will capture the data selected by **EGPR1_SEL**, **GPR1_SEL** to the registers **GPR1**. Every edge to the active level will capture the data selected by **CNTS_SEL** to the registers **CNTS**.

11.4.2.1.1 External capture TIM PWM Measurement Mode (TPWM)

If external capture is enabled **EXT_CAP_EN**=1, the pwm measurement is done continuously. The actual measurement values are captured to GPRx if an external capture event occurs.

On every external capture event the data selected by CNTS_SEL, EGPR0_SEL, GPR0_SEL will be captured to the registers CNTS, GPR0.

If SWAP_CAPTURE=0 every external capture event will capture the data selected by EGPR1_SEL, GPR1_SEL to the registers GPR1. Every input edge to the level != DSL will capture the data selected by CNTS_SEL to the registers CNTS.

If **SWAP_CAPTURE**=1 every input edge to the inactive level != **DSL** will capture the data selected by **EGPR1_SEL**, **GPR1_SEL** to the registers **GPR1**.

Assume **SWAP_CAPTURE**=0:

Operation is done depending on CMU clock, **ISL**, **DSL** bit and the input signal value defined in next table (Assume CNTS_SEL= 0):

11.4.2.1.1.1 Operation depending on CMU clock, **ISL**, **DSL** and the input signal value (Assume **CNTS_SEL**= 0)

Input signal F_OUTx	selected CMU Clock	External capture	ISL	DSL	Action description
0	1	0	-	0	CNT++
1	1	0	-	0	no

Specification

Revision 3.1.5.1

rising edge	-	0	0	0	capture CNT value in CNTS
falling edge	-	0	0	0	CNT=0
rising edge	-	0	1	0	no
falling edge	-	0	1	0	capture CNT value in CNTS; CNT=0
1	1	0	-	1	CNT++
0	1	0	-	1	no
falling edge	-	0	0	1	capture CNT value in CNTS
rising edge	-	0	0	1	CNT=0
falling edge	-	0	1	1	no
rising edge	-	0	1	1	capture CNT value in CNTS; CNT=0
-	-	rising edge	-	-	do GPRx capture ; issue NEWVAL_IRQ
-	0	0	-	-	no

The CNTS register update is not performed until the measurement is started (first edge defined by DSL is detected). Afterwards the update of the CNTS register is defined by ISL,DSL combinations in the table above.

11.4.2.2 TIM Pulse Integration Mode (TPIM)

In TIM Pulse Integration Mode each TIM channel is able to measure a sum of pulse high or low times on an input signal, depending on the selected signal level bit **DSL** of register **TIM[i]_CH[x]_CTRL** register.

If **IMM_START**=0 the pulse integration measurement is started with occurrence of the first edge defined by DSL on the input signal. If **IMM_START**=1 the measurement starts immediately after activating the channel by **TIM_EN**=1.

The pulse times are measured by incrementing the TIM channel counter **CNT** until the counter is stopped with occurance of a input signal edge to the opposite signal level defined by **DSL**.

The counter **CNT** counts with the *CMU_CLKx* clock specified by the *CLK_SEL* bit field of the **TIM[i]_CH[x]_CTRL** register.

The **CNT** register is reset at the time the channel is activated (enabling via AEI write access) and it accumulates pulses while the channel is staying enabled.

Assume **EXT_CAP_EN**=0 and **SWAP_CAPTURE**=0:

After measurement is started, every falling(DSL=1) or rising(DSL=0) input edge will issue a *TIM_NEWVALx_IRQ* interrupt, and the registers **CNTS**, **GPR0** and **GPR1** are updated according to settings of its corresponding input multiplexers, using the bits **EGPR0_SEL**, **EGPR1_SEL**, **GPR0_SEL**, **GPR1_SEL** and **CNTS_SEL**. It should be noted, that the bits 1 to 7 of the **ECNT** may be used to check data consistency of the registers **GPR0** and **GPR1**.

Assume **EXT_CAP_EN**=0 and **SWAP_CAPTURE**=1:

After measurement is started, every falling(DSL=1) or rising(DSL=0) input edge will issue a *TIM_NEWVALx_IRQ* interrupt, and the registers **CNTS**, **GPR0** are updated according to settings of its corresponding input multiplexers, using the bits **EGPR0_SEL**, **GPR0_SEL** and **CNTS_SEL**.

Every input edge to the active level defined by **DSL** (rising DSL=1;falling DSL=0) will capture the data selected by **EGPR1_SEL**, **GPR1_SEL** to the registers **GPR1**.

When the **ARU_EN** bit is set inside the **TIM[i]_CH[x]_CTRL** register the measurement results of the registers **GPR0** and **GPR1** can be send to subsequent sub-modules attached to the ARU.

11.4.2.2.1 External capture TIM Pulse Integration Mode (TPIM)

If external capture is enabled **EXT_CAP_EN**=1, the pulse integration is done until next external capture event occurs.

On every external capture event the data selected by CNTS_SEL, EGPR0_SEL, GPR0_SEL will be captured to the registers CNTS, GPR0.

If SWAP_CAPTURE=0 every external capture event will capture the data selected by EGPR1_SEL, GPR1_SEL to the registers GPR1.

If **SWAP_CAPTURE**=1 every input edge to the inactive level != **DSL** will capture the data selected by **EGPR1_SEL**, **GPR1_SEL** to the registers **GPR1**.

Assume **SWAP_CAPTURE**=0; **IMM_START**=0:

Operation is done depending on CMU clock, **DSL** bit and the input signal value defined in next table (inc_cnt = false if TIM channel is enabled) :

11.4.2.2.1.1 Operation depending on CMU clock, DSL and the input s	signal value
(inc_cnt = false if TIM channel is enabled)	

Input signal F_OUTx	selected CMU Clock	External capture	ISL	DSL	Action description
falling edge	-	0	-	0	inc_cnt = true

Specification

Revision 3.1.5.1

rising edge	-	0	-	0	<pre>if inc_cnt == true then { do capture GPRx, CNTS ; issue NEWVAL_IRQ } inc_cnt = false</pre>
rising edge	-	0	-	1	inc_cnt = true
falling edge	-	0	-	1	<pre>if inc_cnt == true then { do capture GPRx, CNTS ; issue NEWVAL_IRQ } inc_cnt = false</pre>
-	1	0	-	-	<pre>if inc_cnt == true then CNT++;</pre>
-	-	rising edge	-	-	do capture GPRx, CNTS ; issue NEWVAL_IRQ; CNT=0
-	0	0	-	-	no

11.4.2.3 TIM Input Event Mode (TIEM)

In TIM Input Event Mode the TIM channel is able to count edges. It is configurable if rising, falling or both edges should be counted. This can be done with the bit fields **DSL** and **ISL** in **TIM[i]_CH[x]_CTRL** register.

In addition, a *TIM[i]_NEWVAL[x]_IRQ* interrupt is raised when the configured edge was received and this interrupt was enabled.

The counter register **CNT** is used to count the number of edges, and the bit fields **EGPR0_SEL**, **EGPR1_SEL**, **GPR0_SEL**, **GPR1_SEL**, and **CNTS_SEL** can be used to configure the desired update values for the registers **GPR0**, **GPR1** and **CNTS**. These register are updated whenever the edge counter **CNT** is incremented due to the arrival of a desired edge.

If the preceding data was not consumed by a reader attached to the ARU or by the CPU the TIM channel sets **GPROFL** status bit and raises a *GPROFL*[x]_IRQ if it was enabled in **TIM**[i]_CH[x]_IRQ_EN register and overwrites the old values in **GPR0** and **GPR1** with the new ones.

If the register **CNT** produces an overflow during the measurement, the bit **CNTOFL** is set inside the register **TIM[i]_CH[x]_IRQ_NOTIFY** and interrupt *TIM_CNTOFL[x]_IRQ* is raised depending on corresponding interrupt enable condition.

If the register **ECNT** produces an overflow during the measurement, the bit **ECNTOFL** is set inside the register **TIM[i]_CH[x]_IRQ_NOTIFY** and interrupt $TIM_ECNTOFL[x]_IRQ$ is raised depending on corresponding interrupt enable condition.

The TIM Input Event Mode does not depend on the bit field **CLK_SEL** of register **TIM[i]_CH[x]_CTRL**.

11.4.2.3.1 External capture TIM Input Event Mode (TIEM)

If external capture is enabled, capturing is done depending on the **DSL**, **ISL** bit and the input signal value defined in next table:

11.4.2.3.1.1	Capturing	depended	on	the	DSL,	ISL	and	the	input	signal	value,	if
e>	cternal capt	ure is enab	led									

Input signal F_OUTx	External capture	ISL	DSL	Action description
-	rising edge	1	-	do capture; issue NEWVAL_IRQ; CNT++
-	0	1	-	no
1	rising edge	0	1	<pre>do capture; issue NEWVAL_IRQ; CNT++</pre>
0	-	0	1	no
0	rising edge	0	0	do capture; issue NEWVAL_IRQ; CNT++
1	-	0	0	no

11.4.2.4 TIM Input Prescaler Mode (TIPM)

In the TIM Input Prescaler Mode the number of edges which should be detected before a *TIM[i]_NEWVAL[x]_IRQ* is raised is programmable. In this mode it must be specified in the **CNTS** register after how many edges the interrupt has to be raised.

A value of 0 in **CNTS** means that after one edge an interrupt is raised and a value of 1 means that after two edges an interrupt is raised, and so on.

The edges to be counted can be selected by the bit fields **DSL** and **ISL** of register **TIM[i]_CH[x]_CTRL**.

With each triggered interrupt, the registers **GPR0** and **GPR1** are updated according to bits **EGPR0_SEL**, **EGPR1_SEL**, **GPR0_SEL** and **GPR1_SEL**.

If the register **ECNT** produces an overflow during the measurement, the bit **ECNTOFL** is set inside the register **TIM[i]_CH[x]_IRQ_NOTIFY** and interrupt

TIM_ECNTOFL[x]_IRQ is raised depending on corresponding interrupt enable condition.

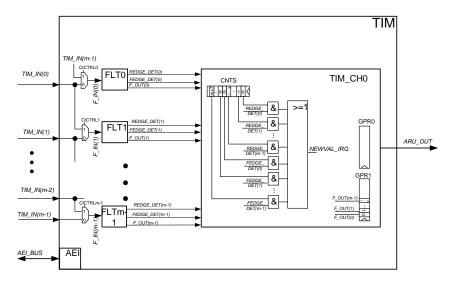
The TIM Input Prescaler Mode does not depend on the bit field **CLK_SEL** of register **TIM[i]_CH[x]_CTRL**.

11.4.2.4.1 External capture TIM Input Prescaler Mode (TIPM)

If external capture is enabled, the external capture events are counted instead of the input signal edges.

Operation is done depending on the external capture signal, **DSL**, **ISL** bit and the input signal value defined in next table:

11.4.2.4.1.1	Operation depending on the external capture signal, DSL, ISL and the	,
in	iput signal value	


Input signal F_OUTx	External capture	ISL	DSL	Action description
-	rising edge	1	-	if CNT >= CNTS then do capture ;issue NEWVAL_IRQ; CNT=0 else CNT++ endif
-	0	1	-	no
1	rising edge	0	1	if CNT >= CNTS then do capture ;issue NEWVAL_IRQ; CNT=0 else CNT++ endif
0	-	0	1	no
0	rising edge	0	0	if CNT >= CNTS then do capture ;issue NEWVAL_IRQ; CNT=0 else CNT++ endif
1	-	0	0	no

11.4.2.5 TIM Bit Compression Mode (TBCM)

The TIM Bit Compression Mode can be used to combine all filtered input signals of a TIM sub-module to a parallel m bit data word, which can be routed to the ARU, where m is the number of channels available in the TIM sub-module.

Figure 11.4.2.5.1 gives an overview of the TIM bit compression mode.

11.4.2.5.1 TIM Bit Compression Mode

The register **CNTS** of a channel is used to configure the event that releases the $NEWVAL_IRQ$ and samples the input signals F_IN(0) to F_IN(m-1) in ascending order as a parallel data word in **GPR1**.

The bits 0 to m-1 of the **CNTS** register are used to select the *REDGE_DET* signals of the TIM filters 0 to m-1 as a sampling event, and the bits 8 to (7+m) are used to select the *FEDGE_DET* signals of the TIM filters 0 to m-1, respectively. If multiple events are selected, the events are OR-combined (see also Figure 11.4.2.5.1).

EGPR0_SEL, **GPR0_SEL** selects the timestamp value, which is routed through the ARU. **GPR1_SEL** is not applicable in TBCM mode.

If the bit **ARU_EN** of register **TIM[i]_CH[x]_CTRL** is set, the sampled data of register **GPR1** is routed together with a time stamp of register **GPR0** to the ARU, whenever the NEWVAL_IRQ is released.

In TIM Bit compression mode, the register **ECNT** increments with each *NEWVAL_IRQ*, which means that the value of ECNT may depend on all *m* input signals. Consequently, the LSB of **ECNT** does not reflect the actual level of the input signal TIM_IN(x).

If the register **ECNT** produces an overflow during the measurement, the bit **ECNTOFL** is set inside the register **TIM[i]_CH[x]_IRQ_NOTIFY** and interrupt $TIM_ECNTOFL[x]_IRQ$ is raised depending on corresponding interrupt enable condition.

The TIM Bit Compression Mode does not depend on the bit field **CLK_SEL** of register **TIM[i]_CH[x]_CTRL**.

11.4.2.5.2 External capture Bit Compression Mode (TBCM)

If external capture is enabled, capturing is done depending on the **DSL**, **ISL** bit and the input signal value defined in next table:

11.4.2.5.2.1 Capturing depended on the **DSL**, **ISL** and the input signal value, if external capture is enabled

Input signal F_OUTx	External capture	ISL	DSL	Action description
-	rising edge	1	-	do capture ;issue NEWVAL_IRQ; CNT++
-	0	1	-	no
1	rising edge	0	1	do capture ;issue NEWVAL_IRQ; CNT++
0	-	0	1	no
0	rising edge	0	0	do capture ;issue NEWVAL_IRQ; CNT++
1	-	0	0	no

11.4.2.6 TIM Gated Periodic Sampling Mode (TGPS)

In the TIM Gated Periodic Sampling Mode the number of CMU clock cycles which should elapse before capturing and raising *TIM[i]_NEWVAL[x]_IRQ* is programmable. In this mode it must be specified in the **CNTS** register after how many CMU clock cycles the interrupt has to be raised.

A value of 0 in **TIM[i]_CH[x]_CNTS** means that after one **CLK_SEL** edge a trigger/interrupt is raised, and a value of 1 means that after two edges a trigger/interrupt is raised, and so on.

In the **TIM[i]_CH[x]_CNT** register the elapsed cycles were incremented and compared against **TIM[i]_CH[x]_CNTS**. If **TIM[i]_CH[x]_CNT** is greater or equal to

TIM[i]_CH[x]_CNTS a trigger will be raised. This allows by writing a value to **TIM[i]_CH[x]_CNTS** that the actual period time can be changed on the fly.

Operation is done depending on CMU clock, **DSL**, **ISL** bit and the input signal value defined in next table:

11.4.2.6.1 Operation depending on CMU clock, **DSL**, **ISL** and the input signal value

Input signal F_OUTx	selected CMU Clock	External capture	ISL	DSL	Action description
-	1	0	1	-	if CNT >= CNTS then do capture ;issue NEWVAL_IRQ; CNT=0 else CNT++ endif
0	0	0	0	1	no
1	1	0	0	1	if CNT >= CNTS then do capture ;issue NEWVAL_IRQ; CNT=0 else CNT++ endif
0	0	-	0	1	no
0	1	0	0	0	if CNT >= CNTS then do capture ;issue NEWVAL_IRQ; CNT=0 else CNT++ endif
1	0	0	0	0	no
-	0	0	-	-	no

In this mode the **TIM[i]_CH[x]_GPR1** operates as a shadow register for **TIM[i]_CH[x]_CNTS**. This would allow that the period for the next sampling period could be specified. The update of **TIM[i]_CH[x]_CNTS** will only take place once on a trigger if the **TIM[i]_CH[x]_GPR1** was written by the CPU. This means that the captured value from the previous trigger can be read by the CPU from **TIM[i]_CH[x]_GPR1** and afterwards the new sampling period for the next sampling period (the one after the actual sampling period) could be written.

With each triggered interrupt, the registers **GPR0** and **GPR1** are updated according to bits **GPR0_SEL**, **GPR1_SEL**, **EGPR0_SEL** and **EGPR1_SEL**.

When selecting **ECNT** as a source for the capture registers, GPRx will show the edge count and the input signal value at point of capture. Selecting **GPR0_SEL** = '11' and **EGPR0_SEL** = '0' for TIM channel 0 all 8 TIM input signals will be captured to **GPR0[7:0]**.

In the TGPS Mode the bit field **CLK_SEL** of register **TIM[i]_CH[x]_CTRL** will define the selected CMU clock which will be used.

The behavior of the **ECNT** counter is configurable by **ECNT_RESET**. If set to 1 on each interrupt (period expired) the **ECNT** will be reset. Otherwise it operates in wrap around mode.

If the register **ECNT** produces an overflow during the measurement, the bit **ECNTOFL** is set inside the register **TIM[i]_CH[x]_IRQ_NOTIFY** and interrupt $TIM_ECNTOFL[x]_IRQ$ is raised depending on corresponding interrupt enable condition.

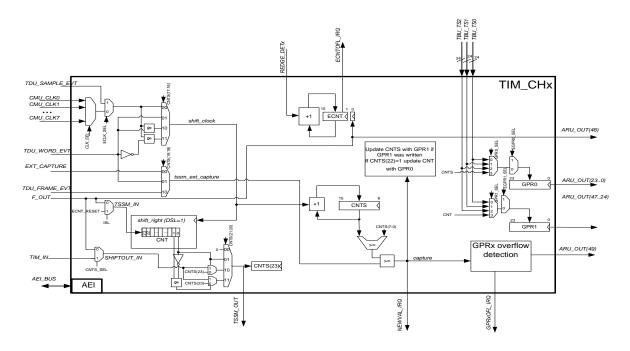
11.4.2.6.2 External capture TIM Gated Periodic Sampling Mode (TGPS)

If external capture is enabled, the external capture events will capture the GPRx, reset the counter **CNT** and issue a *NEWVAL_IRQ*.

Operation is done depending on the CMU clock, external capture signal, **DSL**, **ISL** bit and the input signal value defined in next table:

11.4.2.6.2.1 Operation depending on the CMU clock, external capture signal, **DSL**, **ISL** and the input signal value

Input signal F_OUTx	selected CMU Clock	External capture	ISL	DSL	Action description
-	1	0	1	-	if CNT >= CNTS then do capture; issue NEWVAL_IRQ; CNT=0 else CNT++ endif
0	0	0	0	1	no
1	1	0	0	1	if CNT >= CNTS then do capture; issue NEWVAL_IRQ; CNT=0 else CNT++


Specification

Revision 3.1.5.1

					endif
0	0	-	0	1	no
0	1	0	0	0	if CNT >= CNTS then do capture; issue NEWVAL_IRQ; CNT=0 else CNT++ endif
1	0	0	0	0	no
-	0	0	-	-	no
-	-	rising edge	-	-	do capture; issue NEWVAL_IRQ; CNT =0

11.4.2.7 TIM Serial Shift Mode (TSSM)

11.4.2.7.1 TIM Serial Shift Mode

In the TIM Serial Shift Mode on each shift clock event the actual value of the input signal **TSSM_INx** will be registered in dependence of **DSL** in the register **TIM[i]_CH[x]_CNT**.

If ISL=0 is set FOUTx will be used as shift in value TSSM_INx, with ISL=1 the bit field ECNT_RESET defines the value for TSSM_INx.

With DSL=0 TSSM_INx will be stored in TIM[i]_CH[x]_CNT[0] and TIM[i]_CH[x]_CNT[22:0] will be shifted left. With DSL=1 TSSM_OUTx will be stored in TIM[i]_CH[x]_CNT[23] and TIM[i]_CH[x]_CNT[23:1] will be shifted right.

Operation is done depending on the shift clock, external capture signal, **DSL**, **ISL** bit and the input signal value defined in next table:

11.4.2.7.2 Operation depending on the shift clock, external capture signal, **DSL**, **ISL** and the input signal value

Input signal TSSM_INx	shift clock	tssm_ext_captur e	ISL	DSL	Action description
-	0	0	-	-	no
-	-	1	-	-	if EXT_CAP_EN=1 then see function table in next chapter else no endif
value	1	0	0	0	CNT[23:1]= CNT[22:0]; CNT[0]= value if CNTS[15:8] >= CNTS[7:0] then do capture; issue NEWVAL_IRQ; CNTS[15:8]=0 else CNTS[15:8]++ endif
value	1	0	0	1	CNT[22:0]= CNT[23:1]; CNT[23]= value if CNTS[15:8] >= CNTS[7:0] then do capture; issue NEWVAL_IRQ; CNTS[15:8]=0 else CNTS[15:8]++ endif
value	1	0	1	0	CNT[23:1]= CNT[22:0]; CNT[0]= value if CNTS[15:8] >= CNTS[7:0] then do capture; issue NEWVAL_IRQ; CNTS[15:8]=0

Specification

Revision 3.1.5.1

					CNT[23:0]=ECNT_RESET else CNTS[15:8]++ endif
value	1	0	1	1	CNT[22:0]= CNT[23:1]; CNT[23]= value if CNTS[15:8] >= CNTS[7:0] then do capture; issue NEWVAL_IRQ; CNTS[15:8]=0 CNT[23:0]=ECNT_RESET else CNTS[15:8]++ endif

The register **TIM[i]_CH[x]_CNTS[7:0]** define the amount of bits which will be stored inside **TIM[i]_CH[x]_CNT**.

Each shift clock will increment the register $TIM[i]_CH[x]_CNTS[15:8]$. If the condition $TIM[i]_CH[x]_CNTS[15:8] >= TIM[i]_CH[x]_CNTS[7:0]$ is met a capture event is raised and $TIM[i]_NEWVAL[x]_IRQ$ is asserted.

With each capture event the registers **GPR0** and **GPR1** are updated according to bits **GPR0_SEL**, **GPR1_SEL**, **EGPR0_SEL** and **EGPR1_SEL**.

If the bit field **ISL** is set to 1 the register bits **TIM[i]_CH[x]_CNT** are set to the value defined by **ECNT_RESET** in case of a capture event.

In this mode the **TIM[i]_CH[x]_GPR1** operates as a shadow register for **TIM[i]_CH[x]_CNTS**. This allows that the amount of bits to sample can be specified. The update of **TIM[i]_CH[x]_CNTS** will only take place once on a trigger if the **TIM[i]_CH[x]_GPR1** was written by the CPU. This means that the captured value from the previous trigger can be read by the CPU from **TIM[i]_CH[x]_GPR1** and afterwards the new amount of bits to sample for the next sampling period (the one after the actual sampling period) could be written.

The shift clock which will be in use is selectable by **TIM[i]_CH[x]_CNTS[17:16]**: **b00**: source selection by **USE_TDU_CLK_SRC** is in use. It can be set to any CMU_CLK source or to the local TDU sample clock tdu_sample_evt.

b01: the tdu_word_evt signal will be used as shift clock source.

b10: the clk source selected by **USE_TDU_CLK_SRC** is used and gated with tdu_word_evt. If tdu_word_evt=0 then shift clock will be 0.

b11: the clk source selected by **USE_TDU_CLK_SRC** is used and gated with tdu_word_evt. If tdu_word_evt=1 then shift clock will be 0.

BOSCH

11.4.2.7.3 Signal Generation with TIM Serial Shift Mode

If TIM[i]_CH[x]_CNTS[22] is 1 the TIM[i]_CH[x]_GPR0 operates as a shadow register for TIM[i]_CH[x]_CNT. This allows that the bits for shifting out can be specified. The update of TIM[i]_CH[x]_CNT will only take place once on a trigger if the TIM[i]_CH[x]_GPR0 was written by the CPU. This means that the captured value from the previous trigger can be read by the CPU from TIM[i]_CH[x]_GPR0 and afterwards the new bits to shift out could be written.

In addition the TIM Serial Shift Mode is able to generate a signal **TSSM_OUT** which can be used internally to the TIM channel.

On each system clock the value for **TSSM_OUT** is generated as defined next. The actual value can be read by the register bit **TIM[i]_CH[x]_CNTS[23]**.

Following functionality for **TSSM_OUTx** is selectable by **TIM[i]_CH[x]_CNTS[21:20]**: **b00**: Constant output; **TSSM_OUTx** = 0.

b01: Shift output; If **DSL**=0 (shift left) then **TSSM_OUTx** = **TIM[i]_CH[x]_CNT[23]** else (shift right) **TSSM_OUTx** = **TIM[i]_CH[x]_CNT[0]**.

b10: Latched output; If **DSL**=0 and **TIM[i]_CH[x]_CNT[23]**=1 then **TSSM_OUTx** = **SHIFTOUT_INx** elsif **DSL**=1 and **TIM[i]_CH[x]_CNT[0]**=1 then **TSSM_OUTx** = **SHIFTOUT_INx**.

b10: Registered output; If **DSL**=0 and **TIM[i]_CH[x]_CNT[23:22]**=b01 then **TSSM_OUTx = SHIFTOUT_INx** elsif **DSL**=1 and **TIM[i]_CH[x]_CNT[1:0]**=b10 then **TSSM_OUTx = SHIFTOUT_INx**.

In case of registered or latched output mode the signal **SHIFTOUT_INx** is selectable by **CNTS_SEL**.

If CNTS_SEL=0 is set FOUTx will be used for SHIFTOUT_INx, with CNTS_SEL=1 the signal TIM_INx is in us for SHIFTOUT_INx.

11.4.2.7.4 External capture TIM Serial Shift Mode (TSSM)

If external capture is enabled (**EXT_CAP_EN=1**), the external capture events will capture the GPRx, reset the counter **CNT** depending on **ISL** and issue a *NEWVAL_IRQ*. Functionality from previous table will be applied.

The source which will be used as external capture event for TSSM mode is selectable by **TIM[i]_CH[x]_CNTS[19:18]**:

b00: source selection by **EXT_CAP_SRC** is in use.

b01: tdu_word_evt signal will be used as source.

b10: tdu_frame_evt signal will be used as source.

b11: reserved

Operation is done depending on the shift clock, external capture signal, **DSL**, **ISL** bit and the input signal value defined in next table:

BOSCH Revision 3.1.5.1

GTM-IP

Specification

11.4.2.7.4.1 Operation depending on the shift clock, external capture signal, **DSL**, **ISL** and the input signal value

Input signal F_OUTx	shift clock	tssm_ext_captur e	ISL	DSL	Action description
-	0	1	1	-	do capture; issue NEWVAL_IRQ; CNTS[15:8]=0 CNT[23:0]=ECNT RESET
-	0	1	0	-	do capture; issue NEWVAL_IRQ; CNTS[15:8]=0
value	1	1	1	0	CNT[23:1]= CNT[22:0]; CNT[0]= value do capture; issue NEWVAL_IRQ; CNTS[15:8]=0 CNT[23:0]=ECNT RESET
value	1	1	1	1	CNT[22:0]= CNT[23:1]; CNT[23]= value do capture; issue NEWVAL_IRQ; CNTS[15:8]=0 CNT[23:0]=ECNT_RESET
value	1	1	0	0	CNT[23:1]= CNT[22:0]; CNT[0]= value do capture; issue NEWVAL_IRQ; CNTS[15:8]=0
value	1	1	0	1	CNT[22:0]= CNT[23:1]; CNT[23]= value do capture; issue NEWVAL_IRQ; CNTS[15:8]=0

11.5 MAP Submodule Interface

The GTM-IP provides one dedicated TIM sub-module TIM0 where channels zero (0) to five (5) are connected to the MAP sub-module described in chapter 17. There, the TIM0 sub-module channels provide the input signal level together with the actual filter value and the annotated time stamp for the edge together in a 49 bit wide signal to the MAP sub-module. This 49 bit wide data signal is marked as valid with a separate valid signal tim0_map_dval[x] (x: 0..5).

11.5.1 Structure of map data

tim0_map_data[x](48)	signal level bit from tim0_ch[x]	
tim0_map_data[x](47:24)	actual filter value TIM0_CH[x]_FLT_RE / TIM0_CH[x]_FLT_FE if corresponding channel x bit field FLT_MODE_RE / FLT_MODE_FE is 1 else 0 is assigned.	
tim0_map_data[x](23:0)	time stamp value selected by TBU0_SEL , GRP0_SEL , EGPR0_SEL , CNTS_SEL of channel x if bit field TIM_EN = 1	
tim0_map_dval[x]	mark <i>tim0_map_data[x]</i> valid for one clock cycle	

Note: With **TIM_EN**=1 the MAP interface starts operation, it is not dependent on the setting of the bit fields **TIM_MODE**, **ISL**, **DSL**.

Note: While the MAP interface is in use the following guidelines have to be fulfilled, otherwise inconsistent filter values can be transferred.

Change **TIM0_CH[x]_FLT_RE** only between occurrence of rising and falling edge. Change **TIM0_CH[x]_FLT_FE** only between occurrence of falling and rising edge.

11.6 TIM Interrupt Signals

11.6.1 TIM Interrupt Signals Table

Signal	Description	
TIM[i]_NEWVAL[x]_IRQ	New measurement value detected by SMU of channel x (x: 0m-1)	
TIM[i]_ECNTOFL[x]_IRQ	ECNT counter overflow of channel x (x: 0m-1)	
TIM[i]_CNTOFL[x]_IRQ	SMU CNT counter overflow of channel x (x: 0m-1)	
TIM[i]_GPROFL[x]_IRQ	GPR0 and GPR1 data overflow, old data was not read out before new data has arrived at input pin of channel x (x: 0m-1)	
TIM[i]_TODET[x]_IRQ	Time out reached for input signal of channel x (x: 0m 1)	
TIM[i]_GLITCHDET[x]_IRQ	A glitch was detected by the TIM filter of channel x (x: 0m-1)	

11.7 TIM Configuration Register Overview

11.7.1 TIM Configuration Register Overview Table

Register Name	Description	Detail in Section
TIM[i]_CH[x]_CTRL	TIMi channel x control register	11.8.1
TIM0_CH[x]_CTRL	TIM 0 channel x control register	11.8.2
TIM[i]_CH[x]_ECTRL	TIMi channel x extended control register	11.8.19
TIM[i]_CH[x]_FLT_RE	TIMi channel x filter parameter 0 register	11.8.3
TIM[i]_CH[x]_FLT_FE	TIMi channel x filter parameter 1 register	11.8.4
TIM[i]_CH[x]_TDUV	TIMi channel x TDU control register	11.8.16
TIM[i]_CH[x]_TDUC	TIMi channel x TDU counter register	11.8.17
TIM[i]_CH[x]_GPR0	TIMi channel x general purpose 0 register	11.8.5
TIM[i]_CH[x]_GPR1	TIMi channel x general purpose 1 register	11.8.6
TIM[i]_CH[x]_CNT	TIMi channel x SMU counter register	11.8.7
TIM[i]_CH[x]_ECNT	TIMi channel x SMU edge counter register	11.8.18
TIM[i]_CH[x]_CNTS	TIMi channel x SMU shadow counter register	11.8.8
TIM[i]_CH[x]_IRQ_NOTIFY	TIMi channel x interrupt notification register	11.8.9
TIM[i]_CH[x]_IRQ_EN	TIMi channel x interrupt enable register	11.8.10
TIM[i]_CH[x]_EIRQ_EN	TIMi channel x error interrupt enable register	11.8.15
TIM[i]_CH[x]_IRQ_FORCINT	TIMi channel x force interrupt register	11.8.11
TIM[i]_CH[x]_IRQ_MODE	TIMi interrupt mode configuration register	11.8.12
TIM[i]_RST	TIMi global software reset register	11.8.11

Specification

Revision 3.1.5.1

TIM[i]_IN_SRC	TIMi AUX IN source selection register	11.8.14
TIM[i]_INP_VAL	TIMi input value observation register	11.8.20

11.8 TIM Configuration Registers Description

11.8.1 Register TIM[i]_CH[x]_CTRL

Address Offset:	see Appendix B									Initial Value:							0x0000_0000							
	31 30	29	28	27	26 25 24	23	22	21	20	19	18 17	16	15	14	13	12	11 10	9 8	7	9	5	4	3 2 1	0
Bit	TOCTRL	EGPR1_SEL	EGPR0_SEL	FR_ECNT_OFL	CLK_SEL	FLT_CTR_FE	FLT_MODE_FE	FLT_CTR_RE	FLT_MODE_RE	EXT_CAP_EN	FLT_CNT_FRQ	FLT_EN	ECNT_RESET	ISL	DSL	CNTS_SEL	GPR1_SEL	GPR0_SEL	Reserved	CICTRL	ARU_EN	OSM	TIM_MODE	TIMEN
Mode	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	æ	RW	RW	RW	RW	RW
Initial Value	00	0	0	0	000	0	0	0	0	0	00	0	0	0	0	0	00	00	0	0	0	0	000	0
	 0 = Channel disabled 1 = Channel enabled Note: Enabling of the channel resets the registers ECNT, TIM[i]_CH[x]_CNT, TIM[i]_CH[x]_GPR0, and TIM[i]_CH[x]_GPR1 to their reset values. Note: After finishing the action in one-shot mode the TIM_EN bit is 												nd											
Bit 3:1	0b0 0b0 0b0 0b1 0b1	1_1)0()1()11 .0(VIC) =] = [=] =	D P In In B G	ed auto E: TIM WM M ulse In put Ev put Pre it Com ated P	cł ea teg en eso pre	nai su gra t N cal ess iod	nn rei tic Ier sio lic	el me on de M n l Sa	x (ent Me (1 oc Mc arr	(x:0 Moc ode (FIEM le (T ode (ppling	.7) de (TF) IP TE g N) m (T >IN M) 3C	оо Р\ Л) М)	de VN	Л)				ca		uı	nanua	ıy.

0b110 = Serial Shift Mode (TSSM)

197/868

Automotive E	lectronics	BOSCH
GTM-IP	Specification	Revision 3.1.5.1
	Note: If an undefined value is written to the TIM hardware switches automatically to TIM_MO mode).	
	 Note: The TIM_MODE register should not be chachannel is enabled. Note: If the TIM channel is enabled and operating mode after the first valid edge defined by I reconfiguration of DSL,ISL,TIM_MODE will not behavior. Reading these bit fields after reconfigured settings but the initial char change. Only a disabling of the TIM channel behavior. 	g in TPWM or TPIM DSL has occurred, a ot change the channel guration will show the nnel behavior will not by setting TIM_EN= 0
Bit 4	OSM: One-shot mode 0 = Continuous operation mode 1 = One-shot mode Note : After finishing the action in one-shot mod	e the TIM FN hit is
Bit 5	cleared automatically. ARU_EN: GPR0 and GPR1 register values routed 0 = Registers content not routed	
Bit 6	 1 = Registers content routed CICTRL: Channel Input Control. 0 = use signal TIM_IN(x) as input for channel x 1 = use signal TIM_IN(x-1) as input for channel x (-0) 	or TIM_IN(m-1) if x is
Bit 7	Reserved: Reserved	
Bit 9:8	Note: Read as zero, should be written as zero GPR0_SEL: Selection for GPR0 register EGPR0_SEL =0 / EGPR0_SEL =1 : 0b00 = use TBU_TS0 as input / use ECNT as input 0b01 = use TBU_TS1 as input / use TIM_INP_VAL 0b10 = use TBU_TS2 as input / reserved 0b11 = use CNTS as input; if TGPS mode in chan TIM Filter F_OUT as input / reserved	as input
	Note: If a reserved value is written to the EGPR0_ fields , the hardware will use TBU_TS0 input.	_SEL, GPR0_SEL bit
Bit 11:10	GPR1_SEL: Selection for GPR1 register EGPR1_SEL =0 / EGPR1_SEL =1 : 0b00 = use TBU_TS0 as input / use ECNT as input 0b01 = use TBU_TS1 as input / use TIM_INP_VAL	

- 0b01 = use TBU_TS1 as input / use TIM_INP_VAL as input
- 0b10 = use TBU_TS2 as input / reserved
- 0b11 = use CNT as input / reserved

Revision 3.1.5.1 GTM-IP Specification Note: In TBCM mode: EGPR1 SEL=1, GPR1 SEL=01 selects TIM INP VAL as input, in all other cases TIM Filter F OUT is used Note: If a reserved value is written to the EGPR1 SEL, GPR1 SEL bit fields, the hardware will use TBU TS0 input. Bit 12 **CNTS SEL:** Selection for CNTS register 0 = use CNT register as input 1 = use TBU TS0 as input Note: CNTS SEL in TSSM mode selects the source signal for registered or latched shift out operation. 0 = use F OUTx 1 = use TIM INx Bit 13 **DSL:** Signal level control 0 = Measurement starts with falling edge (low level measurement) 1 = Measurement starts with rising edge (high level measurement) Note: In TIM MODE=0b110 (TSSM) the bit field DSL defines the shift direction. 0 =Shift left 1 = Shift right Bit 14 **ISL:** Ignore signal level 0 = use DSL bit for selecting active signal level (TIEM) 1 = ignore DSL and treat both edges as active edge (TIEM) This bit is mode dependent and will have different meanings (see details in the TIM Channel mode description). Bit 15 **ECNT_RESET:** Enables resetting of counter in certain modes If TIM_MODE=0b101 (TGPS) / TIM MODE=0b000 (TPWM) 0 = ECNT counter operating in wrap around mode / ECNT counter operating in wrap around mode, CNT is reset on active input edge defined by DSL 1 = ECNT counter is reset with periodic sampling / ECNT counter operating in wrap around mode, CNT is reset on active and inactive input edge else ECNT counter operating in wrap around mode; Note: In TIM MODE=0b110 (TSSM) the bit field ECNT_RESET defines the initial polarity for the shift register. **FLT EN:** Filter enable for channel x (x:0...7) Bit 16 0 = Filter disabled and internal states are reset 1 = Filter enabled

GTM-IP	Specification	Revision 3.1.5.1
	Note: If the filter is disabled all filter related unit bypassed, which means that the signal <i>F_I</i> signal <i>F_OUT</i> .	.
Bit 18:17	FLT_CNT_FRQ: Filter counter frequency select 0b00 = FLT_CNT counts with <i>CMU_CLK0</i> 0b01 = FLT_CNT counts with <i>CMU_CLK1</i> 0b10 = FLT_CNT counts with <i>CMU_CLK6</i> 0b11 = FLT_CNT counts with <i>CMU_CLK7</i>	
Bit 19	EXT_CAP_EN: Enables external capture mode. T is only sensitive to external capture pulses the inp ignored. 0 = External capture disabled 1 = External capture enabled	
Bit 20	FLT_MODE_RE: Filter mode for rising edge. 0 = Immediate edge propagation mode 1 = individual de-glitch mode	
Bit 21	 FLT_CTR_RE: Filter counter mode for rising edge If FLT_MODE_RE=1 / FLT_MODE_RE=0 EFLT_CTR_RE,FLT_CTR_RE: 0b00 = Up-Down Counter individual de-glitch mode 0b01 = Hold Counter individual de-glitch mode 0b10 = Reset Counter individual de-glitch mode / 0b10 = reserved / reserved 	ode / Immediate edge le / Immediate edge
Bit 22	FLT_MODE_FE: Filter mode for falling edge. 0 = Immediate edge propagation mode 1 = individual de-glitch mode	
Bit 23	 FLT_CTR_FE: Filter counter mode for falling edge If FLT_MODE_FE=1 / FLT_MODE_FE=0 EFLT_CTR_FE ,FLT_CTR_FE: 0b00 = Up-Down Counter individual de-glitch mode 0b01 = Hold Counter individual de-glitch mode 0b10 = Reset Counter individual de-glitch mode / 0b10 = reserved / reserved 	ode / Immediate edge le / Immediate edge
Bit 26:24	CLK_SEL: CMU clock source select for channel. If ECLK_SEL =0 / ECLK_SEL =1: 0b000 = CMU_CLK0 selected / tdu_sample_evt or 0b001 = CMU_CLK1 selected / reserved 0b010 = CMU_CLK2 selected / reserved 0b011 = CMU_CLK3 selected / reserved	f TDU selected

GTM-IP	Specification	Revision 3.1.5.1
	0b100 = CMU_CLK4 selected / reserved	
	0b101 = CMU_CLK5 selected / reserved	
	0b110 = CMU_CLK6 selected / reserved	
	0b111 = CMU_CLK7 selected / reserved	
Bit 27	FR_ECNT_OFL: Extended Edge counter overflow be	ehavior
	0 = Overflow will be signaled on ECNT bit width = 8	
	1 = Overflow will be signaled on EECNT bit width (ful	l range)
Bit 28	EGPR0_SEL: Extension of GPR0_SEL bit field.	
	Details described in GPR0_SEL bit field.	
Bit 29	EGPR1_SEL: Extension of GPR1_SEL bit field.	
	Details described in GPR1_SEL bit field.	
Bit 31:30	TOCTRL: Timeout control	
	0b00 = Timeout feature disabled	
	0b11 = Timeout feature enabled for both edges	
	0b01 = Timeout feature enabled for rising edge only	
	0b10 = Timeout feature enabled for falling edge only	
	Note: It has to mention that writing of TOCTRL= 0 we the TDU, independent of the previous state of T	

11.8.2 Register TIM[i]_CH[x]_CTRL (i:0)

Address Offset:	se	see Appendix B									Initial Value:							0x0000_0000														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	3	2	1	0
Bit	TOCTRL		EGPR1_SEL	EGPR0_SEL	FR_ECNT_OFL		CLK_SEL		FLT_CTR_FE	FLT_MODE_FE	FLT_CTR_RE	FLT_MODE_RE	Ξ.	ELT CNT ERO		FLT_EN	ECNT_RESET	ISL	DSL	CNTS_SEL	GDR1 SEI		GPRO SFI		TBU0_SEL	CICTRL	ARU_EN	OSM		TIM_MODE		TIMEN
Mode	RW		RW	RW	RW		RW		RW	RW	RW	RW	RW	RW		RW	RW	RW	RW	RW	ЪW		RW		RW	RW	RW	RW		RW		RW
Initial Value	00		0	0	0		000		0	0	0	0	0	00	8	0	0	0	0	0	υu	8	00	8	0	0	0	0		000		0
Bit 0			_			TIN iel					Х	(x	:0.	n	n-1	L)	en	ab	le	-			-			-		-	-			

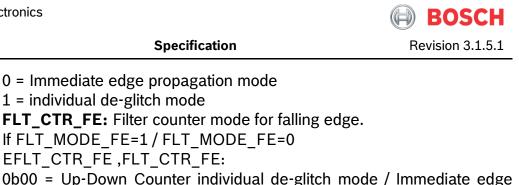
1 = Channel enabled

Note: Enabling of the channel resets the registers ECNT, TIM[i]_CH[x]_CNT, TIM[i]_CH[x]_GPR0, and TIM[i]_CH[x]_GPR1 to their reset values.

Note: After finishing the action in one-shot mode the TIM_EN bit is cleared automatically. Otherwise, the bit must be cleared manually.

Bit 3:1	TIM_MODE: TIM channel x (x:0m-1) mode 0b000 = PWM Measurement Mode (TPWM) 0b001 = Pulse Integration Mode (TPIM) 0b010 = Input Event Mode (TIEM) 0b011 = Input Prescaler Mode (TIPM) 0b100 = Bit Compression Mode (TBCM) 0b101 = Gated Periodic Sampling Mode (TGPS) 0b110 = Serial Shift Mode (TSSM)
	Note: If an undefined value is written to the TIM_MODE register, the hardware switches automatically to TIM_MODE = 0b000 (TPWM mode).
	 Note: The TIM_MODE register should not be changed while the TIM channel is enabled. Note: If the TIM channel is enabled and operating in TPWM or TPIM mode after the first valid edge defined by DSL has occurred, a reconfiguration of DSL,ISL,TIM_MODE will not change the channel behavior. Reading these bit fields after reconfiguration will show the newly configured settings but the initial channel behavior will not change. Only a disabling of the TIM channel by setting TIM_EN= 0 and reenabling with TIM_EN= 1 will change the channel operation mode.
Bit 4	 OSM: One-shot mode 0 = Continuous operation mode 1 = One-shot mode Note: After finishing the action in one-shot mode the TIM_EN bit is cleared automatically.
Bit 5	ARU_EN: GPR0 and GPR1 register values routed to ARU 0 = Registers content not routed 1 = Registers content routed
Bit 6	CICTRL: Channel Input Control. 0 = use signal TIM_IN(x) as input for channel x 1 = use signal TIM_IN(x-1) as input for channel x (or TIM_IN(m-1) if x is 0)
Bit 7	<pre>TBU0_SEL: TBU_TS0 bits input select for TIM0_CH[x]_GPRz (z: 0, 1) 0 = Use TBU_TS0(230) to store in TIM0_CH[x]_GPR0/TIM0_CH[x]_GPR1 1 = Use TBU_TS0(263) to store in TIM0_CH[x]_GPR0/TIM0_CH[x]_GPR1</pre>
Bit 9:8	Note : This bit is only applicable for TIM0 GPR0_SEL: Selection for GPR0 register If EGPR0_SEL =0 / EGPR0_SEL =1 :

	0b00 = use TBU_TS0 as input / use ECNT as input 0b01 = use TBU_TS1 as input / use TIM_INP_VAL as input 0b10 = use TBU_TS2 as input / reserved 0b11 = use CNTS as input; if TGPS mode in channel = 0 is selected use TIM Filter F_OUT as input / reserved
	Note: If a reserved value is written to the EGPR0_SEL, GPR0_SEL bit fields , the hardware will use TBU_TS0 input.
Bit 11:10	GPR1_SEL: Selection for GPR1 register If EGPR1_SEL =0 / EGPR1_SEL =1: 0b00 = use TBU_TS0 as input / use ECNT as input 0b01 = use TBU_TS1 as input / use TIM_INP_VAL as input 0b10 = use TBU_TS2 as input / reserved 0b11 = use CNT as input / reserved Note: In TBCM mode: EGPR1_SEL=1, GPR1_SEL=01 selects TIM_INP_VAL as input, in all other cases TIM Filter F_OUT is used
	Note: If a reserved value is written to the EGPR1_SEL, GPR1_SEL bit fields , the hardware will use TBU_TS0 input.
Bit 12	<pre>CNTS_SEL: Selection for CNTS register 0 = use CNT register as input 1 = use TBU_TS0 as input Note: The functionality of the CNTS_SEL is disabled in the modes TIPM,TGPS and TBCM.</pre>
	Note: CNTS_SEL in TSSM mode selects the source signal for registered or latched shift out operation. 0 = use F_OUTx 1 = use TIM_INx
Bit 13	 DSL: Signal level control 0 = Measurement starts with falling edge (low level measurement) 1 = Measurement starts with rising edge (high level measurement)
	<pre>Note: In TIM_MODE=0b110 (TSSM) the bit field DSL defines the shift direction. 0 = Shift left 1 = Shift right</pre>
Bit 14	 ISL: Ignore signal level 0 = use DSL bit for selecting active signal level (TIEM) 1 = ignore DSL and treat both edges as active edge (TIEM) This bit is mode dependent and will have different meanings (see details in the TIM Channel mode description).


Specification

Confidential

GTM-IP	Specification	Revision 3.1.5.1
Bit 15	 ECNT_RESET: Enables resetting of counter in cert If TIM_MODE=0b101 (TGPS) / TIM_MODE=0b000 0 = ECNT counter operating in wrap around mode, CNT is reset defined by DSL 1 = ECNT counter is reset with periodic sampli operating in wrap around mode, CNT is reset of 	(TPWM) ode / ECNT counter on active input edge ing / ECNT counter
	else ECNT counter operating in wrap around mode;	
Bit 16	Note: In TIM_MODE=0b110 (TSSM) the bit field E0 the initial polarity for the shift register. FLT_EN: Filter enable for channel x (x:0m-1)	CNT_RESET defines
	 0 = Filter disabled and internal states are reset 1 = Filter enabled Note: If the filter is disabled all filter related units bypassed, which means that the signal <i>F_IN</i> signal <i>F_OUT</i>. 	
Bit 18:17	FLT_CNT_FRQ: Filter counter frequency select 0b00 = FLT_CNT counts with <i>CMU_CLK0</i> 0b01 = FLT_CNT counts with <i>CMU_CLK1</i> 0b10 = FLT_CNT counts with <i>CMU_CLK6</i> 0b11 = FLT_CNT counts with <i>CMU_CLK7</i>	
Bit 19	EXT_CAP_EN: Enables external capture mode. Th is only sensitive to external capture pulses the inpulignored. 0 = External capture disabled 1 = External capture enabled	
Bit 20	FLT_MODE_RE: Filter mode for rising edge. 0 = Immediate edge propagation mode 1 = individual de-glitch mode	
Bit 21	 FLT_CTR_RE: Filter counter mode for rising edge. If FLT_MODE_RE=1 / FLT_MODE_RE=0 EFLT_CTR_RE, FLT_CTR_RE: 0b00 = Up-Down Counter individual de-glitch mode 0b01 = Hold Counter individual de-glitch mode 0b01 = Hold Counter individual de-glitch mode 0b10 = Reset Counter individual de-glitch mode / re 0b11 = reserved / reserved 	e / Immediate edge

Bit 22 **FLT_MODE_FE:** Filter mode for falling edge.

Bit 23

•		0			0
propagation mode					
0b01 = Hold Counter	individual	de-glitch	mode /	Immediate	edge
propagation mode					

0b10 = Reset Counter individual de-glitch mode / reserved

Specification

0b11 = reserved / reserved

1 = individual de-glitch mode

EFLT CTR FE, FLT CTR FE:

- Bit 26:24 CLK SEL: CMU clock source select for channel. IF ECLK SEL =0 / ECLK SEL =1: 0b000 = CMU CLK0 selected / tdu sample evt of TDU selected 0b001 = CMU CLK1 selected / reserved 0b010 = CMU CLK2 selected / reserved 0b011 = CMU_CLK3 selected / reserved 0b100 = CMU CLK4 selected / reserved 0b101 = CMU CLK5 selected / reserved 0b110 = CMU CLK6 selected / reserved 0b111 = CMU CLK7 selected / reserved Bit 27 FR_ECNT_OFL: Extended Edge counter overflow behavior 0 = Overflow will be signaled on ECNT bit width = 8 1 = Overflow will be signaled on EECNT bit width (full range) Bit 28 **EGPR0 SEL:** Extension of GPR0 SEL bit field. Details described in GPR0 SEL bit field. Bit 29 **EGPR1 SEL:** Extension of GPR1 SEL bit field. Details described in GPR1 SEL bit field.
- **TOCTRL:** Timeout control Bit 31:30 0b00 = Timeout feature disabled 0b01 = Timeout feature enabled for rising edge only 0b10 = Timeout feature enabled for falling edge only 0b11 = Timeout feature enabled for both edges

11.8.3 Register TIM[i] CH[x] FLT RE

Note: It has to mention that writing of TOCTRL= 0 will every time stop the TDU, independent of the previous state of TOCTRL.

Specification

Address Offset:	see Appendix B		Initial Value:	0x0000_0000								
	31 30 29 28 27 26 25 25 25	23 22 21 21 20 19 18 17 17	15 14 13 13 12 11 10 9	8 6 7 0 0 1 1 2 3 3 4 5 5 6 7 1 8								
Bit	Reserved		FLT_RE									
Mode	٣	≩ ₽										
Initial Value	00×0	0 0 0 0 0 0 0 0 0										
Bit 23:0	FLT_RE: Filter parameter for rising edge. Note: FLT_RE has different meanings in the various filter modes. Immediate edge propagation mode = acceptance time for rising edge Individual deglitch time mode = deglitch time for rising edge											

Bit 31:24 **Reserved:** Reserved **Note:** Read as zero, should be written as zero

11.8.4 Register TIM[i]_CH[x]_FLT_FE

Address Offset:	see Appendix B		Initial Value:	0x0000_0000
	31 30 29 28 27 26 25 25	23 22 21 21 20 19 18 17 17	15 14 13 12 11 11 10 9 8	7 6 6 7 3 3 3 3 1 1 1 0
Bit	Reserved		ЭЧ	
Mode	٣		RW	
Initial Value	00000		00000	

Bit 23:0 **FLT_FE:** Filter parameter for falling edge. **Note:** FLT_FE has different meanings in the various filter modes. Immediate edge propagation mode = acceptance time for falling edge Individual deglitch time mode = deglitch time for falling edge

Bit 31:24 **Reserved:** Reserved **Note:** Read as zero, should be written as zero

Specification

11.8.5 Register TIM[i]_CH[x]_GPR0

Address Offset:	see Appendix B		Initial Value:	0x0X00_0000
	31 30 29 28 27 26 25 25	23 22 21 20 20 19 18 17 17	15 14 13 13 12 11 11 9 8	7 6 6 7 3 3 3 1 1 0
Bit	ECNT		GPRO	
Mode	۲		۲	
Initial Value	00×0		000000 00	

Bit 23:0 GPR0: Input signal characteristic parameter 0. Note: The content of this register has different meaning for the TIM channels modes. The content directly depends on the bit fields EGPR0 SEL, GPR0 SEL of register TIM[i] CH[x] CTRL.

Bit 31:24 **ECNT:** Edge counter.

Note: The **ECNT** counts every incoming filtered edge (rising and falling). The counter value is uneven in case of detected rising, and even in case of detected falling edge. Thus, the input signal level is part of the counter and can be obtained by bit 0 of **ECNT**.

Note: The **ECNT** register is reset to its initial value when the channel is enabled. Please note, that bit 0 depends on the input level coming from the filter unit and defines the reset value immediately.

11.8.6 Register TIM[i]_CH[x]_GPR1

Address Offset:	see Appendix B		Initial Value:	0x0X00_0000			
	31 30 29 27 27 26 26 26 25 24 23 23	22 21 20 19 18 17 16	15 14 13 13 12 11 10 9 8	7 5 3 3 3 2 1 1			
Bit	ECNT		GPR1				
Mode	۲		RPw				
Initial Value	00×0		000000 00				

Automotive E	Electronics	BOSCH
GTM-IP	Specification	Revision 3.1.5.1
Bit 23:0	GPR1: Input signal characteristic parameter 1. Note: The content of this register has different channels modes. The content directly dep EGPR1_SEL , GPR1_SEL of register TIM[i]	pends on the bit fields
	Note: In TBCM mode if EGPR1_SEL=1, TIM_INP_VAL is used as input in all other c is used as input and Bits GPR1(23:8) = 0	
DH 21.04	Note: The content of this register can only be mode TGPS and TSSM.	written in TIM channel
Bit 31:24	ECNT: Edge counter. Note: The ECNT counts every incoming filtered e The counter value is uneven in case of dete case of detected falling edge. Thus, the inp the counter and can be obtained by bit 0 of	cted rising, and even in ut signal level is part of
	Note: The FCNT register is reset to its initial value	ue when the channel is

Note: The ECNT register is reset to its initial value when the channel is enabled. Please note, that bit 0 depends on the input level coming from the filter unit and defines the reset value immediately.

11.8.7 Register TIM[i]_CH[x]_CNT

Address Offset:	see Appendix B	Initial Value:	0x0000_0000
	31 30 29 28 27 26 26 26 26 26 23 23 23 23 23 21 21 21	18 17 16 15 15 13 13 13 13 13 11 11 10 9 9	a 6 6 7 7 8 7 8 0
Bit	Reserved	CNT	
Mode	Ľ	Ľ	
Initial Value	00 ×0	00 00 00	
Bit 23:0	CNT: Actual SMU counter val Note: The meaning of this val TPWM = actual duration of PV TPIM = actual duration of all p TIEM = actual number of rece TIPM = actual number of rece TGPS = elapsed time for perio TSSM = shift data.	ue depends on the con VM signal. ulses (sum of pulses). ived edges. ived edges.	figured mode:

Specification

Bit 31:24 Reserved: Reserved

Note: Read as zero, should be written as zero

11.8.8 Register TIM[i]_CH[x]_CNTS

Address Offset:	see Appendix B		Initial Value:	0x0X00_0000	
	31 30 29 28 27 26 25 25 25	23 22 21 21 20 19 18 17 17	15 14 13 13 13 12 11 10 9	8 6 7 8 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Bit	ECNT		CNTS		
Mode	٣		RPw		
Initial Value	000000 00000		00000000000000000000000000000000000000		
Bit 23:0 Bit 31:24	 CNTS: Counter shadow register. Note: The content of this register has different meaning for the TIM channels modes. The content depends directly on the bit field CNTS_SEL of register TIM[i]_CH[x]_CTRL. Note: The register TIM[i]_CH[x]_CNTS is only writable in TIPM,TBCM ,TGPS and TSSM mode. ECNT: Edge counter. Note: The ECNT counts every incoming filtered edge (rising and falling). The counter value is uneven in case of detected rising, and even in case of detected falling edge. Thus, the input signal level is part of the counter and can be obtained by bit 0 of ECNT. 				
	Note: The ECNT register is reset to its initial value when the channel is enabled. Please note, that bit 0 depends on the input level coming from the filter unit and defines the reset value immediately.				

11.8.9 Register TIM[i]_CH[x]_IRQ_NOTIFY

Specification

Revision	3.1.5.1
----------	---------

Address Offset:	see Appendix B	Initial Value:	0x000	0_	000	0
	31 30 29 28 28 28 26 26 25 25 23 23 23 23 23 23 23 21 19 119 119 117	15 14 13 13 12 11 10 9 9	6 7	4	ი ი	v H 0
Bit	Reserved		GLITCHDET	TODET	GPROFL	ECNTOFL
Mode	۲.		RCw	RCw	RCw	RCw RCw
Initial Value	0000 000 000		0	0	0	000
Bit 0	NEWVAL: New measurement value detected by in channel x (x:0m-1) 0 = No event was occurred 1 = <i>NEWVAL</i> was occurred on the TIM channel Note: This bit will be cleared on a CPU write access of value '1'. A read					
Bit 1 Bit 2	access leaves the bit unchang ECNTOFL: ECNT counter overflow CNTOFL: SMU CNT counter overf 0.	of channel x, (x:0				
Bit 3	GPROFL: GPR0 and GPR1 data on new data has arrived at input pin, (x)	-		d oi	ut b	efore
Bit 4	TODET: Timeout reached for input bit 0.			r	n-1)	. See
Bit 5	 GLITCHDET: Glitch detected on channel x, (x:0m-1). 0 = no glitch detected for last edge 1 = glitch detected for last edge Note: This bit will be cleared on a CPU write access of value '1'. A read access leaves the bit unchanged. 					
Bit 31:6	Reserved: Reserved Note: Read as zero, should be writ					

11.8.10 Register TIM[i]_CH[x]_IRQ_EN

Specification

Revision 3.1.5.1

Address Offset:	see Appendix B	Initial Value:	0x00)00	_0(000)
	31 30 29 27 27 26 26 26 25 25 24 25 23 23 23 23 21 19 11 11	15 14 13 13 12 11 10 9	0 7 6	5	t ω	2	1 0
Bit	Reserved				GPROFL IRQ EN	ВQ	ECNTOFL_IRQ_E NEWVAL_IRQ_EN
Mode	۵			RW	RV N	RW	RW RW
Initial Value	00000 ×0			0	0	0	0 0
Bit 0	NEWVAL_IRQ_EN: <i>TIM_NEWVAL</i> 0 = Disable interrupt, interrupt is no 1 = Enable interrupt, interrupt is visi	t visible outside G	TM-IP)		<u> </u>	
Bit 1 Bit 2 Bit 3	ECNTOFL_IRQ_EN: TIM_ECNTOFL CNTOFL_IRQ_EN: TIM_CNTOFLx GPROFL_IRQ_EN: TIM_GPROFL_	_IRQ interrupt en _IRQ interrupt ena	able, s able, s	see ee	bit bit	0.	0.

- Bit 4 **TODET_IRQ_EN:** *TIM_TODETx_IRQ* interrupt enable, see bit 0.
- Bit 5 **GLITCHDET_IRQ_EN:** *TIM_GLITCHDETx_IRQ* interrupt enable, see bit 0.

11.8.11 Register TIM[i]_CH[x]_IRQ_FORCINT

Address Offset:	see Appendix B	Initial Value:	0x0000_0000)
	31 30 29 28 28 27 26 26 25 25 22 22 23 23 23 23 21 19 17 16	15 14 13 13 12 12 11 10 9 8	7 6 7 4 4 3 3 2	1 0
Bit	Reserved		TRG_GLITCHDET TRG_TODET TRG_GPROFL TRG_CNTOFL	TRG_ECNTOFL TRG_NEWVAL
Mode	۳		RAw RAw RAw RAw	RAw RAw
Initial Value	000000000000000000000000000000000000000		0000	0 0
Bit 0	TRG_NEWVAL: Trigger NEWVA register by software 0 = No interrupt triggering 1 = Assert corresponding field in TI	-	CHx_IRQ_NO	

Bit 31:6 **Reserved:** Reserved **Note:** Read as zero, should be written as zero

GTM-IP	Specification	Revision 3.1.5.1
	Note: This bit is cleared automatically after write.	
	Note: This bit is write protected by bit RF_PROT of re	egister GTM_CTRL
Bit 1	TRG_ECNTOFL: Trigger ECNTOFL bit in TIM_ (register by software, see bit 0.	CHx_IRQ_NOTIFY
Bit 2	TRG_CNTOFL: Trigger CNTOFL bit in TIM_CHx_IR (by software, see bit 0.	Q_NOTIFY register
Bit 3	TRG_GPROFL: Trigger GPROFL bit in TIM_C register by software, see bit 0.	H[x]_IRQ_NOTIFY
Bit 4	TRG_TODET: Trigger TODET bit in TIM_CHx_IRQ_I software, see bit 0.	NOTIFY register by
Bit 5	TRG_GLITCHDET: Trigger GLITCHDET bit in TIM_ (register by software, see bit 0.	CHx_IRQ_NOTIFY
Bit 31:6	Reserved: Reserved Note: Read as zero, should be written as zero	

11.8.12 Register TIM[i]_CH[x]_IRQ_MODE

Address Offset:	see Appendix B Initial Value: 0x0000_000	X
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 0
Bit	Reserved	IRQ_MODE
Mode	۲	RW
Initial Value	00000 00000	ХХ
Bit 1:0	IRQ_MODE: IRQ mode selection 0b00 = Level mode 0b01 = Pulse mode 0b10 = Pulse-Notify mode 0b11 = Single-Pulse mode Note: The interrupt modes are described in section 2.5.	
Bit 31:2	Reserved: Reserved Note: Read as zero, should be written as zero	

11.8.13 Register TIM[i]_RST

Specification

Revision 3.1.5.1

Address Offset:	see Appendix B	nitial Value:	0x(000	0_0	000)
	31 30 29 27 27 26 26 26 25 25 24 25 21 23 23 21 19 11 11 16	15 14 13 13 12 11 11 10 9 8	7	5	4 6	2	1 0
Bit	Reserved		RST_CH7 BST_CH6	RST_CH5	RST_CH4 RST_CH3	RST_CH2	RST_CH1 RST_CH0
Mode	۲		RAw	RAw	RAw RAw	RAw	RAw RAw
Initial Value	00000 00 00		0 0	0	0 0	0	0 0
Bit 0	RST_CH0: Software reset of channel 0 = No action	10				•	

- 1 = Reset channel 0
- **Note:** This bit is cleared automatically after write by CPU. The channel registers are set to their reset values and channel operation is stopped immediately.
- Bit 1 **RST_CH1:** Software reset of channel 1, see bit 0.
- Bit 2 **RST_CH2:** Software reset of channel 2, see bit 0.
- Bit 3 **RST_CH3:** Software reset of channel 3, see bit 0.
- Bit 4 **RST_CH4:** Software reset of channel 4, see bit 0.
- Bit 5 **RST_CH5:** Software reset of channel 5, see bit 0.
- Bit 6 **RST_CH6:** Software reset of channel 6, see bit 0.
- Bit 7 **RST_CH7:** Software reset of channel 7, see bit 0.
 - **Note:** Please note, that the RST field width of this register depends on the number of implemented channels m within this sub-module. This register description represents a register layout for m = 8.
- Bit 31:8 **Reserved:** Reserved **Note:** Read as zero, should be written as zero

11.8.14 Register TIM[i]_IN_SRC

Specification

Revision 3.1.5.1

Address Offset:	see	Арр	end	ix B					Initi	ial Va	alue	: 0x0000_0000							
	31 30	29 28	27 26	25 24	23 22	21 20	19 18	17 16	15 14	13 12	11 10	6	7 6	5 4	3 2	1 0			
Bit	MODE_7	7_AL_7	MODE_6	9 ⁻ 747	MODE_5	5-JAV	MODE_4	VAL_4	MODE_3	VAL_3	MODE_2	VAL_2	MODE_1	VAL_1	MODE_0	VAL_0			
Mode	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW			
Initial Value	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00			

Bit 1:0 VAL_0: Value to be fed to Channel 0

Multi-core encoding in use (**VAL_x(1)** defines the state of the signal) 0b00 = State is 0 (ignore write access)

0b01 = Change state to 0

0b10 = Change state to 1

- 0b11 = State is 1 (ignore write access)
- Function depends on the combination of VAL_x(1) and MODE_x(1) see MODE_0 description.

Note: Any read access to a **VAL_x** bit field will always result in a value 00 or 11 indicating current state. A modification of the state is only performed with the values 01 and 10. Writing the values 00 and 11 is always ignored.

Bit 3:2 **MODE_0:** Input source to Channel 0

Multi-core encoding in use (**MODE_x(1)** defines the state of the signal) 0b00 = State is 0 (ignore write access)

- 0b01 = Change state to 0
- 0b10 = Change state to 1
- 0b11 = State is 1 (ignore write access)

Function table:

- MODE_x(1)=0, VAL_x(1)=0: The input signal defined by bit field CICTRL of the TIM channel is used as input source.
- **MODE_x(1)=0**, **VAL_x(1)=1**: The signal TIM_AUX_IN of the TIM channel is used as input source.
- **MODE_x(1)=1** : The state **VAL_x(1)** defines the input level for the TIM channel.
- **Note:** Any read access to a **MODE_x** bit field will always result in a value 00 or 11 indicating current state. A modification of the state is only performed with the values 01 and 10. Writing the values 00 and 11 is always ignored.

GTM-IP	Specification	Revi
Bit 5:4	VAL_1: Value to be fed to Channel 1, see bits 1:0.	
Bit 7:6	MODE_1: Input source to Channel 1, see bits 3:2.	
Bit 9:8	VAL_2: Value to be fed to Channel 2, see bits 1:0.	
Bit 11:10	MODE_2: Input source to Channel 2, see bits 3:2.	
Bit 13:12	VAL_3: Value to be fed to Channel 3, see bits 1:0.	
Bit 15:14	MODE_3: Input source to Channel 3, see bits 3:2.	
Bit 17:16	VAL_4: Value to be fed to Channel 4, see bits 1:0.	
Bit 19:18	MODE_4: Input source to Channel 4, see bits 3:2.	
Bit 21:20	VAL_5: Value to be fed to Channel 5, see bits 1:0.	
Bit 23:22	MODE_5: Input source to Channel 5, see bits 3:2.	
Bit 25:24	VAL_6: Value to be fed to Channel 6, see bits 1:0.	
Bit 27:26	MODE_6: Input source to Channel 6, see bits 3:2.	
Bit 29:28	VAL_7: Value to be fed to Channel 7, see bits 1:0.	
Bit 31:30	MODE_7: Input source to Channel 7, see bits 3:2.	

11.8.15 Register TIM[i]_CH[x]_EIRQ_EN

Address Offset:	s	see Appendix B													Ir	niti	ial	Va	alı	le:			03	x0	00	000_0000						
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	6	5	4	3	2	1	0
Bit				<u> </u>										Reserved	<u> </u>							<u> </u>					GLITCHDET_EIRQ	TODET_EIRQ_EN	GPROFL_EIRQ_E	CNTOFL_EIRQ_E	ECNTOFL_EIRQ_	NEWVAL EIRQ E
Mode														Я													RW	RW	RW	RW	RW	RW
Initial Value													0×0000	000													0	0	0	0	0	0
Bit 0		NEWVAL_EIRQ_EN: <i>TIM_NEWVALx_EIRQ</i> error interrupt enable 0 = Disable error interrupt, error interrupt is not visible outside GTM-IP																														

Automotive Electronics		BOSCH
GTM-IP	Specification	Revision 3.1.5.1

1 = Enable error interrupt, error interrupt is visible outside GTM-IP

Bit 1	ECNTOFL_EIRQ_EN: <i>TIM_ECNTOFLx_IRQ</i> interrupt enable, see bit 0.
Bit 2	CNTOFL_EIRQ_EN: <i>TIM_CNTOFLx_IRQ</i> interrupt enable, see bit 0.
Bit 3	GPROFL_EIRQ_EN: <i>TIM_GPROFL_IRQ</i> interrupt enable, see bit 0.
Bit 4	TODET_EIRQ_EN: <i>TIM_TODETx_IRQ</i> interrupt enable, see bit 0.
Bit 5	GLITCHDET_EIRQ_EN: <i>TIM_GLITCHDETx_IRQ</i> interrupt enable, see
	bit 0.
Bit 31:6	Reserved: Reserved
	Note: Read as zero, should be written as zero

11.8.16 Register TIM[i]_CH[x]_TDUV

Address Offset:	see Appendix B															In	nit	Initial Value: 0x0								x0	0(00	_0	00	0		
	31	30	29	28	27	26	25	24 73	33	21		50 7 0	га	18	17	16	15	14	1, 14	T3	12	11	10	σ	o a	2	9	LC.	, -	4 o	с С		0
Bit	Reserved		TCS		TDU_SAME_CNT_	TCS_USE_SAMPL	SLICING					TOV2									TOV1									TOV			
Mode																	RW																
Initial Value	\circ														00×00																		
Bit 7:0									-					e s	slio	ce	0 f	fo	r c	:h	ar	۱n	el	Х	(x:	0	.m	1-1	.).				
Bit 15:8 Bit 23:16	 TOV: Time out compare value slice0 for channel x (x:0m-1). Compare value for TO_CNT TOV1: Time out compare value slice1 for channel x (x:0m-1). Compare value for TO_CNT1 TOV2: Time out compare value slice2 for channel x (x:0m-1). SLICING != 0b11: Compare value for TO_CNT2 SLICING = 0b11: TOV2 operate as a shadow register for TO_CN 													:N7	Г																		
Bit 25:24	9 5 1 1 5 0 0 0	5 L 5 ic 5 L 5 L	IC IS ICI 00 01 L0	IN(g b E_ IN(= (= col = 2x8	G: Dy LU G: co un us 8 k us	Ca us IT= mb om ter e s oit e s	asc e_l =0b bin bin cou slic cou	adi ut 00 e sli e s om e2, unte	ng / l lic lic sli er :	; of JS 2,s e1, ne ce: slic	E_ Sli ,s 1,: ce	_L ce lice slice 2 r	uni U ⁻ e1, e0 e1 ce	ter T! ,sli) t .,s 20	rs !=(ice blic as	ob e0 1) ce(s (ces 000 to x10 3x8 ole	5) 6 6 8	bit	24 c (1) t c	4 k ou 6k co	oit un oit ur	cc ter sl	ice	nte use 22	er/ e s nc	່re ilic ot ເ	ese e2 lic	erv 2 ab e1	ve as le .,s	d 1× lice	(8 20	

GTM-IP	Specification	Revision 3.1.5.1
Bit 26	<pre>TCS_USE_SAMPLE_EVT: Use tdu_sample_evt a 0 = CMU_CLK selected by TCS is in use by TO_C 1 = CMU_CLK selected by TCS is in use by TO_C tdu_sample_evt is in use by TO_CNT</pre>	CNT,TO_CNT2
Bit 27	<pre>TDU_SAME_CNT_CLK: Define clocking of TO_C 0 = TO_CNT clock selected by (TCS,TCS_ TO_CNT1 clocked on tdu_word_event 1 = TO_CNT1 uses same clock as TO_CNT</pre>	
Bit 30:28	TCS: Timeout Clock selection $0b000 = CMU_CLK0$ selected $0b001 = CMU_CLK1$ selected $0b010 = CMU_CLK2$ selected $0b011 = CMU_CLK3$ selected $0b100 = CMU_CLK4$ selected $0b101 = CMU_CLK5$ selected $0b110 = CMU_CLK6$ selected $0b111 = CMU_CLK7$ selected	
Bit 31	Reserved: Reserved	

Bit 31 **Reserved:** Reserved **Note:** Read as zero, should be written as zero

11.8.17 Register TIM[i]_CH[x]_TDUC

Address Offset:	see Appendix B		Initial Value:	0x0000_0000				
	31 30 29 28 27 26 25 25	23 22 21 21 20 19 18 17 17	15 14 13 13 12 11 10 9 8	7 6 5 4 4 3 3 2 2 1 1				
Bit	Reserved	TO_CNT2	TO_CNT1	TO_CNT				
Mode	Ľ	R N N	д Ж	RP«				
Initial Value	00×0	00000	00×0	00000				
Bit 7:0			ice0 for channel x	(x:0m-1).				

SLICING != 0b11: counter will be reset to 0X0 on TDU_RESYNC condition

SLICING = 0b11 : counter will be loaded with TOV2 on TDU_RESYNC condition

GTM-IP	Specification	Revision 3.1.5.1
Bit 15:8	TO_CNT1: Current Timeout value slice1 for channel Counter will be reset to 0X0 on TDU_RESYNC cond	. ,
Bit 23:16	TO_CNT2: Current Timeout value slice2 for channel Counter will be reset to 0X0 on TDU_RESYNC cond	· /
Bit 31:24	 Reserved: Reserved Note: Read as zero, should be written as zero Note: The register TIM[i]_CH[x]_TDUC is writable disabled (TOCTRL=0b00). Note: If USE_LUT != 0b00 (input signal generation bit field TO_CNT2 is writable at any time, TO_not be changed. 	by lookup table) the

11.8.18 Register TIM[i]_CH[x]_ECNT

Address Offset:	see Appendix B	Initial Value: 0x0000_0000
	31 30 29 27 27 26 26 25 25 25 24 25 23 23 23 21 21 21 16 17	11 11 11 11 11 11 10 9 9 9 9 8 8 8 8 8 8 8 8 8 8 8 7 7 6 6 6 1 3 3 3 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0
Bit	Reserved	ECCN
Mode	œ	٣
Initial Value	0 0000×0	000000000000000000000000000000000000000

Bit 15:0 **ECNT:** Edge counter

Note: If TIM channel is disabled the content of ECNT gets frozen. A read will auto clear the bits [15:1]. Further read accesses to ECNT will show on Bit 0 the actual input signal value of the channel.

Bit 31:16 **Reserved:** Reserved **Note:** Read as zero, should be written as zero

11.8.19 Register TIM[i]_CH[x]_ECTRL

Specification

Revision 3.1.5.1

Address Offset:	see	e A	pp	end	ix	В				Ir	itial V	00	000_0000					
	31	29 29	28	27 26	25	24	23 22	21 20	19 18 17 16	15	14 13 12	11	10 9 8	7 6	5	4	3 3 1 1 0	
Bit	USE_PREV_CH_I	ECLA_SEL IMM_START	SWAP_CAPTURE	Reserved	EFLT_CTR_FE	EFLT_CTR_RE	USE_LUT	Reserved	TDU_RESYNC	Reserved	TDU_STOP	Reserved	TDU_START	TODET_IRQ_SRC	USE_PREV_TDU_	Reserved	EXT_CAP_SRC	
Mode	RW	RV N	RW	æ	RW	RW	RW	Ж	RW	ч	RŴ	Я	RW	RW	RW	ч	RW	
Initial Value	0	0	0	00	0	0	0	000	0×0	0	000	0×0	000	00	0	0×0	0000	
Note : Unde	0b 0b 0b 0b 0b 0b 0b 0b 0b 0b 0b 0b 0b	000 001 001 001 010 010 011 100 101 100 100 110 110 111 111)1 L0 L1 (or)0)1 L0 L1)0 L1 L0 L1 L0 L1	= AU = CN and TIM = EC = TO = GI = GI = GI = CM = RE = log ecte = tdu = tdu = tdu = res	JX. NTO CI CI C	_II OF CT CT CT CT CT CT CT CT CT CT CT CT CT	N sel L_IF RL = RL = NFL_ JFL_ IRC HDE LIRC HDE LIRC MDE TL_II k se LDE TL_II k se LDE TL_II k se LDE TL_II k se LDE TL_II k se LDE S LDE TL_II S S S S S S S S S S S S S S S S S S	ecte RQ (= 1 : = 0 : if x i IRQ Q of f T_IR RQ of ET of	of followin use sign use sign s 0) of following Q of following d by CLH following following GE_DE of local T local TD f local TE	ng al ng cha sowi g c c g c T, TD	channe TIM_IN TIM_IN channel sng cha channel SEL of hannel channel channel channel channel selecte selecte	el s (x) I (x el elenn I s foi se I s E = cte d ed	selected) as inp -1) as i selected el selected elected elected DET) o d	d out fo input ed cted f chai	nne	el	channel x g channel	
Bit 4 Bit 5 Bit 7:6	Re No US 0 = 1 = TC 0b 0b 0b	se ite: iE_ ius ius 00 00 01 10	rve R P Se Se T = 1 = 1	ed: F ead REV_ input input input uput use t use t use t	Res as _T I t d t d du du du	sei ze DL ata ata SR _ti _v _fi	ved ero, s J_IN a of I a of I C: s meo vord_ came	shoul Sel ocal orevi selec ut_e	Id be writt ect input filter for ⊺ ous chan tion of so vt	ter da ΓD ne	n as zei ta sou U I (after	ro rce filt	e for T er unit;	DU.) for				

	Note: With TODET_IRQ_SRC=0b00 the ACB bit 2 will be driven by signal tdu_timeout_evt, if TODET_IRQ_SRC!=0b00 ACB2 will be 0.
Bit 10:8	TDU_START: Defines condition which will start the TDU unit. 0b000 = start once immediate on tdu_start_000_event (see Note) 0b001 = start once with occurrence of first cmu_clk selected by CLK_SEL when measure unit is enabled by TIM_EN=1 0b010 = start once with occurrence of first active edge selected by
	TOCTRL; restart on tdu_frame_evt if TDU is stopped 0b011 = start once with occurrence of first active edge selected by TOCTRL
	0b100 = start/restart with occurrence of external capture event (if TDU is stopped, restart again)
	0b101 = start/restart with occurrence of first cmu_clk selected by CLK_SEL when measure unit is enabled by TIM_EN=1 (if TDU is stopped, restart again)
	0b110 = start once with occurrence of external capture event ; restart on tdu_frame_evt if TDU is stopped
	0b111 = start/restart with occurrence of first active edge selected by TOCTRL (if TDU is stopped, restart again)
	Note: tdu_start_000_event is defined as: Each writing of TOCTRL != 0 (independent of current TOCTRL) while TDU_START=0b000 and TDU is stopped (initially or stopped by TDU_STOP event). This event will last 1 system clock cycle.
	Note: In mode SLICING=0b11 every start/restart will load the TO_CNT with value TOV2.
Bit 11	Reserved: Reserved
Bit 14:12	Note: Read as zero, should be written as zero TDU_STOP: Defines condition which will stop the TDU unit. 0b000 = immediate stop counting of TDU on tdu_toctrl_0_event (see
	Note) 0b001 = stop counting of TDU on tdu_word_evt or on tdu_toctrl_0_event (see Note)
	0b010 = stop counting of TDU on tdu_frame_evt or on tdu_toctrl_0_event (see Note)
	0b011 = stop counting of TDU on tdu_timeout_evt or on tdu toctrl 0 event (see Note)
	0b100 = stop counting of TDU on external capture event or on tdu_toctrl_0_event (see Note)
	0b101 = if SLICING =0b10 0b11 then stop counting of TO_CNT on tdu_word_evt or on
	tdu_toctrl_0_event (see Note); stop counting of TO_CNT1 on tdu_frame_evt or on
	tdu_toctrl_0_event (see Note); stop counting of TO_CNT2 on tdu_toctrl_0_event (see Note); else reserved, no action performed

Specification

Confidential

0b11- = reserved, no action performed

- **Note:** tdu_toctrl_0_event is defined as: Each writing of TOCTRL = 0 (independent of current TOCTRL) while TDU is started. This event will last 1 system clock cycle.
- Bit 15 **Reserved:** Reserved

Note: Read as zero, should be written as zero

Bit 19:16 **TDU_RESYNC:** Defines condition which will resynchronize the TDU unit. **Behavior with SLICING != 0b11:**

0b0000 : reset counter TO_CNT2 on each active edge selected by TOCTRL or tdu_timeout_evt or on tdu_start_000_event (see Note); reset counters TO_CNT,TO_CNT1 on tdu_timeout_evt or on tdu_start_000_event (see Note);

if SLICING=0b10 and TO_CTRL=0b-1 then reset TO_CNT on rising input edge;

if SLICING=0b10 and TO_CTRL=0b1- then reset TO_CNT1 on falling input edge;

if SLICING!=0b10 then reset counters TO_CNT,TO_CNT1 on each active edge selected by TOCTRL;

0b0--1 : if SLICING=0b10 and TO_CTRL=0bx1 then reset TO_CNT on rising input edge;

if SLICING=0b10 and TO_CTRL=0b1- then reset TO_CNT1 on falling input edge;

if SLICING!=0b10 then reset counters TO_CNT,TO_CNT1 on each active edge selected by TOCTRL;

if SLICING=0b00 then reset TO_CNT2 on each active edge selected by TOCTRL;

0b0x1- : reset counters TO_CNT on tdu_word_evt;

0b01-- : reset counter TO_CNT1 on tdu_frame_evt;

if SLICING=0b01 then reset TO_CNT on tdu_frame_evt;

0b1000 : reset counters TO_CNT,TO_CNT1,TO_CNT2 on event selected by EXT_CAP_SRC;

0b1--- : if SLICING!=0b00 then reset counter TO_CNT2 on tdu_sample_evt;

0b1--1 : reset counter TO_CNT2 on each active edge selected by TOCTRL;

if SLICING=0b10 and TO_CTRL=0b-1 then reset TO_CNT on rising input edge;

if SLICING=0b10 and TO_CTRL=0b1- then reset TO_CNT1 on falling input edge;

if SLICING!=0b10 then reset counters TO_CNT,TO_CNT1 on each active edge selected by TOCTRL;

0b1-1- : reset counters TO_CNT on tdu_word_evt;

0b11-- : reset counter TO_CNT1 on tdu_frame_evt;

if SLICING=0b01 then reset TO_CNT on tdu_frame_evt;

Behavior with SLICING = 0b11:

(\mathbf{A})	BOSCH
Re	evision 3.1.5.1

- Specification
 000 : load counter TO_CNT with TOV2 on eac
- 0b0000 : load counter TO_CNT with TOV2 on each active edge selected by TOCTRL or tdu_timeout_evt or on tdu_start_000_event (see
 - Note); reset counter TO_CNT1 on each active edge selected by TOCTRL or tdu_timeout_evt or on tdu_start_000_event (see Note)
 - 0b---1 : load counter TO_CNT with TOV2 on each active edge selected by TOCTRL;

reset counter TO_CNT1 on each active edge selected by TOCTRL

- 0b0-1- : load counter TO_CNT with TOV2 on tdu_word_evt
- 0b1-1- : reset counter TO_CNT on tdu_word_evt
- 0b-1-- : reset counter TO_CNT1 on tdu_frame_evt
- 0b1000 = load counter TO_CNT with TOV2; reset counter TO_CNT1 on event selected by EXT_CAP_SRC
- **Note:** tdu_start_000_event is defined as: Each writing of TOCTRL != 0 (independent of current TOCTRL) while TDU_START=0b000 and TDU is stopped (initially or stopped by TDU_STOP event). This event will last 1 system clock cycle.

Bit 21:20	Reserved: Reserved
Bit 21:20	Reserved: Reserved

Note: Read as zero, should be written as zero

- Bit 23:22 **USE_LUT:** generate Filter input by lookup table
 - 0b00 = lookup table not in use, lut_in0(x) used as filter input
 - 0b01 = use 3 bit lookup table with index = ext_capture(x) & lut_in1(x) & lut_in0(x) . Filter input is defined by TO_CNT2[index].
 - 0b10 = use 3 bit lookup table with index = fout_prev(x) & lut_in1(x) & lut_in0(x) . Filter input is defined by TO_CNT2[index].
 - 0b11 = use 3 bit lookup table with index = tssm_out(x) & lut_in1(x) & lut_in0(x) . Filter input is defined by TO_CNT2[index].
- Bit 24 **EFLT_CTR_RE:** Extension of bit field FLT_CTR_RE.
 - Details described in FLT_CTR_RE bit field of register TIM[i]_CH[x]_CTRL.
- Bit 25 **EFLT_CTR_FE:** Extension of bit field FLT_CTR_FE. Details described in FLT_CTR_FE bit field of register TIM[i]_CH[x]_CTRL.
- Bit 27:26 **Reserved:** Reserved

Note: Read as zero, should be written as zero

- Bit 28 **SWAP_CAPTURE:** swap point of time of capturing CNTS and GPR1
 - 0 = inactive edge will capture data in CNTS; NEWVAL_IRQ event will capture data in GPR1
 - 1 = swap time of capture: inactive edge will capture data in GPR1; NEWVAL_IRQ event will capture data in CNTS
 - This bit is only applicable in TPWM and TPIM mode. Set to 0 in all other modes.

		BUSCH
GTM-IP	Specification	Revision 3.1.5.1
Bit 29	 IMM_START: Start immediately the measurement 0 = start with first active edge the measurement 1 = start immediately after enable (TIM_EN=1) th This bit is only applicable in TPWM and TPIM moment 	e measurement
Bit 30	ECLK_SEL: Extension of bit field CLK_SEL. Details described in CLK_SEL bit field of register	TIM[i]_CH[x]_CTRL.
Bit 31	USE_PREV_CH_IN: Select input data source for 0 = use input data of local filter unit for channel m 1 = use input data of previous channel (after	neasurements

1 = use input data of previous channel (after filter unit) for channel measurements

11.8.20 Register TIM[i]_INP_VAL

Address Offset:	see Appendix B		Initial Value:	0x0000_0000
	31 30 29 28 27 26 25 25	23 22 21 20 20 19 18 17 17	15 14 13 12 11 11 10 9 8	7 6 7 3 3 3 2 2 1 1
Bit	Reserved		<u>ک</u> ۳	F_OUT
Mode	Ľ	Ľ	٣	٣
Initial Value	0000000	000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Bit 7:0 Bit 15:8 Bit 23:16 Bit 31:24	F_OUT: signals after TIM FLT unit F_IN: signals after INPSRC selection, before TIM FLT unit TIM_IN: signals after TIM input signal synchronization Reserved: Reserved			

Bit 31:24 **Reserved:** Reserved

Note: Read as zero, should be written as zero

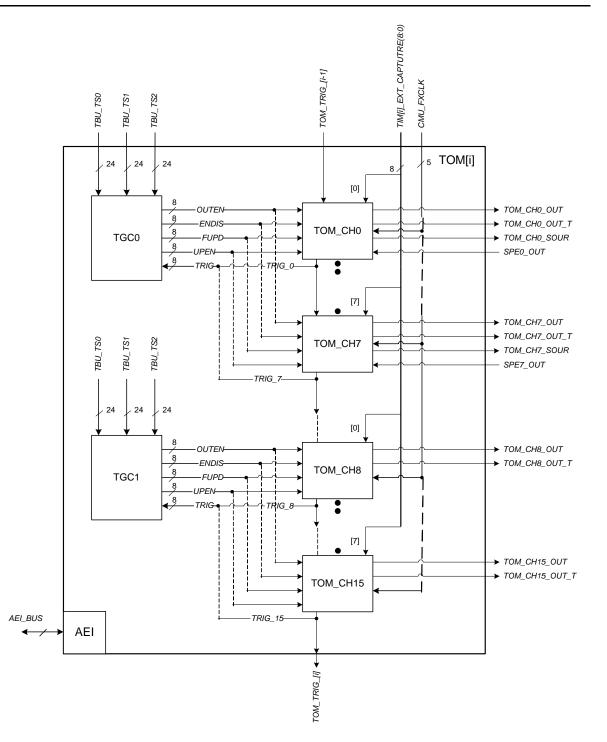
Specification

12 Timer Output Module (TOM)

12.1 Overview

The Timer Output Module (TOM) offers up to 16 independent channels (index x) to generate simple PWM signals at each output pin $TOM[i]_CH[x]_OUT$.

Additionally, at TOM output $TOM[i]_CH15_OUT$ a pulse count modulated signal can be generated. The architecture of the TOM sub-module is depicted in figure 12.1.1. Indices and their range as used inside this chapter are: y=0,1


z=0..7

The following design variables are used inside this chapter. Please refer to device specific Appendix B for correct value.

cCTO : TOM channel count; number of channels per instance - 1.

12.1.1 TOM block diagram

The two sub-modules TGC0 and TGC1 are global channel control units that control the enabling/disabling of the channels and their outputs as well as the update of their period and duty cycle register.

The module TOM receives two (three) timestamp values *TBU_TS0*, *TBU_TS1* (and *TBU_TS2*) in order to realize synchronized output behavior on behalf of a common time base.

Specification

The 5 dedicated clock line inputs *CMU_FXCLK* are providing divided clocks that can be selected to clock the output pins.

The trigger signal *TOM_TRIG_[i-1]* of TOM instance i comes from the preceding instance i-1, the trigger *TOM_TRIG_[i]* is routed to succeeding instance i+1. Note, TOM0 is connected to its own output *TOM_TRIG_0*, i.e. the last channel of TOM instance 0 can trigger the first channel of TOM instance 0 (this path is registered, which means delayed by one SYS_CLK period).

12.2 TOM Global Channel Control (TGC0, TGC1)

12.2.1 Overview

There exist two global channel control units (TGC0 and TGC1) to drive a number of individual TOM channels synchronously by external or internal events.

Each TGC[y] can drive up to eight TOM channels where TGC0 controls TOM channels 0 to 7 and TGC1 controls TOM channels 8 to 15.

The TOM sub-module supports four different kinds of signaling mechanisms:

- Global enable/disable mechanism for each TOM channel with control register TOM[i]_TGC[y]_ENDIS_CTRL and status register TOM[i]_TGC[y]_ENDIS_STAT
- Global output enable mechanism for each TOM channel with control register TOM[i]_TGC[y]_OUTEN_CTRL and status register TOM[i]_TGC[y]_OUTEN_STAT
- Global force update mechanism for each TOM channel with control register TOM[i]_TGC[y]_FUPD_CTRL
- Update enable of the register CM0, CM1 and CLK_SRC for each

TOM channel with the control bit field UPEN_CTRL[z] of TOM[i]_TGC[y]_GLB_CTRL

12.2.2 TGC Sub-unit

Each of the first three individual mechanisms (enable/disable of the channel, output enable and force update) can be driven by three different trigger sources. The three trigger sources are :

- the host CPU (bit **HOST_TRIG** of register **TOM[i]_TGC[y]_GLB_CTRL**)
- the TBU time stamp (signal *TBU_TS0*, *TBU_TS1*, *TBU_TS2* if available)
- the internal trigger signal *TRIG* (bunch of trigger signals *TRIG_[x]*) which can be either the trigger *TRIG_CCU0* of channel x, the trigger of preceding channel x-1 (i.e. signal *TRIG_[x-1]*) or the external trigger *TIM_EXT_CAPTURE(t)* of assigned TIM channel t.

The first way is to trigger the control mechanism by a direct register write access via host CPU (bit **HOST_TRIG** of register **TOM[i]_TGC[y]_GLB_CTRL**).

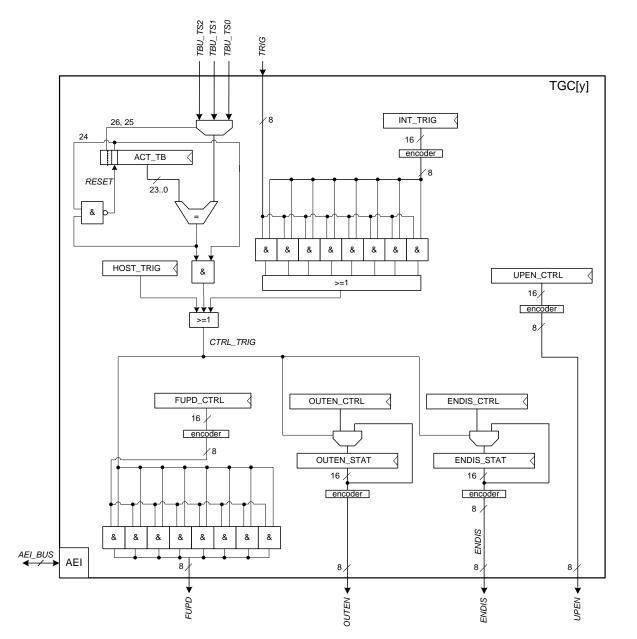
The second way is provided by a compare match trigger on behalf of a specified time base coming from the module TBU (selected by bits **TBU_SEL**) and the time stamp compare value defined in the bit field **ACT_TB** of register **TOM[i]_TGC[y]_ACT_TB**. Note, a signed compare of **ACT_TB** and selected $TBU_TS[x]$ with x=0,1,2 is performed.

The third possibility is the input *TRIG* (bunch of trigger signals *TRIG_[x]*) coming from the TOM channels 0 to 7 / 8 to 15.

The corresponding trigger signal *TRIG_[x]* coming from channel [x] can be masked by the register **TOM[i]_TGC[y]_INT_TRIG**.

To enable or disable each individual TOM channel, the register **TOM[i]_TGC[y]_ENDIS_CTRL** and/or **TOM[i]_TGC[y]_ENDIS_STAT** have to be used.

The register **TOM[i]_TGC[y]_ENDIS_STAT** controls directly the signal *ENDIS*. A write access to this register is possible.


The register **TOM[i]_TGC[y]_ENDIS_CTRL** is a shadow register that overwrites the value of register **TOM[i]_TGC[y]_ENDIS_STAT** if one of the three trigger conditions matches.

12.2.2.1 TOM Global channel control mechanism

Specification

The output of the individual TOM channels can be controlled using the register **TOM[i]_TGC[y]_OUTEN_CTRL** and **TOM[i]_TGC[y]_OUTEN_STAT**.

The register **TOM[i]_TGC[y]_OUTEN_STAT** controls directly the signal *OUTEN*. A write access to this register is possible.

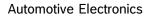
The register **TOM[i]_TGC[y]_OUTEN_CTRL** is a shadow register that overwrites the value of register **TOM[i]_TGC[y]_OUTEN_STAT** if one of the three trigger conditions matches.

If a TOM channel is disabled by the register **TOM[i]_TGC[y]_OUTEN_STAT**, the actual value of the channel output at $TOM_CH[x]_OUT$ is defined by the signal level bit (**SL**) defined in the channel control register **TOM[i]_CH[x]_CTRL**.

Robert	Bosch	GmbH
TODOIL	DOSCII	GIUDIT

Specification

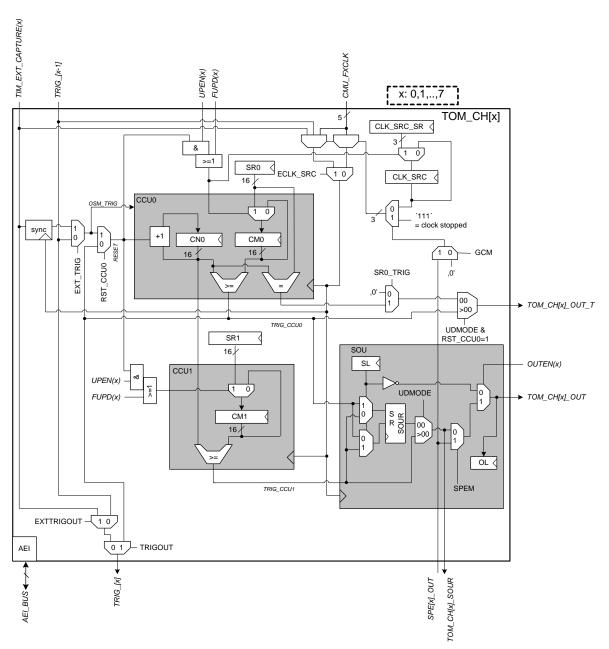
If the output is enabled, the output at $TOM_CH[x]_OUT$ depends on value of flip-flop **SOUR**.

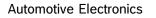

The register **TOM[i]_TGC[y]_FUPD_CTRL** defines which of the TOM channels receive a *FORCE_UPDATE* event if the trigger signal *CTRL_TRIG* is raised. Note: The force update request is stored and executed synchronized to the selected CMU_CLK.

The register bits **UPEN_CTRL[z]** defines for which TOM channel the update of the working register **CM0**, **CM1** and **CLK_SRC** by the corresponding shadow register **SR0**, **SR1** and **CLK_SRC_SR** is enabled. If update is enabled, the register **CM0**, **CM1** and **CLK_SRC** will be updated on reset of counter register **CN0** (see figures 12.3.1 and 12.3.2). An exception is the configuration of SR0_TRIG=1 which enable the trigger generation defined by **SR0**. Then **CM0** is not updated with **SR0**.

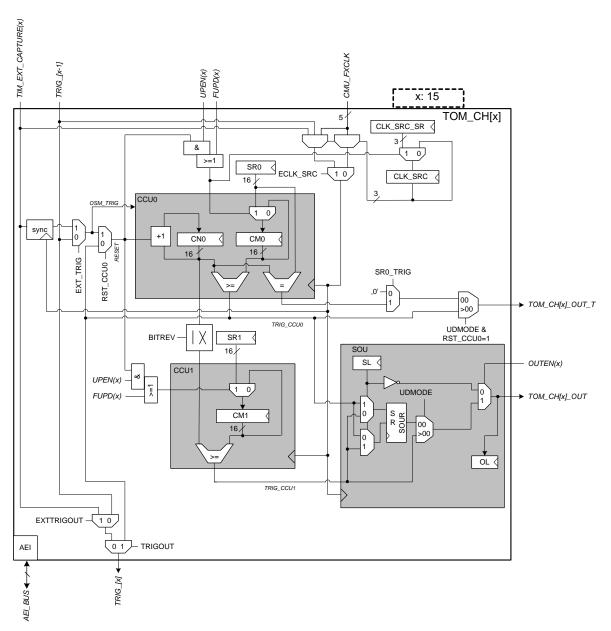
12.3TOM Channel

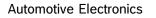
Each individual TOM channel comprises a Counter Compare Unit 0 (CCU0) which contains the counter register **CN0** and the period register **CM0**, a Counter Compare Unit 1 (CCU1) which contains the duty cycle register **CM1** and the Signal Output Generation Unit (SOU) which contains the output register **SOUR**. The architecture is depicted in figure 12.3.1 for channels 0 to 7 and in 12.3.2 for channels 8 to 15.


12.3.1 TOM Channel 0..7 architecture

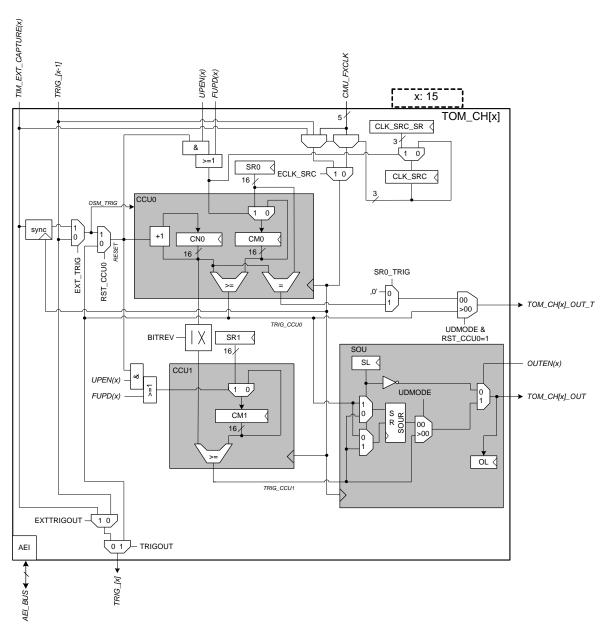


Specification


12.3.2 TOM Channel 8..14 architecture



Specification



12.3.3 TOM Channel 15 architecture

The CCU0 contains a counter **CN0** which is clocked with one of the selected input frequencies (*CMU_FXCLK*) provided from outside of the sub-module.

Depending on configuration bits RST_CCU0 of register **TOM[i]_CH[x]_CTRL** the counter register **CN0** can be reset either when the counter value is equal to the compare value **CM0** (i.e. **CN0** counts only from 0 to **CM0**-1 and is then reset to 0) or when signaled by the TOM[i] trigger signal $TRIG_{x-1}$ of the preceding channel [x-1] (which can also be the last channel of preceding instance TOM[i-1]) or the trigger signal $TIM_{EXT}_{CAPTURE(x)}$ of the assigned TIM channel [x].

Note: As an exception, the input *TRIG_[0]* of instance TOM0 is triggered by its own last channel cCTO via signal *TRIG_[cCTO]*. Please refer to device specific Appendix B for value cCTO of TOM0.

When the counter register **CN0** is greater or equal than the value **CM0** (in fact **CM0**-1), the sub-unit CCU0 triggers the SOU sub-unit and the succeeding TOM sub-module channel (signal *TRIG_CCU0*).

In the sub-unit CCU1 the counter register **CN0** is compared with the value of register **CM1**. If **CN0** is greater or equal than **CM1** the sub-unit CCU1 triggers the SOU sub-unit (signal *TRIG_CCU1*).

If counter register **CN0** of channel x is reset by its own CCU0 unit (i.e. the compare match of **CN0**>=**CM0**-1 configured by RST_CCU0=0), following statements are valid:

- CN0 counts from 0 to CM0-1 and is then reset to 0.
- When **CN0** is reset from **CM0** to 0, an edge to SL is generated.
- When **CN0** is incrementing and reaches **CN0** > **CM1**, an edge to !SL is generated.
- if **CM0**=0 or **CM0**=1, the counter **CN0** is constant 0.
- if **CM1**=0, the output is !SL = 0% duty cycle
- if CM1 >= CM0 and CM0>1, the output is SL = 100% duty cycle

If the counter register **CN0** of channel x is reset by the trigger signal coming from another channel or the assigned TIM module (configured by $RST_CCU0=1$), following statements are valid:

- CN0 counts from 0 to MAX-1 and is then reset to 0 by trigger signal
- CM0 defines the edge to SL value, CM1 defines the edge to !SL value.
- if CM0=CM1, the output switches to SL if CN0=CM0=CM1 (CM0 has higher priority)
- if **CM0**=0 and **CM1**=MAX, the output is SL = 100% duty cycle
- if **CM0** > MAX, the output is !SL = 0% duty cycle, independent of **CM1**.

The hardware ensures that for both 0% and 100% duty cycle no glitch occurs at the output of the TOM channel.

The SOU sub-unit is responsible for output signal generation. On a trigger *TRIG_CCU0* from sub-unit CCU0 or *TRIG_CCU1* from sub-unit CCU1 an SR flip-flop of sub-unit SOU is either set or reset. If it is set or reset depends on the configuration bit **SL** of the control register **TOM[i]_CH[x]_CTRL**. The initial signal output level for the channel is the reverse value of the bit **SL**.

Figure 12.3.5.1 clarifies the PWM output behavior with respect to the **SL** bit definition. The output level on the TOM channel output pin $TOM[i]_CH[x]_OUT$ is captured in bit **OL** of register **TOM[i]_CH[x]_STAT**.

12.3.4 Duty cycle, Period and Clock Frequency Update Mechanisms

The two action register **CM0** and **CM1** can be reloaded with the content of the shadow register **SR0** and **SR1**. The register **CLK_SRC** that determines the clock frequency of the counter register **CN0** can be reloaded with its shadow register **CLK_SRC_SR** (bit field in register **TOM[i]_CH[x]_CTRL**)

The update of the register **CM0**, **CM1** and **CLK_SRC** with the content of its shadow register is done when the reset of the counter register **CN0** is requested (via signal *RESET*). This reset of **CN0** is done if the comparison of **CN0** greater or equal than **CM0** is true or when the reset is triggered by another TOM channel [x-1] via the signal $TRIG_{x-1}$ or when signaled via the signal $TIM_{EXT_{capture(x)}}$ of the assigned TIM channel [x].

With the update of the register **CLK_SRC** at the end of a period a new counter **CN0** clock frequency can easily be adjusted.

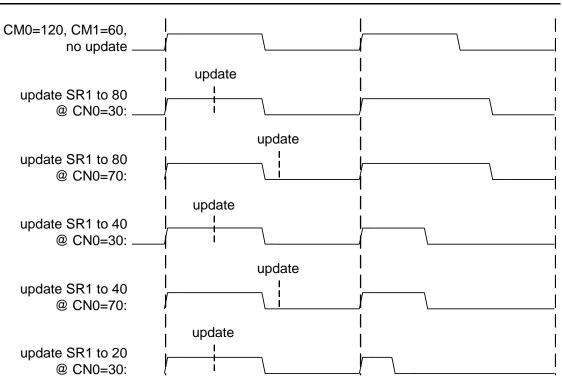
In case of RST_CCU0=1 and update enabled by **UPEN_CTRL[z]** the register **CM0**, **CM1** and **CLK_SRC** will be updated when **CN0** is reset.

An update of duty cycle, period and counter **CN0** clock frequency becoming effective synchronously with start of a new period can easily be reached by performing following steps:

1. disable the update of the action register with the content of the corresponding shadow register by setting the channel specific configuration bit **UPEN_CTRL[z]** of register **TOM[i]_TGC[y]_GLB_CTRL** to '0'.

2. write new desired values to SR0, SR1 , CLK_SRC_SR

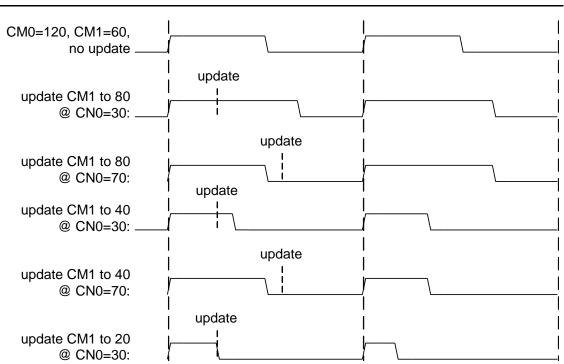
3. enable update of the action register by setting the channel specific configuration bit **UPEN_CTRL[z]** of register **TOM[i]_TGC[y]_GLB_CTRL** to '1'.


12.3.4.1 Synchronous Update Of Duty Cycle Only

A synchronous update of only the duty cycle can be done by simply writing the desired new value to register **SR1** without preceding disable of the update mechanism (as described in the chapter above). The new duty cycle is then applied in the period following the period where the update of register **SR1** was done.

12.3.4.1.1 Synchronous update of duty cycle

12.3.4.2 Asynchronous Update Of Duty Cycle Only


If the update of the duty cycle should be performed independent of the start of a new period (asynchronous), the desired new value can be written directly to register **CM1**. In this case it is recommended to additionally either disable the synchronous update mechanism as a whole (i.e. clearing bits **UPEN_CTRL[z]** of corresponding channel [x] in register **TOM[i]_TGX[y]_GLB_CTRL**) or updating **SR1** with the same value as **CM1** before writing to **CM1**.

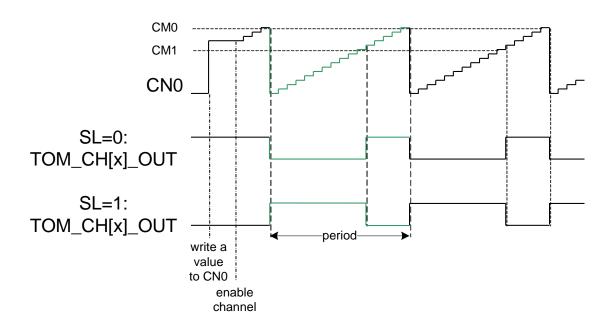
Depending on the point of time of the update of **CM1** in relation to the actual value of **CN0** and **CM1**, the new duty cycle is applied in the current period or the following period (see Figure 12.3.4.2.1). In any case the creation of glitches are avoided. The new duty cycle may jitter from update to update by a maximum of one period (given by **CM0**). However, the period remains unchanged.

12.3.4.2.1 Asynchronous update of duty cycle

12.3.5 Continuous Counting Up Mode

In continuous mode the TOM channel starts incrementing the counter register **CN0** once it is enabled by setting the corresponding bits in register **TOM[i]_TGC[y]_ENDIS_STAT** (refer to chapter 12.2.2 for details of enabling a TOM channel).

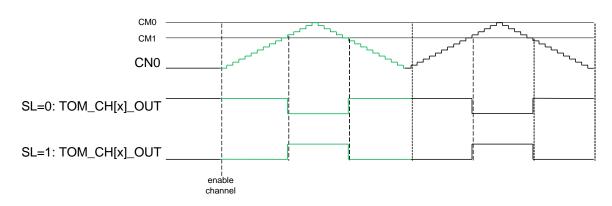
The signal level of the generated output signal can be configured with the configuration bit **SL** of the channel configuration register **TOM[i]_CH[x]_CTRL**.


If the counter **CN0** is reset from **CM0** back to zero, the first edge of a period is generated at $TOM[i]_CH[x]_OUT$.

The second edge of the period is generated if **CN0** has reached **CM1**. Every time the counter **CN0** has reached the value of **CM0** it is reset back to zero and proceeds with incrementing.

12.3.5.1 PWM Output with respect to configuration bit **SL** in continuous mode

Confidential


12.3.6 Continuous Counting Up-Down Mode

In continuous mode, if **CN0** counts up and down (UDMODE != 0b00), depending on configuration bits RST_CCU0 of register **TOM[i]_CH[x]_CTRL** the counter register **CN0** changes direction either when the counter value is equal to the compare value **CM0**, has counted down to 0 or when triggered by the TOM[i] trigger signal $TRIG_{x-1}$ of the preceding channel [x-1] (which can also be the last channel of preceding instance TOM[i-1]) or the trigger signal $TIM_{EXT}_{CAPTURE(x)}$ of the assigned TIM channel [x].

In this case, if UPEN_CTRL[x]=1, also the working register CM0, CM1 and CLK_SRC are updated depending on UDMODE.

12.3.6.1 PWM Output behavior with respect to the SL bit in the ATOM[i]_CH[x]_CTRL register if UDMODE != 0b00

The clock of the counter register **CN0** can be one of the CMU clocks CMU_CLKx. The clock for **CN0** is defined by CLK_SRC_SR value in register **TOM[i]_CH[x]_CTRL**. The duration of a period in multiples of selected **CN0** counter clock ticks is defined by the **CM0** configuration value (i.e. **CM0** defines half of period in up-down mode). **CM1** defines the duty cycle value in clock ticks of selected **CN0** counter clock (i.e. **CM0** defines half of duty cycle in up-down mode).

If counter register **CN0** of channel x is reset by its own CCU0 unit (i.e. the compare match of **CN0**>=**CM0** configured by RST_CCU0=0), following statements are valid:

- **CN0** counts continuously first up from 0 to **CM0**-1 and then down to 0.

- if CN0 >= CM1, the output is set to SL

- if **CM1**=0, the output is SL (i.e. 100% duty cycle)

- if **CM1**>= **CM0**, the output is !SL (i.e. 0% duty cycle)

- On output *TOM[i]_CHx]_OUT* a PWM signal is generated. The period is defined by **CM0**, the duty cycle is defined by **CM1**.

This behavior is depicted in figure 12.3.6.1.

If the counter register **CN0** of channel x is reset by the trigger signal coming from another channel or the assigned TIM module (configured by $RST_CCU0=1$), following statements are valid:

- **CN0** counts continuously first up. On a trigger signal the counter switches to count down mode. If **CN0** has reached 0, it switches to count up mode.

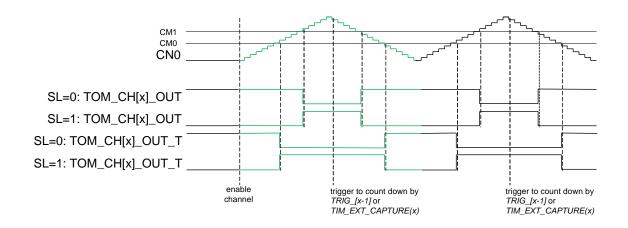
- if CN0 >= CM1, the output is set to SL

- if **CM1**=0, the output is SL (i.e. 100% duty cycle)

- if **CM1**>= **CM0**, the output is !SL (i.e. 0% duty cycle)

- On output *TOM[i]_CHx]_OUT* a PWM signal is generated. The period is defined by the CCU0 trigger of triggering channel, the duty cycle is defined by **CM1**.

- On output *TOM[i]_CHx]_OUT_T* a PWM signal is generated. The period is defined by the CCU0 trigger of triggering channel, the duty cycle is defined by **CM0**. This behavior is depicted in figure 12.3.6.2.


Note that in case of up-down counter mode and RST_CCU0=1 it is recommended that - the triggering channel and the triggered channel are both running in up-down mode

- the time between two trigger signals is equal to the time needed for CN0 of triggered channel to count back to 0 and again up to the same upper value.

Specification

The second recommendation can be reached by synchronizing the start of triggering channel and of triggered channel, i.e. let both channel start with a CN0 value 0. Note that if there is a synchronization register in the trigger chain (indicated by value TOM_TRIG_CHAIN in register **CCM[i]_HW_CONF**), the additional delay of the trigger by one clock period has to be taken into account by starting at triggering channel with a CN0 vaue 1 (+1 compared to CN0 of triggered channel).

12.3.6.2 PWM Output behavior in case of RST_CCU0=1 and UDMODE != 0b00

12.3.7 One-shot Counting Up Mode

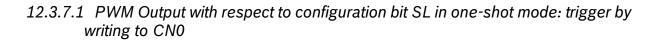
In one-shot mode, the TOM channel generates one pulse with a signal level specified by the configuration bit **SL** in the channel [x] configuration register **TOM[i]_CH[x]_CTRL**.

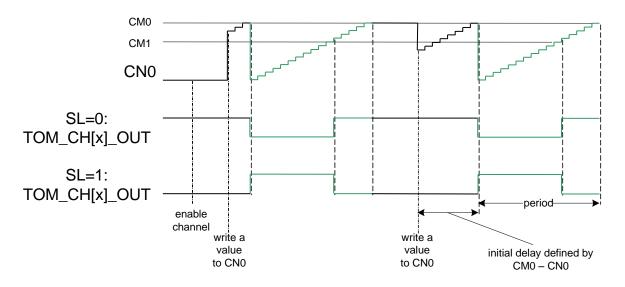
First the channel has to be enabled by setting the corresponding **TOM[i]_TGC[y]_ENDIS_STAT** value and the one-shot mode has to be enabled by setting bit **OSM** in register **TOM[i]_CH[x]_CTRL**.

In one-shot mode the counter **CN0** will not be incremented once the channel is enabled.

A write access to the register **CN0** triggers the start of pulse generation (i.e. the increment of the counter register **CN0**).

If SPE mode of TOM[i] channel 2 is enabled (set bit **SPEM** of register **TOM[i]_CH2_CTRL**), also the trigger signal *SPE[i]_NIPD* can trigger the reset of register **CN0** to zero and a start of the pulse generation.


The new value of **CN0** determines the start delay of the first edge. The delay time of the first edge is given by (**CM0-CN0**) multiplied with period defined by current value of **CLK_SRC**.


If the counter **CN0** is reset from **CM0** back to zero, the first edge at *TOM[i]_CH[x]_OUT* is generated.

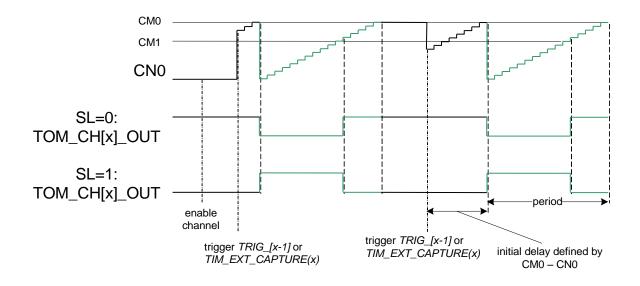
To avoid an update of **CMx** register with content of **SRx** register at this point in time, the automatic update should be disabled by setting UPEN_CTRL[x] = 00 (in register **TOM[i]_TGC[y]_GLB_CTRL**)

The second edge is generated if **CN0** is greater or equal than **CM1** (i.e. **CN0** was incremented until it has reached **CM1** or **CN0** is greater than **CM1** after an update of **CM1**).

If the counter **CN0** has reached the value of **CM0** a second time, the counter stops.

Further output of single periods can be started by a write access to register CN0. If CN0 is already incrementing (i.e. started by writing to CN0 a value CN0start < CM0), the affect of a second write access to CN0 depends on the phase of CN0: phase 1: update of CN0 before CN0 reaches first time CM0 phase 2: update of CN0 after CN0 has reached first time CM0 but is less than CM1 phase 3: update of CN0 after CN0 has reached first time CM0 and CN0 is greater than or equal CM1

In phase 1: writing to counter CN0 a value CN0new < CM0 leads to a shift of first edge (generated if CN0 reaches CM0 first time) by the time CM0-CN0new.



In phase 2: writing to incrementing counter CN0 a value CN0new < CM1 while CN0old is below CM1 leads to a lengthening of the pulse. The counter CN0 stops if it reaches CM0.

In phase 3: Writing to incrementing counter CN0 a value CN0new while CN0old is already greater than or equal CM1 leads to an immediate restart of a single pulse generation inclusive the initial delay defined by CM0 - CN0new.

If a channel is configured to one-shot mode and configuration bit OSM_TRIG is set to 1, the trigger signal OSM_TRIG (i.e. $TRIG_[x-1]$ or $TIM_EXT_CAPTURE(x)$) triggers start of one pulse generation.

12.3.7.2 PWM Output with respect to configuration bit SL in one-shot mode: trigger by TRIG_[x-1] or TIM_EXT_CAPTURE(x)

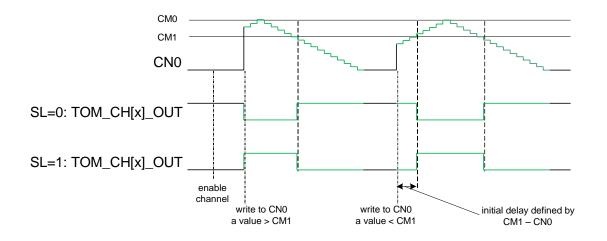
12.3.8 One-shot Counting Up-Down Mode

The TOM channel can operate in one-shot counting up-down mode when the bit OSM = 1 and the UDMODE != 0b00. One-shot mode means that a single pulse with the pulse level defined in bit SL is generated on the output line.

First the channel has to be enabled by setting the corresponding **ENDIS_STAT** value. In One-shot mode the counter **CN0** will not be incremented once the channel is enabled.

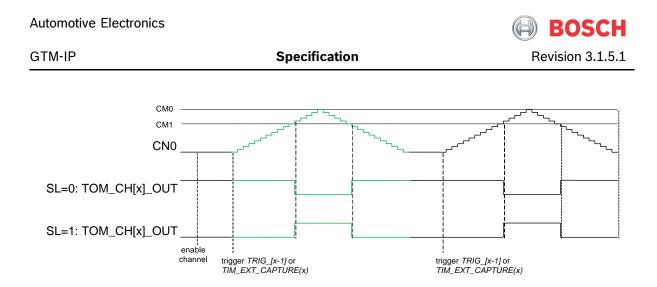
A write access to the register **CN0** triggers the start of pulse generation (i.e. the increment of the counter register **CN0**).

To avoid an update of **CMx** register with content of **SRx** register at this point in time, the automatic update should be disabled by setting UPEN_CTRL[x] = 0b00 (in register **TOM[i]_CH[x]_CTRL**)


If the counter **CN0** is greater or equal than **CM1**, the output $TOM[i]_CH[x]_OUT$ is set to SL value.

If the counter **CN0** is less than **CM1**, the output $TOM[i]_CH[x]_OUT$ is set to !SL value. If the counter **CN0** has reached the value 0 (by counting down), it stops.

The new value of **CN0** determines the start delay of the first edge. The delay time of the first edge is given by (**CM1-CN0**) multiplied with period defined by current value of **CLK_SRC**.


Figure 12.3.8.1 depicts the pulse generation in one-shot mode.

12.3.8.1 PWM Output with respect to configuration bit SL in one-shot counting updown mode and UDMODE != 0b00: trigger by writing to CN0

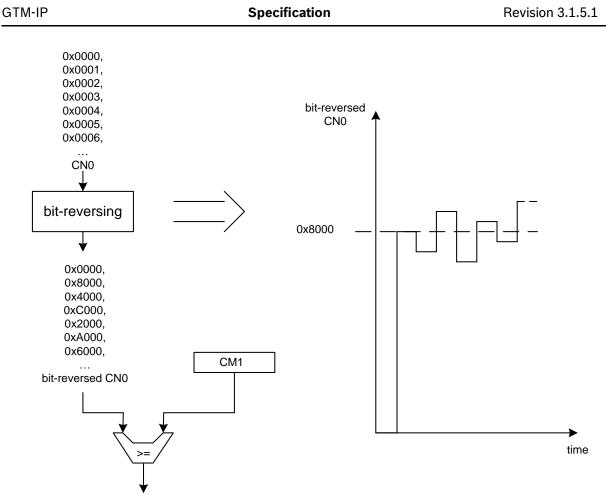
Further output of single pulses can be started by writing to register **CN0**. If a channel is configured to one-shot counting up-down mode and configuration bit OSM_TRIG is set to 1, the trigger signal OSM_TRIG (i.e. $TRIG_[x-1]$ or $TIM_EXT_CAPTURE(x)$) triggers start of one pulse generation.

12.3.8.2 PWM Output with respect to configuration bit SL in one-shot counting updown mode and UDMODE != 0b00: trigger by TRIG_[x-1] or TIM_EXT_CAPTURE(x)

12.3.9 Pulse Count Modulation Mode

At the output *TOM[i]_CH15_OUT* a pulse count modulated signal can be generated instead of the simple PWM output signal.

Figure 12.3.3 outlines the circuit for Pulse Count Modulation.


The PCM mode is enabled by setting bit **BITREV** to 1.

With the configuration bit **BITREV**=1 a bit-reversing of the counter output **CN0** is configured. In this case the bits LSB and MSB are swapped, the bits LSB+1 and MSB-1 are swapped, the bits LSB+2 and MSB-2 are swapped and so on.

The effect of bit-reversing of the **CN0** register value is shown in the following figure 12.3.9.1.

12.3.9.1 Bit reversing of counter **CN0** output

In the PCM mode the counter register **CN0** is incremented by every clock tick depending on configured CMU clock (*CMU_FXCLK*).

The output of counter register **CN0** is first bit-reversed and then compared with the configured register value **CM1**.

If the bit-reversed value of register **CN0** is greater than **CM1**, the SR flip-flop of submodule SOU is set (depending on configuration register **SL**) otherwise the SR flip-flop is reset. This generates at the output *TOM[i]_CH15_OUT* a pulse count modulated signal.

In PCM mode the **CM0** register - in which the period is defined - normally has to be set to its maximum value 0xFFFF.

To reduce time period of updating duty cycle value in **CM1** register, it is additionally possible to setup period value in **CM0** register to smaller values than maximum value as described before.

Possible values for **CM0** register are each even numbered values to the power of 2 e.g. 0x8000, 0x4000, 0x2000

In this case the duty cycle has to be configured in the following manner.

Specification

Depending on how much the period in CM0 register is decreased - means shifted right starting from 0x10000 - the duty cycle in CM1 register has to be shifted left (= rotated: shift MSB back into LSB) with same value, e.g. :

period CM0 = 0x0100 -> shifted 8 bits right from 0x10000 --> so duty cycle has to be shifted left 8 bit : e.g. 50% duty cycle = 0x00080 -> shift 8 bits left -> CM1 = 0x8000

More examples :

period CM0	->	duty cycle	->	shift	->	CM1
0xFFFF	->	0x8000	->	no shift	->	0x8000
0x8000	->	0x4000	->	shift 1 bit left	->	0x8000
0x4000	->	0x1000	->	shift 2 bits left	->	0x4000
0x2000	->	0x0FFF	->	shift 3 bits left	->	0x7FF8
0x1000	->	0x0333	->	shift 4 bits left	->	0x3330
0x0800	->	0x0055	->	shift 5 bits left	->	0x0AA0
•••						
0x0020	->	0x0008	->	shift 19 bits left	->	0x4000
0x0010	->	0x0005	->	shift 20 bits left	->	0x5000

Note: In this mode the interrupt CCU1TC (see register **TOM[i]_CH[x]_IRQ_NOTIFY**) is set every time if bit reverse value of **CN0** is greater or equal than **CM1** which may be multiple times during one period. Therefore, from application point of view it is not useful to enable this interrupt.

12.3.10 Trigger Generation

For applications with constant PWM period defined by CM0, it is not necessary to update regularly the **CM0** register with **SR0** register. For these applications the **SR0** register can be used to define an additional output signal and interrupt trigger event. If bit SR0_TRIG in register **TOM[i]_CH[x]_CTRL** is set, the register **SR0** is no longer used as a shadow register for register **CM0**. Instead, **SR0** is compared against **CN0** and if both are equal, a pulse of signal level '1' is generated at the output $TOM[i]_CH[x]_OUT_T$.

The bit SR0_TRIG should only be set if bit RST_CCU0 of this channel is 0.

If bit SR0_TRIG is set the interrupt notify flag CCU1TC is no longer set on a compare match of **CM1** and **CN0**. Instead, the CCU1TC interrupt notify flag is set in case of a compare equal match of **SR0** and **CN0**.

With configuration bit TRIG_PULSE one can select if the output *TOM[i]_CH[x]_OUT_T* is high as long as CN0=SR0 (TRIG_PULSE=0) or if there will be only one pulse of length one SYS_CLK period when CN0 becomes SR0 (TRIG_PULSE=1).

The TOM output signal routing to DTM or GTM-IP top level is described in chapter 14.7

12.4TOM BLDC Support

The TOM sub-module offers in combination with the SPE sub-module a BLDC support. To drive a BLDC engine TOM channels 0 to 7 can be used.

The BLDC support can be configured by setting the **SPEM** bit inside the **TOM[i]_CH[z]_CTRL** register. When this bit is set the TOM channel output is controlled through the SPE_OUT(z) signal coming from the SPE sub-module (see figure 12.3.1). Please refer to chapter 19 for a detailed description of the SPE sub-module.

The TOM[i]_CH2,6,7,8 or 9 can be used together with the SPE module to trigger a delayed update of the **SPE_OUT_CTRL** register (i.e. commutation delay) after new input pattern detected by SPE (signaled by *SPE[i]_NIPD*). This feature is configured on TOM[i]_CH2,6,7,8 or 9 by setting SPE_TRIG=1 and OSM=1. With this configuration the TOM channel i generates one single PWM pulse on trigger by signal *SPE_NIPD*. For details please refer to chapter of SPE sub-module description.

12.5TOM Gated Counter Mode

Each TOM - SPE module combination provides also the feature of a gated counter mode. This is reached by using the *FSOI* input of a TIM module to gate the clock of a CCU0 sub-module.

To configure this mode, register of module SPE should be set as following:

- the SPE should be enabled (bit **SPE_EN** = 1),
- all three TIM inputs should be disabled (SIE0 = SIE1 = SIE2 = 0),
- SPE[i]_OUT_CTRL should be set to 00005555h (set SPE_OUT() to '0'),
- mode FSOM should be enabled (FSOM=1),
- set in bit field **FSOL** bit c if channel c of module TOM is chosen for gated counter mode

Additionally in module TOM

- the SPE mode should be disabled (**SPEM**=0) and
- the gated counter mode should be enabled (**GCM**=1)

As a result of this configuration, the counter **CN0** in sub-module CCU0 of TOM channel c counts as long as input *FSOI* is '0'.

12.6 TOM Interrupt signals

Specification

Signal	Description
TOM_CCU0TCx_IRQ	CCU0 Trigger condition interrupt for channel x
TOM_CCU1TCx_IRQ	CCU1 Trigger condition interrupt for channel x

12.7 TOM Configuration Register Overview

Register name	Description	Details in Section
TOM[i]_TGC[y]_GLB_CTRL (y:01)	TOMi TGC y global control register	12.8.1
TOM[i]_TGC[y]_ENDIS_CTRL (y:01)	TOMi TGC y enable/disable control register	12.8.2
TOM[i]_TGC[y]_ENDIS_STAT (y:01)	TOMi TGC y enable/disable status register	12.8.3
TOM[i]_TGC[y]_ACT_TB (y:01)	TOMi TGC y action time base register	12.8.4
TOM[i]_TGC[y]_OUTEN_CTRL (y:01)	TOMi TGC y output enable control register	12.8.5
TOM[i]_TGC[y]_OUTEN_STAT (y:01)	TOMi TGC y output enable status register	12.8.6
TOM[i]_TGC[y]_FUPD_CTRL (y:01)	TOMi TGC y force update control register	12.8.7
TOM[i]_TGC[y]_INT_TRIG (y:01)	TOMi TGC y internal trigger control register	12.8.8
TOM[i]_CH[x]_CTRL	TOMi channel x control register	12.8.9
TOM[i]_CH[x]_CN0	TOMi channel x CCU0 counter register	12.8.10
TOM[i]_CH[x]_CM0	TOMi channel x CCU0 compare register	12.8.11
TOM[i]_CH[x]_SR0	TOMi channel x CCU0 compare shadow register	12.8.12
TOM[i]_CH[x]_CM1	TOMi channel x CCU1 compare register	12.8.13
TOM[i]_CH[x]_SR1	TOMi channel x CCU1 compare shadow register	12.8.14
TOM[i]_CH[x]_STAT	TOMi channel x status register	12.8.15
TOM[i]_CH[x]_IRQ_NOTIFY	TOMi channel x interrupt notification register	12.8.16
TOM[i]_CH[x]_IRQ_EN	TOMi channel x interrupt enable register	12.8.17
TOM[i]_CH[x]_IRQ_FORCINT	TOMi channel x force interrupt register	12.8.18
TOM[i]_CH[x]_IRQ_MODE	TOMi channel x interrupt mode register	12.8.19

12.8TOM Configuration Register Description

12.8.1 Register TOM[i]_TGC[y]_GLB_CTRL (y:0...1)

Address Offset:	see Appendix B									Initial Value: 0x0000_0000														
	31 30	29 28	27 26	25 24	23 22	21 20	19 18	17 16	15	14	13	12	11	10	6	8	7	6	5	4	¢.	°	ı -	• 0
Bit	UPEN_CTRL7	UPEN_CTRL6	UPEN_CTRL5	UPEN_CTRL4	UPEN_CTRL3	UPEN_CTRL2	UPEN_CTRL1	UPEN_CTRL0	RST_CH7	RST_CH6	RST_CH5	RST_CH4	RST_CH3	RST_CH2	RST_CH1	RST_CH0				Reserved				HOST_TRIG
Mode	RW	RW	RW	RW	RW	RW	RW	RW	RAw	RAw	RAw	RAw	RAw	RAw	RAw	RAw				щ				RAw
Initial Value	0000	0000	00d0	00d0	0000	0000	0090	0000	0	0	0	0	0	0	0	0				0×00		0		
Bit 0	 HOST_TRIG : trigger request signal (see TGC0, TGC1) to update th register ENDIS_STAT and OUTEN_STAT 0 = no trigger request 1 = set trigger request Note: this flag is reset automatically after triggering the update 																							
Bit 7:1		serve				اربحا	-l			_			_											
Bit 8	RS 0 = 1 =	T_CH No a Rese e: Th reg	HO : S actior et ch his b gister	Softw n anne it is o r are	vare el clear set	reset ed a to t	t of c uton heir	writt hanr natica rese e SR	nel ally et	0 / a va	fte	er v es	wri a	nd	С	ha	nn	el	0	pe				
Bit 9		T_CH e bit 8		Softv	vare	reset	t of c	hanr	nel	1														
Bit 10	RS	T_Cł	12 : \$	Softv	vare	reset	t of c	hanr	nel	2														
Bit 11	See bit 8 RST_CH3 : Software reset of channel 3 See bit 8																							
Bit 12	RST_CH4 : Software reset of channel 4 See bit 8																							
Bit 13	RS		15 : \$	Softv	vare	reset	t of c	:hanr	nel	5														

GTM-IP	Specification	Revision 3.1.5.1
Bit 14	RST_CH6 : Software reset of channel 6 See bit 8	
Bit 15	RST_CH7 : Software reset of channel 7 See bit 8	
Bit 17:16	UPEN_CTRL0 : TOM channel 0 enable update of reginate CLK_SRC from SR0, SR1 and CLK_SRC_SR. Write / Read :	ister CM0, CM1 and
	0b00 = don't care, bits 1:0 will not be changed / upda 0b01 = disable update / 0b10 = enable update /	te disabled
	0b11 = don't care, bits 1:0 will not be changed / upda	ite enabled
Bit 19:18	UPEN_CTRL1 : TOM channel 1 enable update of reginate of reginate of reginate of the second s	ister CM0, CM1 and
Bit 21:20	See bits 17:16 UPEN_CTRL2: TOM channel 2 enable update of region CLK_SRC	ister CM0, CM1 and
Bit 23:22	See bits 17:16 UPEN_CTRL3: TOM channel 3 enable update of region CLK_SRC	ister CM0, CM1 and
Bit 25:24	See bits 17:16 UPEN_CTRL4 : TOM channel 4 enable update of reginater of reginater of the second se	ister CM0, CM1 and
Bit 27:26	See bits 17:16 UPEN_CTRL5 : TOM channel 5 enable update of reginned to the second se	ister CM0, CM1 and
Bit 29:28	See bits 17:16 UPEN_CTRL6: TOM channel 6 enable update of region CLK_SRC	ister CM0, CM1 and
Bit 31:30	See bits 17:16 UPEN_CTRL7 : TOM channel 7 enable update of regi CLK_SRC See bits 17:16	ister CM0, CM1 and

12.8.2 Register TOM[i]_TGC[y]_ENDIS_CTRL (y:0...1)

Specification

Revision 3.1.5.1

	•								
Address Offset:	see Appendix B	Initi	al Va	alue:		0x0	000_	000	0
	33 33 33 33 33 33 34 35 35 35 35 35 35 35 35 35 35 35 35 35	15 14	13 12	11 10	6 8	7 6	5 4	л 3	1 0
Bit	Beserved	ENDIS_CTRL7	ENDIS_CTRL6	ENDIS_CTRL5	ENDIS_CTRL4	ENDIS_CTRL3	ENDIS_CTRL2	ENDIS_CTRL1	ENDIS_CTRL0
Mode	۲	RW	RW	RW	RW	RW	RW	RW	RW
Initial Value	0 0000×0	0090	00d0	0000	0090	0090	0090	0090	0000
Bit 3:2	If a TOM channel is disabled, the convergister of SOU unit is set to the an enable event, the counter value. If FREEZE=1: If a TOM channel is disabled, the convergence of following double bit values Write of following double bit values 0b00 = don't care, bits 1:0 of register on an update trigger 0b01 = disable channel on an update 0b10 = enable channel on an update 0b11 = don't change bits 1:0 of this Note: if the output is disabled (OUT TOM[i]_CH0_OUT is the inverse ENDIS_CTRL1: TOM channel 1 en	ne in CN0 Dunte coun is po er El te trig regis regis	verse star er CN ting f ssibl NDIS gger gger ster)]=0) value	e valu ts co from e: _ST/ , the of bi	stop its c AT w	f con ng fro ped. urrer vill no / cha	trol b om it On a nt val	oit SL an er lue. chai	nged
Bit 5:4	See bits 1:0 ENDIS_CTRL2: TOM channel 2 en				•				
Bit 7:6	See bits 1:0 ENDIS_CTRL3: TOM channel 3 en See bits 1:0	able/	/disal	ole u	pdat	e val	ue.		
Bit 9:8	ENDIS_CTRL4: TOM channel 4 en See bits 1:0	able/	/disal	ole u	pdat	e val	ue.		
Bit 11:10	ENDIS_CTRL5: TOM channel 5 en See bits 1:0	able/	'disal	ole u	pdat	e val	ue.		
Bit 13:12	ENDIS_CTRL6: TOM channel 6 en See bits 1:0	able/	'disal	ole u	pdat	e val	ue.		
Bit 15:14	ENDIS_CTRL7 : TOM channel 7 en See bits 1:0	able/	disal	ole u	pdat	e val	ue.		

Specification

Bit 31:16 **Reserved**

Note: Read as zero, should be written as zero

12.8.3 Register TOM[i]_TGC[y]_ENDIS_STAT (y:0...1)

Address Offset:	see Appendix B	Initial Value: 0x0000_000										
	31 30 29 28 27 26 26 26 25 25 23 23 23 23 21 21 21 19 11 11	15 14	13 12	11 10	68	7 6	5 4	3	1 0			
Bit	Reserved	ENDIS_STAT7	ENDIS_STAT6 ENDIS_STAT6 ENDIS_STAT5 ENDIS_STAT4		ENDIS_STAT3 ENDIS_STAT2		ENDIS_STAT1	ENDIS_STAT0				
Mode	٣	RW	W RW WR		RW	RW	RW	RW	RW			
Initial Value	00000×0	0090	0090	0090	0090	0090	0090	0090	0090			
	If FREEZE=0: If a TOM channel is disabled, the corregister of SOU unit is set to the an enable event, the counter value. If FREEZE=1: If a TOM channel is disabled, the correvent, the counter CN0 starts Write / Read : 0b00 = don't care, bits 1:0 will not b 0b01 = disable channel / 0b10 = enable channel / 0b11 = don't care, bits 1:0 will not b	he in CN0 ounte cour	verse star er CN nting	e vale ts co I0 is from :d / c	ue of puntin stop its c hann	f con ng fro ped. urrer	trol b om if On a nt va sable	oit SL ts cu an en lue. ed	. On rrent			
Bit 3:2	ENDIS_STAT1 : TOM channel 1 en See bits 1:0	able/	/disal	ble								
Bit 5:4	ENDIS_STAT2: TOM channel 2 en See bits 1:0	able/	/disal	ble								
Bit 7:6	ENDIS_STAT3: TOM channel 3 enable/disable See bits 1:0											
Bit 9:8	ENDIS_STAT4: TOM channel 4 en See bits 1:0	able/	/disal	ble								
Bit 11:10	ENDIS_STAT5: TOM channel 5 enable/disable											
Bit 13:12	See bits 1:0 ENDIS_STAT6: TOM channel 6 enable/disable											

BOSCH Revision 3.1.5.1

Bit 15:14	See bits 1:0 ENDIS STAT7: TOM channel 7 enable/disable
	See bits 1:0
Bit 31:16	Reserved
	Note: Read as zero, should be written as zero

Specification

12.8.4 Register TOM[i]_TGC[y]_ACT_TB (y:0...1)

Address Offset:	see Appendix B Initial Value: 0x0000_0000
	31 30 23 23 23 26 25 25 24 23 23 24 23 23 23 23 23 23 23 23 23 23 23 23 23
Bit	Reserved TBU_SEL TB_TRIG ACT_TB
Mode	R RW RAW
Initial Value	0 000000 00000 0 0 0 0 0 0 0 0 0 0 0 0
Bit 23:0 Bit 24	 ACT_TB: specifies the signed compare value with selected signal <i>TBU_TS</i>[x], x=02. If selected <i>TBU_TS</i>[x] value is in the interval [ACT_TB-007FFFFh,ACT_TB] the event is in the past and the trigger is generated immediately. Otherwise the event is in the future and the trigger is generated if selected <i>TBU_TS</i>[x] is equal to ACT_TB. TB_TRIG: Set trigger request 0 = no trigger request 1 = set trigger request Note: This flag is reset automatically if the selected time base unit (<i>TBU_TS0</i> or <i>TBU_TS1</i> or <i>TBU_TS2</i> if present) has reached the value ACT_TB and the update of the register were triggered.
Bit 26:25	TBU_SEL : Selection of time base used for comparison 0b00 = TBU_TS0 selected 0b01 = TBU_TS1 selected 0b10 = TBU_TS2 selected 0b11 = same as 0b00 Note: The bit combination 0b10 is only applicable if the TBU of the device contains three time base channels. Otherwise, this bit combination is also reserved. Please refer to GTM Architecture block diagram on page 3 to determine the number of channels for TBU of this device.

Bit 31:27 Reserved

Specification

Note: Read as zero, should be written as zero

12.8.5 Register TOM[i]_TGC[y]_OUTEN_CTRL (y:0...1)

Address Offset:	see Appendix B	Initial Value: 0x0000_0000								
	31 31 29 28 28 28 28 27 28 27 28 27 27 28 21 21 19 117 16	15 14	13 12	11 10	6	7 6	5 4	3	1 0	
Bit	Reserved	OUTEN_CTRL7	OUTEN_CTRL6	OUTEN_CTRL5	OUTEN_CTRL4	OUTEN_CTRL3	OUTEN_CTRL2	OUTEN_CTRL1	OUTEN_CTRL0	
Mode	Υ	RW	RW	RW	RW	RW	RW	RW	RW	
Initial Value	0000×0	0090	0090	0090	0090	0090	0090	0090	0000	
	 Write of following double bit values 0b00 = don't care, bits 1:0 of register on an update trigger 0b01 = disable channel output on at 0b10 = enable channel output on at 0b11 = don't change bits 1:0 of this Note: if the channel is disabled (E (OUTEN[0]=0), the TOM chan inverted value of bit SL. 	er ÖU n upo n upo regis	JTEN date date ster S[0]=	I_ST trigg trigge 0) or	er er the	outp	out is	disa	bled	
Bit 3:2	OUTEN_CTRL1: Output TOM[i]_Cl See bits 1:0	H1_C	OUT	enab	le/dis	sable	e upd	late v	alue	
Bit 5:4	OUTEN_CTRL2: Output TOM[i]_Cl See bits 1:0	H2_C	OUT	enab	le/dis	sable	e upd	late v	value	
Bit 7:6	OUTEN_CTRL3: Output TOM[i]_Cl See bits 1:0	H3_C	OUT (enab	le/dis	sable	e upd	late v	value	
Bit 9:8	OUTEN_CTRL4: Output TOM[i]_Cl See bits 1:0	H4_C	OUT (enab	le/dis	sable	e upd	late v	alue	
Bit 11:10	OUTEN_CTRL5: Output TOM[i]_Cl See bits 1:0	45_C	DUT	enab	le/dis	sable	e upd	late v	alue	
Bit 13:12	OUTEN_CTRL6: Output TOM[i]_Cl See bits 1:0	H6_C	OUT (enab	le/dis	sable	e upd	late v	value	
Bit 15:14	OUTEN_CTRL7: Output TOM[i]_Cl See bits 1:0	47_C	OUT	enab	le/dis	sable	e upd	late v	value	
Bit 31:16	Reserved Note: Read as zero, should be writt	en a	s zer	0						

12.8.6 Register TOM[i]_TGC[y]_OUTEN_STAT (y:0...1)

Address Offset:	see Appendix B	Initi	ial Value:	0x0	0x0000_0000					
	31 30 29 27 27 27 26 26 26 26 25 22 23 23 23 23 23 21 19 11 11	15 14	13 12 11 10	6 8	7 6	5 4	3 2	1 0		
Bit	Reserved	OUTEN_STAT7	OUTEN_STAT6 OUTEN_STAT5	OUTEN_STAT4	OUTEN_STAT3	OUTEN_STAT2	OUTEN_STAT1	OUTEN_STAT0		
Mode	œ	RW	RW RW	RW	RW	RW	RW	RW		
Initial Value	00000×0	0040	0000	0090	00d0	00d0	00q0	00d0		
	0b00 = don't care, bits 1:0 will not b 0b01 = disable output / 0b10 = enable output / 0b11 = don't care, bits 1:0 will not b	e ch	anged / o	utput	t ena	bled				
Bit 3:2			-	-						
	OUTEN_STAT1 : Control/status of c See bits 1:0	•		-	-					
Bit 5:4	OUTEN_STAT2 : Control/status of c See bits 1:0	outpu	ıt TOM[i]_	CH2	2_00	Т				
Bit 7:6	OUTEN_STAT3: Control/status of o See bits 1:0	outpu	ıt TOM[i]_	СНЗ	3_OU	Т				
Bit 9:8	OUTEN_STAT4: Control/status of o See bits 1:0	outpu	ıt TOM[i]_	CH4	1_OU	Т				
Bit 11:10	OUTEN_STAT5 : Control/status of c See bits 1:0	outpu	ıt TOM[i]_	CH5	5_00	Т				
Bit 13:12	OUTEN_STAT6 : Control/status of output TOM[i]_CH6_OUT See bits 1:0									
Bit 15:14		DUTEN_STAT7 : Control/status of output TOM[i]_CH7_OUT								
Bit 31:16	Reserved Note: Read as zero, should be writt	en a	s zero							

12.8.7 Register TOM[i]_TGC[y]_FUPD_CTRL (y:0...1)

Specification

Revision 3.1.5.1

Address Offset:	see Appendix B									ial Va	alue:	8	0x0	000_	0_0000			
	31 30	29 28	27 26	25 24	23 22	21 20	19 18	17 16	15 14	13 12	11 10	6 8	7 6	5 4	3	1 0		
Bit	RSTCN0_CH7	RSTCN0_CH6	RSTCN0_CH5	RSTCN0_CH4	RSTCN0_CH3	RSTCN0_CH2	RSTCN0_CH1	RSTCN0_CH0	FUPD_CTRL7	FUPD_CTRL6	FUPD_CTRL5	FUPD_CTRL4	FUPD_CTRL3	FUPD_CTRL2	FUPD_CTRL1	FUPD_CTRL0		
Mode	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW		
Initial Value	0000	0090	0090	0090	0090	0090	0090	0090	0090	0090	0090	0090	0090	0090	0090	0000		
	Wri 0b0 0b0 0b1 0b1	by te / F 00 = 0 01 = 0 .0 = 0 .1 = 0 re: Th	HOS Read don't disab enab don't ne fo	ST_T : care ole fo le for care rce u	RIG, bits rce u rce u , bits	ACT s 1:0 updat s 1:0 te re	ſ_TB will r te / e / will r	com not b - not b	npare e cha e cha	e ma ange ange	tch o d / fo d / f	r inte orce orce	ernal upda upda	trigg ate di ate e	sable sable			
Bit 3:2		PD_0 e bits		L 1 : F	orce	upd	ate o	of TO	M ch	nanne	el 1 c	opera	ation	regis	ster			
Bit 5:4	FUI		CTRI	L 2 : F	orce	upd	ate o	of TO	M ch	anne	el 2 c	opera	ation	regis	ster			
Bit 7:6	FUI		CTRI	L 3 : F	orce	upd	ate o	of TO	M ch	nanne	el 3 c	opera	ation	regis	ster			
Bit 9:8	FUI		CTRI	L 4 : F	orce	upd	ate o	of TO	M ch	nanne	el 4 c	opera	ation	regis	ster			
Bit 11:10	FUI		CTRI	L 5 : F	orce	upd	ate o	of TO	M ch	anne	el 5 c	opera	ation	regis	ster			
Bit 13:12	FUI		CTRI	L 6 : F	orce	upd	ate o	of TO	M ch	anne	el 6 c	opera	ation	regis	ster			
Bit 15:14	FUI	PD_(CTRI	L 7 : F	orce	upd	ate o	of TO	M ch	anne	el 7 c	opera	ation	regis	ster			
Bit 17:16	RS If e	enabl	0_CH ed, atch o	reset or int	t CN		gger							vent _TB		pare		
	0b0 0b0	0 = 0 up 01 = 0	don't date do no	care ot res	set C		n for	ced	upda	-		10 is	not r	eset	on fo	rced		

GTM-IP	Specification	Revision 3.1.5.1
	0b11 = don't care, bits 1:0 will not be changed / CN0 update	is reset on forced
Bit 19:18	RSTCN0_CH1 : Reset CN0 of channel 1 on force upda See bits 17:16	ate event
Bit 21:20	RSTCN0_CH2 : Reset CN0 of channel 2 on force upda See bits 17:16	ate event
Bit 23:22	RSTCN0_CH3 : Reset CN0 of channel 3 on force upda See bits 17:16	ate event
Bit 25:24	RSTCN0_CH4 : Reset CN0 of channel 4 on force upda See bits 17:16	ate event
Bit 27:26	RSTCN0_CH5 : Reset CN0 of channel 5 on force upda See bits 17:16	ate event
Bit 29:28	RSTCN0_CH6 : Reset CN0 of channel 6 on force upda See bits 17:16	ate event
Bit 31:30	RSTCN0_CH7 : Reset CN0 of channel 7 on force upda See bits 17:16	ate event

12.8.8 Register TOM[i]_TGC[y]_INT_TRIG (y:0...1)

Address Offset:	see Appendix B	Initial Value: 0x0000_0000									
	31 30 29 27 28 26 26 25 25 25 24 25 25 21 21 21 21 21 17 16	15 14 13 13	11 10 9 8	6 6 1 1 2 2 3 3 4 4 7 0 0							
Bit	Reserved	INT_TRIG7 INT_TRIG6	INT_TRIG5 INT_TRIG4	INT_TRIG3 INT_TRIG2 INT_TRIG1 INT_TRIG1 INT_TRIG0							
Mode	٣	RW RW	RW RW	RW RW WR							
Initial Value	0000×0	0b00 0b00	0b00 0b00	0b00 0b00 0b00							
Bit 1:0	<pre>INT_TRIG0: Select input signal TRIG_0 as a trigger source Write / Read : 0b00 = don't care, bits 1:0 will not be changed / internal trigger from channel 0 (TRIG_0) not used 0b01 = do not use internal trigger from channel 0 (TRIG_0) / 0b10 = use internal trigger from channel 0 (TRIG_0) / 0b11 = don't care, bits 1:0 will not be changed / internal trigger from channel 0 (TRIG_0) used</pre>										
Bit 3:2 Bit 5:4	INT_TRIG1 : Select input signal <i>TR</i> See bits 1:0 INT_TRIG2 : Select input signal <i>TR</i>	_									

GTM-IP	Specification	Revision 3.1.5.1
	See bits 1:0	
Bit 7:6	INT_TRIG3 : Select input signal <i>TRIG_3</i> as a trigger sou See bits 1:0	urce
Bit 9:8	INT_TRIG4 : Select input signal <i>TRIG_4</i> as a trigger sou See bits 1:0	urce
Bit 11:10	INT_TRIG5 : Select input signal <i>TRIG_5</i> as a trigger sou See bits 1:0	urce
Bit 13:12	INT_TRIG6 : Select input signal <i>TRIG_6</i> as a trigger sou See bits 1:0	urce
Bit 15:14	INT_TRIG7 : Select input signal <i>TRIG_7</i> as a trigger sou See bits 1:0	urce
Bit 31:16	Reserved Note: Read as zero, should be written as zero	

12.8.9 Register TOM[i]_CH[x]_CTRL

Address Offset:	see Appendix B								In	itia	1 \	/a	lu	ie:	0	×0000_0X00								
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10 9 8	7	6 5 3 3 1 0
Bit	FREEZE	Reserved	GCM	SPEM	BITREV	MSO	SPE_TRIG	TRIGOUT	EXTTRIGOUT	EXT_TRIG	OSM_TRIG	RST_CCU0	UDMODE		TRIG_PULSE	Reserved	ECLK_SRC	כו ג כבר כב			SL	Reserved	SR0 TRIG	Reserved
Mode	RW	Я	RW	RW	RW	RW	RW	RW	RW	RW	RPw	RPw	RW		RW	щ	RW	Ma			RW	Ц	RPw	۲
Initial Value	0	0	0	0	0	0	0	0	0	0	0	0	0000		0	0	0	UNDAD	00000		х	00000	0	00×0
Bit 6:0		Reserved																						
Bit 7	S 7 0 1	 Note: Read as zero, should be written as zero SR0_TRIG: SR0 is used to generate a trigger on output TOM[i]_CH[x]_OUT_T if equal to CN0. 0 = SR0 is used as a shadow register for register CM0. 1 = SR0 is not used as a shadow register for register CM0. SR0 is compared with CN0 and if both are equal, a trigger pulse is generated at output TOM[i]_CH[x]_OUT_T. Note: This bit should only be set if RST_CCU0 of this channel is 0. 																						
Bit 10:8 Bit 11	N S 0	Note: This bit should only be set if RST_CCU0 of this channel is 0. Reserved Note: Read as zero, should be written as zero SL : Signal level for duty cycle 0 = Low signal level 1 = High signal level																						

GTM-IP	Specification	Revision 3.1.5.1
	If the output is disabled, the output TOM_OUT[x] is se of SL.	t to inverse value
	Note: Reset value depends on the hardware configu silicon vendor.	ration chosen by
Bit 14:12	<pre>CLK_SRC_SR: Clock source select for channel The register CLK_SRC is updated with the value of together with the update of register CM0 and CM1 The input of the FX clock divider depends on the value (see CMU). if ECLK_SRC=0 / ECLK_SRC=1: 0b000 = CMU_FXCLK(0) selected / CMU_FXCLK(0) selected / CMU_FXCLK(1) selected / CMU_FXCLK(1) selected / CMU_FXCLK(2) selected / CMU_FXCLK(2) selected / CMU_FXCLK(2) selected / CMU_FXCLK(3) selected / CMU_FXCLK(3) selected / CMU_FXCLK(4) selected / CMU_FXCLK(4) selected / CMU_FXCLK(4) selected / CMU_FXCLK(4) selected 0b101 = clock of channel stopped / TRIG[x-1] selected 0b111 = clock of channel stopped / Reserved</pre>	L. e of FXCLK_SEL elected elected elected elected elected
	Note: This register is a shadow register for the register if the CMU_CLK source for PWM generation sh during operation, the old CMU_CLK has to operat of the ATOM channels internal CLK_SRC CLK_SRC_SR content is done either by an end forced update.	ould be changed e until the update register by the
	Note: if clock of channel is stopped (i.e. EC CLK_SRC=0b101/0b110/0b111) , the channe restarted by resetting CLK_SRC_SR to a value o and forcing an update via the force update mecha	el can only be f 0b000 to 0b100
Bit 15	ECLK_SRC: Extend CLK_SRC 0: CLK_SRC_SR set 1 selected (see bit CLK_SRC_SF 1: CLK_SRC_SR set 2 selected (see bit CLK_SRC_SF	
Bit 16	Reserved	'y
Bit 17	Note: Read as zero, should be written as zero TRIG_PULSE : Trigger output pulse length of one SYS 0 = output on TOM[i]_OUT[x]_T is 1 as long a SR=_TRIG=1) 1 = output on TOM[i]_OUT[x]_T is 1 for only one SY CN0=SR0 (if SR=_TRIG=1)	as CN0=SR0 (if
Bit 19:18	UDMODE : up-down counter mode 0b00 = up-down counter mode disabled: CN0 counts a 0b01 = up-down counter mode enabled: CN0 counts up CM1 are updated if CN0 reaches 0 (i.e. changes f	and down, CM0,

GTM-IP	Specification	Revision 3.1.5.1
	0b10 = up-down counter mode enabled: CN0 cou CM1 are updated if CN0 reaches CM0 (i.e down)	
	0b11 = up-down counter mode enabled: CN0 cou CM1 are updated if CN0 reaches 0 or CM0	-
Bit 20	<pre>RST_CCU0: Reset source of CCU0 0 = Reset counter register CN0 to 0 on matching 1 = Reset counter register CN0 to 0 on TIM_EXT_CAPTURE(x).</pre>	-
	Note: On TOM channel 2 SPEM=1 has special m If SPEM = 1, the signal SPE_NIPD triggers the res of RST_CN0.	•
Bit 21	Note: This bit should only be set if bit OSM=0 (i.e. OSM_TRIG : enable trigger of one-shot pul OSM TRIG	
	0 = signal OSM_TRIG cannot trigger start of singl 1 = signal OSM_TRIG can trigger start of single p bit OSM = 1)	
Bit 22	 Note: This bit should only be set if bit OSM=1 and EXT_TRIG: select TIM_EXT_CAPTURE(x) as trig 0 = signal TIM_[x-1] is selected as trigger to rese pulse generation. 1 = signal TIM_EXT_CAPTURE(x) is selected 	gger signal
Bit 23	EXTTRIGOUT: select TIM_EXT_CAPTURE(x) as	s potential output signal
	TRIG_[x] 0 = signal TRIG_[x-1] is selected as output on TR 1 = signal TIM_EXT_CAPTURE(x) is selected as TRIGOUT=1)	
Bit 24	TRIGOUT : Trigger output selection (output signa TOM_CH[x] 0 = <i>TRIG_[x</i>] is <i>TRIG_[x-1</i>] or TIM_ <i>EXT_CAPTU</i>	
	$1 = TRIG_[x]$ is $TRIG_CCU0$	Π (() .
Bit 25	SPE_TRIG: SPE trigger to reset CN0 For TOM channel 2,6 and 7 this bit defines in com the source of output pin <i>TOM[i]_CH[x]_OUT</i> by TOM input signal <i>SPE[i]_NIPD</i> .	
	If SPEM=0 / SPEM=1 : 0 = TOM[i]_CH[x]_OUT defined by TOM[i] chan CN0 reset is defined by configuration TOM[i]_CH[x]_OUT is defined by SPE[i]_O signal SPE[i]_NIPD	of bit RST_CCU0 /

- 1 = TOM[i]_CH[x]_OUT defined by TOM[i] channel x SOUR register, CN0 is reset by signal SPE[i]_NIPD / TOM[i]_CH[x]_OUT is defined by SPE[i]_OUT[x], CN0 reset is defined by configuration of bit RST_CCU0
- Note: For TOM channel 8 and 9 this bit defines only if CN0 reset is defined by input signal *SPE[i]_NIPD* or by configuration of RST_CCU0. The output *TOM[i]_CH[x]_OUT* is not affected.
- The configuration bit SPEM is not available for these channels and thus assumed to be 0.
- Note: If a configuration of SPEM | SPE_TRIG = 0 | 1 or 1 | 0 is chosen (i.e. CN0 is reset by signal *SPE[i]_NIPD*), the one-shot mode in corresponding TOM channel should also be enabled by setting bit OSM=1 to generate one PWM pulse in case of trigger *SPE[i]_NIPD*.
- SPE module one of trigger Note: In the signals TOM[i]_CH2_TRIG_CCU1, TOM[i]_CH6_TRIG_CCU1, TOM[i] CH7 TRIG CCU1, TOM[i] CH8 TRIG CCU1, or TOM[i] CH9 TRIG CCU1 can be used to trigger the update of register SPE[i] OUT CTRL.
- Bit 26 **OSM**: One-shot mode. In this mode the counter CN0 counts for only one period. The length of period is defined by CM0. A write access to the register CN0 triggers the start of counting.
 - 0 = One-shot mode disabled
 - 1 = One-shot mode enabled
- Bit 27 **BITREV**: Bit-reversing of output of counter register **CN0**. Note: This bit enables the PCM mode of channel 15.
- Bit 28 **SPEM**: SPE output mode enable for channel.
 - 0 = SPE output mode disabled: *TOM[i]_CH[x]_OUT* defined by TOM[i] channel x SOUR register
 - 1 = SPE output mode enabled: *TOM[i]_CH[x]_OUT* is defined by *SPE[i]_OUT[x]*
 - Note: The SPE output mode is only implemented for TOM instances connected to a SPE module and only for TOM channels 0 to 7.
 - Note: For TOM channel 2,6 and 7 this bit defines in combination with bit SPE_TRIG the source of output pin *TOM[i]_CH[x]_OUT* and if CN0 can be reset by TOM input signal *SPE[i]_NIPD*.
- Bit 29 GCM: Gated Counter Mode enable 0 = Gated Counter mode disabled 1 = Gated Counter mode enabled Note: The Gated Counter mode is only available for TOM instances connected to a SPE module and only for channels 0 to 7.

Bit 30 Reserved

GTM-IP	Specification	Revision 3.1.5.1
D:+ 21	Note: Read as zero, should be written as zero	

Bit 31 FREEZE

- 0 = a channel disable/enable may change internal register and output register
- 1 = a channel enable/disable does not change an internal or output register but stops counter **CN0**

12.8.10 Register TOM[i]_CH[x]_CN0

Address Offset:	see Appendix B	Initial Value: 0x0000_0000						
	31 30 29 27 27 26 26 26 26 26 26 26 22 22 23 23 23 23 21 19 117 16	$\begin{array}{c} 15\\ 14\\ 14\\ 13\\ 12\\ 11\\ 11\\ 10\\ 9\\ 9\\ 9\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 3\\ 3\\ 3\\ 3\\ 2\\ 2\\ 1\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$						
Bit	Reserved	C						
Mode	٣	S 22						
Initial Value	0000×0	0 000 00 X0						
Bit 15:0	CN0 : TOM CCU0 counter register This counter is stopped if the TOM an enable event of TOM chan	channel is disabled and not reset on nel.						

Bit 31:16 **Reserved** Note: Read as zero, should be written as zero

12.8.11 Register TOM[i]_CH[x]_CM0

Address Offset:	see Appendix B	Initial Value: 0x0000_0000			
	31 30 29 27 27 26 26 26 25 25 25 23 23 23 23 21 21 21 17 16	15 14 13 13 12 11 10 9 9 9 9 8 8 8 8 8 8 8 8 8 8 8 3 3 3 3 3			
Bit	Reserved	cW			
Mode	œ	ж Х			
Initial Value	0 0000×0	00000X0			

Bit 15:0	CM0: TOM CCU0 compare register
	Setting CM0 < CM1 configures a duty cycle of 100%.
Bit 31:16	Reserved
	Note: Read as zero, should be written as zero

Specification

12.8.12 Register TOM[i]_CH[x]_SR0

Address Offset:	see Appendix B	Initial Value: 0x0000_0000				
	31 30 29 27 27 26 26 26 26 26 22 22 23 23 23 23 21 19 11 11	15 14 13 13 12 12 12 10 9 9 8 8 8 8 8 8 8 8 8 8 3 3 3 3 3 3 2 2 2 2				
Bit	Reserved	SS				
Mode	٣	R K				
Initial Value	000000000000000000000000000000000000000	000000000000000000000000000000000000000				
Bit 15:0	SR0 : TOM channel x shadow register SR0 for update of compare CM0					
Bit 31:16	Reserved Note: Bead as zero, should be writt	en as zero				

Note: Read as zero, should be written as zero

12.8.13 Register TOM[i]_CH[x]_CM1

Address Offset:	see Appendix B	Initial Value: 0x0000_0000
	31 30 29 27 27 26 26 25 25 25 24 25 21 23 23 23 21 19 11 11	15 14 13 13 13 12 10 9 9 9 8 8 8 8 8 8 8 8 8 7 7 6 6 6 5 5 3 3 3 2 2 2 0 0
Bit	Reserved	CM1
Mode	۲	R
Initial Value	0 000 00×0	00000×0
Bit 15:0	CM1: TOM CCU1 compare register	· · · · · · · · · · · · · · · · · · ·

Setting CM1 = 0 configures a duty cycle of 0% independent of the configured value of CM0.

BOSCH Revision 3.1.5.1

GTM-IP

Specification

Reserved Bit 31:16

Note: Read as zero, should be written as zero

Register TOM[i]_CH[x]_SR1 12.8.14

Address Offset:	see Appendix B Initial Value: 0x0000_0000	
	31 30 23 23 23 26 26 26 26 26 27 26 27 26 27 27 27 27 21 19 11 11 11 11 11 11 11 11 11 11 11 11	
Bit	Reserved	
Mode	ш В	
Initial Value	00000×0	
Bit 15:0	SR1 : TOM channel x shadow register SR1 for update of compare register CM1	

Bit 31:16 Reserved

Note: Read as zero, should be written as zero

Register TOM[i]_CH[x]_STAT 12.8.15

Address Offset:	see Appendix B Initial Value: 0x0000_000x	
	31 30 29 28 27 27 26 25 25 25 22 23 23 23 23 23 23 19 11 11 11 11 11 11 11 11 12 12 12 12 12	0
Bit	Reserved	OL
Mode	α	œ
Initial Value	00000 000000	×
Bit 0	OL : Output level of output <i>TOM</i> OUT(x)]

OL: Output level of output *TOM OUT(x)*

Note: Reset value is the inverted value of SL bit which depends on the hardware configuration chosen by silicon vendor.

Bit 31:1 Reserved

Note: Read as zero, should be written as zero

12.8.16 Register TOM[i]_CH[x]_IRQ_NOTIFY

Address Offset:	see Appendix B Initial Value: 0x0000_000	0
	31 33 30 30 30 20 21 25 26 27 27 28 29 20 21 11 15 15 16 16 17 18 11 11 11 11 11 11 11 11 13 13 13 14 15 16 16 17 18 19 11 11 11 12 13 14 13 3 3	1 0
Bit	Reserved	CCU1TC CCU0TC
Mode	۲. ۲	RCw RCw
Initial Value	00000 0000 000	0 0
Bit 1	 CCUUTC: CCU0 Trigger condition interrupt for channel x 0 = No interrupt occurred 1 = The condition CN0 >= CM0 was detected. The notification of the interrupt is only triggered one time after reactive the condition CN0 >= CM0. To enable re-trigger of the notification first the condition CN0 < CM1 has to be reached. 	•
BIT 1	<pre>CCU1TC: CCU1 Trigger condition interrupt for channel x 0 = No interrupt occurred If SR0_TRIG=0 / SR0_TRIG=1 : 1 = the condition CN0 >= CM1 was detected / the condition SR0= was detected Note: The notification of the interrupt is only triggered one time reaching the condition CN0 >= CM1. To enable re-trigger o notification first the condition CN0 < CM1 has to be reached.</pre>	after
Bit 31:2	Reserved Note: Read as zero, should be written as zero	

12.8.17 Register TOM[i]_CH[x]_IRQ_EN

Specification

Revision 3.1.5.1

Address Offset:	see Appendix B Initial Value: 0x0000_000	0	
	31 33 33 33 33 33 33 34 36 35 33 33 33 33 33 33 33	1	0
Bit	Reserved	CCU1TC_IRQ_EN	CCU0TC IRQ EN
Mode	۳	RW	RW
Initial Value	000000000000000000000000000000000000000	0	0
Bit 0	CCUOTC_IRQ_EN : <i>TOM_CCUOTC_IRQ</i> interrupt enable 0 = Disable interrupt, interrupt is not visible outside GTM-IP 1 = Enable interrupt, interrupt is visible outside GTM-IP		
Bit 1	CCU1TC_IRQ_EN: TOM_CCU1TC_IRQ interrupt enable See bit 0		

Bit 31:2 **Reserved** Note: Read as zero, should be written as zero

12.8.18 Register TOM[i]_CH[x]_IRQ_FORCINT

Address Offset:	see Appendix B Initial Value: 0x0000_0000)	
	31 33 29 29 28 27 27 26 26 21 23 23 22 23 23 23 21 11 11 11 11 11 11 11 11 11 11 11 11	1 0	
Bit	Reserved	TRG_CCU1TC0 TRG_CCU0TC0	
Mode	٣	RAw RAw	
Initial Value	0 0000 X0	0 0	
Bit 0	TRG_CCU0TC0 : Trigger <i>TOM_CCU0TC0_IRQ</i> interrupt by software 0 = No interrupt triggering 1 = Assert <i>CCU0TC0_IRQ</i> interrupt for one clock cycle Note: This bit is cleared automatically after write. Note: This bit is write protected by bit RF_PROT of register GTM_CTRL		
Bit 1	TRG_CCU1TC0 : Trigger <i>TOM_CCU1TC0_IRQ</i> interrupt by software 0 = No interrupt triggering		

GTM-IP	Specification	Revision 3.1.5.1
	1 = Assert CCU1TC0_IRQ interrupt for one clock cycle Note: This bit is cleared automatically after write. Note: This bit is write protected by bit RF_PROT of regis	ster GTM_CTRL

Bit 31:2 Reserved

Note: Read as zero, should be written as zero

12.8.19 Register TOM[i]_CH[x]_IRQ_MODE

Address Offset:	see Appendix B Initial Value: 0x0000_000	x
	31 30 29 28 28 27 26 26 26 25 22 22 23 23 23 21 21 21 21 21 22 22 23 23 23 23 23 23 23 23 23 23 23	1 0
Bit	Reserved	IRQ_MODE
Mode	۳	RW
Initial Value	00000 00000 0000	хх
Bit 1:0	IRQ_MODE: IRQ mode selection	

0b00 = Level mode

0b01 = Pulse mode

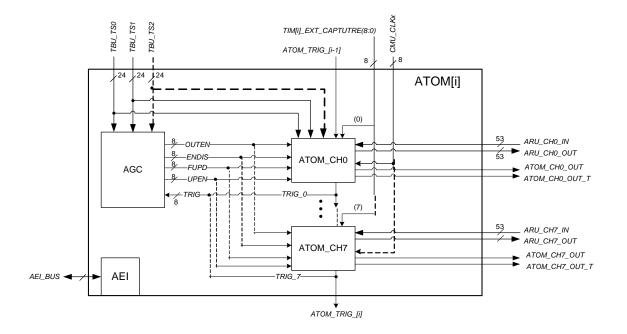
0b10 = Pulse-Notify mode

0b11 = Single-Pulse mode

Note: The interrupt modes are described in section 2.5.

Bit 31:2 Reserved

Note: Read as zero, should be written as zero


13 ARU-connected Timer Output Module (ATOM)

13.1 Overview

The ARU-connected Timer Output Module (ATOM) is able to generate complex output signals without CPU interaction due to its connectivity to the ARU. Typically, output signal characteristics are provided over the ARU connection through sub-modules connected to ARU like e.g. the MCS, DPLL or PSM. Each ATOM sub-module contains eight output channels which can operate independently from each other in several configurable operation modes. A block diagram of the ATOM sub-module is depicted in figure 13.1.1.

The following design variables are used inside this chapter. Please refer to device specific Appendix B for correct value.

cCATO : ATOM channel count; number of channels per instance - 1

13.1.1 ATOM block diagram

The architecture of the ATOM sub-module is similar to the TOM sub-module, but there are some differences. First, the ATOM integrates only eight output channels. Hence, there exists one ATOM Global Control sub-unit (AGC) for the ATOM channels. The ATOM is connected to the ARU and can set up individual read requests from the ARU and write requests to the ARU. Furthermore, the ATOM channels are able to generate

Specification

signals on behalf of time stamps and the ATOM channels are able to generate a serial output signal on behalf of an internal shift register.

Each ATOM channel provides five modes of operation:

- ATOM Signal Output Mode Immediate (SOMI)
- ATOM Signal Output Mode Compare (SOMC)
- ATOM Signal Output Mode PWM (SOMP)
- ATOM Signal Output Mode Serial (SOMS)
- ATOM Signal Output Mode Buffered Compare (SOMB)

These modes are described in more detail in section 13.3.

The ATOM channels' operation registers (e.g. counter, compare registers) are 24 bit wide. Moreover, the input clocks for the ATOM channels come from the configurable CMU_CLKx signals of the CMU sub-module. This gives the freedom to select a programmable input clock for the ATOM channel counters. The ATOM channel is able to generate a serial bit stream, which is shifted out at the $ATOM[i]_CH[x]_OUT$ output. When configured in this serial shift mode (SOMS) the selected CMU clock defines the shift frequency.

Each ATOM channel provides a so called *operation* and *shadow* register set. With this architecture it is possible to work with the operation register set, while the shadow register set can be reloaded with new parameters over CPU and/or ARU.

When update via ARU is selected, it is possible to configure for ATOM SOMP mode if both shadow registers are updated via ARU or only one of the shadow registers is updated.

On the other hand, the shadow registers can be used to provide data to the ARU when one or both of the compare units inside an ATOM channel match. This feature is only applicable in SOMC mode.

In TOM channels it is possible to reload the content of the operation registers with the content of the corresponding shadow registers and change the clock input signal for the counter register simultaneously. This simultaneous change of the input clock frequency together with reloading the operation registers is also implemented in the ATOM channels.

In addition to the feature that the CPU can select another *CMU_CLKx* during operation (i.e. updating the shadow register bit field CLK_SRC_SR of the **ATOM[i]_CH[x]_CTRL** register), the selection can also be changed via the ARU. Then, for the clock source update, the ACBI register bits of the **ATOM[i]_CH[x]_STAT** register are used as a shadow register for the new clock source.

In general, the behavior of the compare units CCU0 and CCU1 and the output signal behavior is controlled with the ACB bit field inside the **ATOM[i]_CH[x]_CTRL** register

when the ARU connection is disabled and the behavior is controlled via ARU through the ACBI bit field of the **ATOM[i]_CH[x]_STAT** register, when the ARU is enabled.

Since the ATOM is connected to the ARU, the shadow registers of an ATOM channel can be reloaded via the ARU connection or via CPU over its AEI interface. When loaded via the ARU interface, the shadow registers act as a buffer between the ARU and the channel operation registers. Thus, a new parameter set for a PWM can be reloaded via ARU into the shadow registers, while the operation registers work on the actual parameter set.

The trigger signal *ATOM_TRIG_[i-1]* of ATOM instance i comes from the preceding instance i-1, the trigger *ATOM_TRIG_[i]* is routed to succeeding instance i+1. Note, ATOM0 is connected to its own output ATOM_TRIG_0, i.e. the last channel of ATOM instance 0 can trigger the first channel of ATOM instance 0 (this path is registered, which means delayed by one SYS_CLK period).

13.1.2 ATOM Global Control (AGC)

Synchronous start, stop and update of work register of up to 8 channels is possible with the AGC sub-unit. This sub-unit has the same functionality as the TGC sub-unit of the TOM sub-module.

13.1.2.1 Overview

There exists one global channel control unit (AGC) to drive a number of individual ATOM channels synchronously by external or internal events.

An AGC can drive up to eight ATOM channels. The ATOM sub-module supports four different kinds of signaling mechanisms:

- Global enable/disable mechanism for each ATOM channel with control register ATOM[i]_AGC_ENDIS_CTRL and status register ATOM[i]_AGC_ENDIS_STAT
- Global output enable mechanism for each ATOM channel with control register **ATOM[i]_AGC_OUTEN_CTRL** and status register **ATOM[i]_AGC_OUTEN_STAT**
- Global force update mechanism for each ATOM channel with control register ATOM[i]_AGC_FUPD_CTRL
- Update enable of the register CM0, CM1 and CLK_SRC for each ATOM channel with the control bit field UPEN_CTRL[z] of ATOM[i]_AGC_GLB_CTRL

13.1.2.2 AGC Sub-unit

Each of the first three individual mechanisms (enable/disable of the channel, output enable and force update) can be driven by three different trigger sources. The three trigger sources are :

- the host CPU (bit **HOST_TRIG** of register **ATOM[i]_AGC_GLB_CTRL**)
- the TBU time stamp (signal *TBU_TS0..2* if available)
- the internal trigger signal *TRIG* (bunch of trigger signals *TRIG_[x]*) which can be either the trigger *TRIG_CCU0* of channel x, the trigger of preceding channel x-1 (i.e. signal *TRIG_[x-1]*) or the external trigger *TIM_EXT_CAPTURE(x)* of assigned TIM channel x.

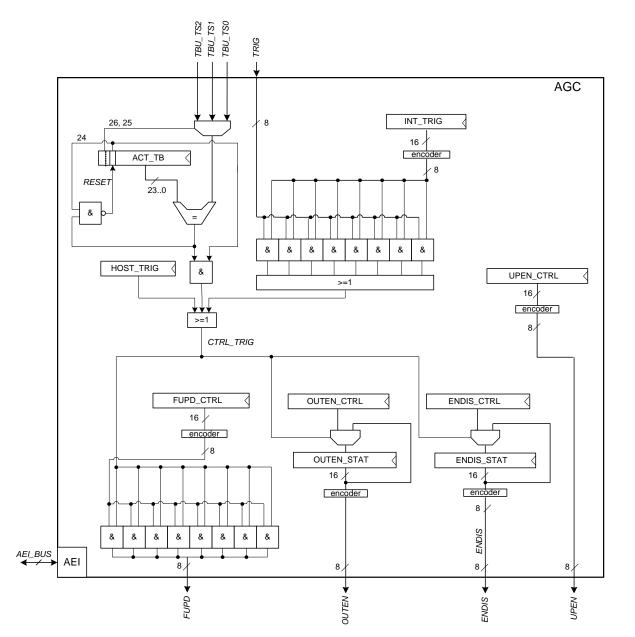
The first way is to trigger the control mechanism by a direct register write access via host CPU (bit **HOST_TRIG** of register **AOM[i]_AGC_GLB_CTRL**).

The second way is provided by a compare match trigger on behalf of a specified time base coming from the module TBU (selected by bits **TBU_SEL**) and the time stamp compare value defined in the bit field **ACT_TB** of register **ATOM[i]_AGC_ACT_TB**. Note, a cyclic event compare of **ACT_TB** and selected *TBU_TS[x]* is performed.

The third possibility is the input TRIG (bunch of trigger signals $TRIG_[x]$) coming from the ATOM channels 0 to 7.

The corresponding trigger signal *TRIG_[x]* coming from channel [x] can be masked by the register **ATOM[i]_AGC_INT_TRIG**.

To enable or disable each individual ATOM channel, the registers **ATOM[i]_AGC_ENDIS_CTRL** and/or **ATOM[i]_AGC_ENDIS_STAT** have to be used.


The register **ATOM[i]_AGC_ENDIS_STAT** controls directly the signal *ENDIS*. A write access to this register is possible.

The register **ATOM[i]_AGC_ENDIS_CTRL** is a shadow register that overwrites the value of register **AOM[i]_AGC_ENDIS_STAT** if one of the three trigger conditions matches.

13.1.2.2.1 ATOM Global channel control mechanism

The output of the individual ATOM channels can be controlled using the register **ATOM[i]_AGC_OUTEN_CTRL** and **ATOM[i]_AGC_OUTEN_STAT**.

The register **ATOM[i]_AGC_OUTEN_STAT** controls directly the signal *OUTEN*. A write access to this register is possible.

The register **ATOM[i]_AGC_OUTEN_CTRL** is a shadow register that overwrites the value of register **ATOM[i]_AGC_OUTEN_STAT** if one of the three trigger conditions matches.

If an ATOM channel is disabled by the register $ATOM[i]_AGC_OUTEN_STAT$, the actual value of the channel output at $ATOM_CH[x]_OUT$ is defined by the signal level bit (SL) defined in the channel control register $ATOM[i]_CH[x]_CTRL$.

If the output is enabled, the output at $ATOM_CH[x]_OUT$ depends on value of Flip-flop **SOUR**.

The register **ATOM[i]_AGC_FUPD_CTRL** defines which of the ATOM channels receive a *FORCE_UPDATE* event if the trigger signal *CTRL_TRIG* is raised. Note: In SOMP mode the force update request is stored and executed synchronized to the selected CMU_CLK_In all other modes the force update request is executed.

to the selected CMU_CLK. In all other modes the force update request is executed immediately.

The register bits **UPEN_CTRL[x]** defines for which ATOM channel the update of the working register **CM0**, **CM1** and **CLK_SRC** by the corresponding shadow register **SR0**, **SR1** and **CLK_SRC_SR** is enabled. If update is enabled, the register **CM0**, **CM1** and **CLK_SRC** will be updated on reset of counter register **CN0** (see figure 13.2.1).

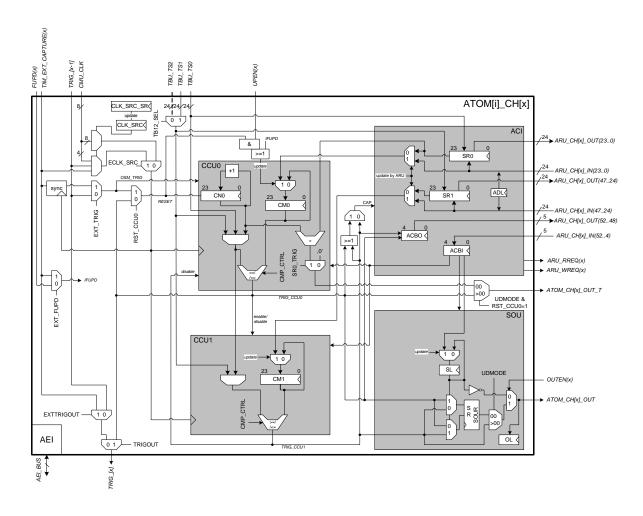
13.1.3 ATOM Channel Mode Overview

Each ATOM channel offers the following different operation modes: In ATOM Signal Output Mode Immediate (SOMI), the ATOM channels generate an output signal immediately after receiving an ARU word according to the two signal level output bits of the ARU word received through the ACBI bit field. Due to the fact, that the ARU destination channels are served in a round robin order, the output signal can jitter in this mode with a jitter of the ARU round trip time.

In ATOM Signal Output Mode Compare (SOMC), the ATOM channel generates an output signal on behalf of time stamps that are located in the ATOM operation registers. These time stamps are compared with the time stamps, the TBU generates. The ATOM is able to receive new time stamps either by CPU or via the ARU. The new time stamps are directly loaded into the channels operation register. The shadow registers are used as capture registers for two time base values, when a compare match of the channels operation registers occurs.

In ATOM Signal Output Mode PWM (SOMP), the ATOM channel is able to generate simple and complex PWM output signals like the TOM sub-module by comparing its operation registers with a sub-module internal counter. In difference to the TOM, the ATOM shadow registers can be reloaded by the CPU and by the ARU in the background, while the channel operates on the operation registers.

In ATOM Signal Output Mode Serial (SOMS), the ATOM channel generates a serial output bit stream on behalf of a shift register. The number of bits shifted and the shift direction is configurable. The shift frequency is determined by one of the *CMU_CLKx* clock signals. Please refer to section 13.3.4 for further details.


In ATOM Signal Output Buffered Compare (SOMB), the ATOM channel generates an output signal on behalf of time stamps that located in the ATOM operation registers. These time stamps are compared with the time stamps, the TBU generates. The ATOM is able to receive new compare values either by CPU or via the ARU. The new compare

values received via ARU are stored first in the shadow register and only if previous compare match is occurred, the operation register are updated with the content of the shadow register.

13.2 ATOM Channel Architecture

Each ATOM channel is able to generate output signals according to five operation modes. The architecture of the ATOM channels is similar to the architecture of the TOM channels. The general architecture of an ATOM channel is depicted in figure 13.2.1.

13.2.1 ATOM channel architecture

In all ATOM channels the operation registers **CN0**, **CM0** and **CM1** and the shadow registers **SR0** and **SR1** are the 24 bit width. The comparators inside CCU0 and CCU1 provide a selectable signed greater-equal or less-equal comparison to compare

against the GTM time bases *TBU_TS0*, *TBU_TS1* and, if available, *TBU_TS2*. Please refer to TBU chapter 10 for further details. The CCU0 and CCU1 units have different tasks for the different ATOM channel modes.

The cyclic event compare is used to detect time base overflows and to guarantee, that a compare match event can be set up for the future even when the time base will first overflow and then reach the compare value. Please note, that for a correct behavior of this cyclic event compare, the new compare value must not be specified larger/smaller than half of the range of the total time base value (0x7FFFF).

In SOMC/SOMB mode, the two compare units CCUx can be used in combination to each other. When used in combination, the trigger lines *TRIG_CCU0* and *TRIG_CCU1* can be used to enable/disable the other compare unit on a match event. Please refer to section 13.3.2 and 13.3.5 for further details.

The Signal Output Unit (SOU) generates the output signal for each ATOM channel. This output signal level depends on the ATOM channel mode and on the **SL** bit of the **ATOM[i]_CH[x]_CTRL** register in combination with the two control bits. These two control bits **ACB(1)** and **ACB(0)** can either be received via CPU in the ACB register field of the **ATOM[i]_CH[x]_CTRL** register or via ARU in the ACBI bit field of the **ATOM[i]_CH[x]_STAT** register.

The **SL** bit in the **ATOM[i]_CH[x]_CTRL** register defines in all modes the operational behavior of the ATOM channel.

When the channel and its output are disabled, the output signal level of the channel is the inverse of the **SL** bit.

In SOMI, SOMC and SOMB mode the output signal level depends on the **SL**, **ACB0** and **ACB1** bits. In SOMP mode the output signal level depends on the two trigger signals *TRIG_CCU0* and *TRIG_CCU1* since theses two triggers define the PWM timing characteristics and the **SL** bit defines the level of the duty cycle. In SOMS mode the output signal level is defined by the bit pattern that has to be shifted out by the ATOM channel. The bit pattern is located inside the **CM1** register.

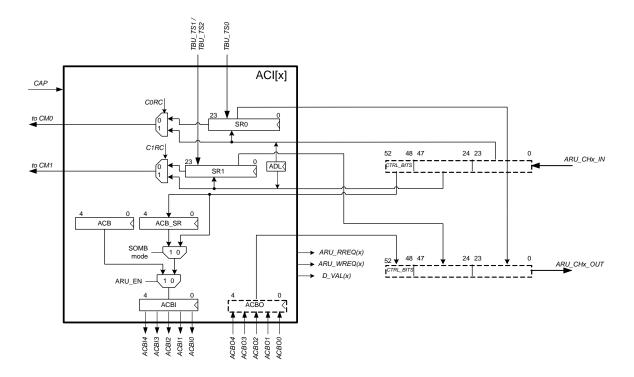
The ARU Communication Interface (ACI) sub-unit is responsible for requesting data routed through ARU to the ATOM channel in SOMI, SOMP, SOMB and SOMS modes, and additionally for providing data to the ARU in SOMC mode.

In SOMC mode the ACI shadow registers have a different behavior and are used as output buffer registers for data send to ARU.

13.2.2 ARU Communication Interface

The ATOM channels have an ARU Communication Interface (ACI) sub-unit. This subunit is responsible for data exchange from and to the ARU. This is done with the two

Specification


implemented registers **SR0**, **SR1**, and the **ACBI** and **ACBO** bit fields that are part of the **ATOM[i]_CH[x]_STAT** register. The ACI architecture is shown in figure 13.2.2.1.

If the **ARU_EN** bit is set inside the **ATOM[i]_CH[x]_CTRL** register, the ATOM channel is enabled by setting the enable bits inside the **ATOM[i]_AGC_ENDIS_STAT** register and the CPU hasn't written data not equal to zero into the **CM0**, **CM1**, **SR0**, **SR1** register, the ATOM channel will first request data from the ARU before the signal generation starts in SOMP, SOMS, SOMC and SOMB mode.

Note: if in SOMP mode there is data inside the **CM0** or **SR0** register not equal to 0 the channel counter **CN0** will start counting immediately, regardless whether the channel has received ARU data yet.

Note: if in SOMS mode there is data inside the **CM0** or **SR0** register not equal to 0 the channel will start shifting immediately, regardless whether the channel has received ARU data yet.

Incoming ARU data (53 bit width signal ARU_CHx_IN) is split into three parts by the ACI and communicated to the ATOM channel registers. In SOMI, SOMP, SOMS and SOMB modes incoming ARU data ARU_CHx_IN is split in a way that the lower 24 bits of the ARU data (23 downto 0) are stored in the **SR0** register, the upper bits (47 downto 24) are stored in the **SR1** register. The bits 52 downto 48 (*CTRL_BITS*) are stored in SOMI, SOMP and SOMS mode in the **ACBI** bit field of the register **ATOM[i]_CH[x]_STAT**, in SOMB mode in the internal ACB_SR register.

Specification

The ATOM channel has to ensure, that in a case when the channel operation registers **CMO** and **CM1** are updated with the **SRO** and **SR1** register content and an ARU transfer to these shadow registers happens in parallel that either the old data in both shadow registers is transferred into the operation registers or both new values from the ARU are transferred.

In SOMC mode incoming ARU data *ARU_CHx_IN* is written directly to the ATOM channel operation register in the way that the lower 24 bits (23 down to 0) are written to **CMO**, and the bits 47 down to 24 are written to register **CM1**. The bits 52 down to 48 are stored in the **ACBI** bit field of the **ATOM[i]_CH[x]_STAT** register and control the behavior of the compare units and the output signal of the ATOM channel.

In SOMC mode the **SR0** and **SR1** registers serve as capture registers for the time stamps coming from TBU whenever a compare match event is signaled by the CCU0 and/or CCU1 sub-units via the *CAP* signal line. These two time stamps are then provided together with actual ATOM channel status information located in the **ACBO** bit field to the ARU at the dedicated ARU write address of the ATOM channel when the ARU is enabled.

The encoding of the ARU control bits in the different ATOM operation modes is described in more detail in the following chapters.

13.3 ATOM Channel Modes

As described above, each ATOM channel can operate independently from each other in one of five dedicated output modes:

- ATOM Signal Output Mode Immediate (SOMI)
- ATOM Signal Output Mode Compare (SOMC)
- ATOM Signal Output Mode PWM (SOMP)
- ATOM Signal Output Mode Serial (SOMS)
- ATOM Signal Output Mode Buffered Compare (SOMB)

The Signal Output Mode PWM (SOMP) is principally the same like the output mode for the TOM sub-module. In addition, it is possible to reload the shadow registers via the ARU without the need of a CPU interaction. The other modes provide additional functionality for signal output control. All operation modes are described in more detail in the following sections.

Note that in any output mode, if a channel is enabled, one-shot mode is disabled (**OSM**=0; only used in modes SOMP and SOMS) and **CM0** >= **CN0**, the counter **CN0** is incrementing until it reaches **CM0**.

To avoid unintended counting of **CN0** after enabling a channel, it is recommended to reset a channel (or at least **CN0** and **CM0**) before any change on the mode bits **MODE**, **ARU_EN** and **OSM**.

13.3.1 ATOM Signal Output Mode Immediate (SOMI)

In ATOM Signal Output Mode Immediate (SOMI), the ATOM channel generates output signals on the $ATOM[i]_CH[x]_OUT$ output port immediate after update of the bit **ACBI(0)** of register **ATOM[i]_CH[x]_STAT** or **ACB(0)** bit of register **ATOM[i]_CH[x]_CTRL**.

If ARU access is enabled by setting bit ARU_EN in register **ATOM[i]_CH[x]_CTRL**, the update of the output $ATOM[i]_CH[x]_OUT$ depends on the bit ACBI(0) of register **ATOM[i]_CH[x]_STAT** received at the ACI sub-unit and the bit **SL** bit of register **ATOM[i]_CH[x]_CTRL**. The remaining 48 ARU bits (47 downto 0) have no meaning in this mode.

If ARU access is disabled, the update of the output *ATOM[i]_CH[x]_OUT* depends on the bit **ACB(0)** and the bit **SL** of register **ATOM[i]_CH[x]_CTRL**.

The initial ATOM channel port pin *ATOM[i]_CH[x]_OUT* signal level has to be specified by the **SL** bit field of the **ATOM[i]_CH[x]_CTRL** register when **OUTEN_CTRL** register bit field **OUTEN_CTRLx** is disabled (see section 13.6.5) for details.

In SOMI mode the output behavior depends on the **SL** bit of register **ATOM[i]_CH[x]_CTRL** and the bit **ACBI(0)** of the **ATOM[i]_CH[x]_STAT** register or the bit **ACB0** of register **ATOM[i]_CH[x]_CTRL**:

SL	ACBI(0)/ ACB(0)	Output behavior
0	0	Set output to inverse of SL (1)
0	1	Set output to SL (0)
1	0	Set output to inverse of SL (0)
1	1	Set output to SL (1)

13.3.1.1 Output behavior in SOMI mode

The signal level bit **ACBI(0)** is transferred to the SOU sub-unit of the ATOM and made visible at the output port according to the table above immediately after the data was received by the ACI. This can introduce a jitter on the output signal since the ARU channels are served in a time multiplexed fashion.

- - -

13.3.1.2	Register ATOM[i]_	_CH[x]_0	CTRL in SOMI mode
----------	-------------------	----------	-------------------

Address Offset:	S	ee	A	pp	er	ndi	x	В									In	hiti	ial	Va	alı	le	;		0>	(00	00	0_	0×	(0 0)
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	3	2	1 0
Bit	FREEZE	Not used	Not used	Reserved	Not used	Not used	Not used	Not used		Not used		Not used	Not used		Not used	Not used	Not used		Not used		SL	Not used	Not used		Not used	5		ACB(0)	ARU_EN	Not used	MODE
Mode	RW	RW	RW	Я	RW	RW	Я	RW		RW		RW	RW		RW	RW	RW		RW		RW	RW	RW		RW			RW	RW	RW	RW
Initial Value	0	0	0	0	0	0	0	0		000d0		0	0000		0	0	0		00000		×	0	0		000000			0	0	0	0000
Bit 1:0		-				_		-			-	-	bde	-	-		-		_												
Bit 2	0b00 = ATOM Signal Output Mode Immediate (SOMI)																														
Bit 3	ARU_EN: ARU Input stream enable 0 = ARU Input stream disabled 1 = ARU Input stream enabled																														
Bit 4	ACB(0): ACB bit 0 0 = Set output to inverse of SL bit 1 = Set output to SL bit																														
Bit 8:5	Note: Not used in this mode.																														
Bit 9	Ν	lot	t u	se No	d																										
Bit 10	Ν	lot	t u	se No	d																										
Bit 11	S	۶L:	In		al s	sig	na	al le	ev	el			ch	aı	nn	el	is	er	nak	ble	d										
				jw igh		-																									
			e:	-	es	et	Va	alu	е	de	epe	ene	ds	01	n t	he	e h	nai	rdv	va	re	СС	onf	igu	ıra	tic	n	cł	าด	se	n by
	Ν	lot	e:		the	e o	ut	pu			isa	abl	led,	, t	he	0	utp	Su	t A	TC	DN	1_(ΟL	JL[x]	is	se	t t	o i	nv	erse
											_		te i able					ut	pu	t re	eg	ist	er	of	SC	วบ	u	nit	t is	s S	et to
	If	Ē		nv = =	-		-		-	-	-		te i	ic	va	alic	1.														
			e:	lf	th	e	ch	an	ne	el i	S	dis		le	d,	th	е		-			-					D	u	nit	is	s not

Bit 14:12 Not used

Note: Not used in this mode.

GTM-IP	Specification	Revision 3.1.5.1
Bit 15	Not used	
	Note: Not used in this mode.	
Bit 16	Not used	
	Note: Not used in this mode.	
Bit 17	Not used	
	Note: Not used in this mode.	
Bit 19:18	Not used	
	Note: Not used in this mode.	
Bit 20	Not used	
	Note: Not used in this mode.	
Bit 23:21	Not used	
	Note: Not used in this mode.	
Bit 24	Not used	
	Note: Not used in this mode.	
Bit 25	Not used	
	Note: Not used in this mode.	
Bit 26	Not used	
	Note: Not used in this mode.	
Bit 27	Not used	
	Note: Not used in this mode.	
Bit 28	Reserved	
	Note: Read as zero, should be written as zero.	
Bit 29	Not used : not used in this mode	
	Note: Not used in this mode.	
Bit 30	Not used	
	Note: Not used in this mode.	
Bit 31	FREEZE	
	0 = a channel disable/enable may change internal register	register and output
	1 = a channel enable/disable does not change a	n internal or output

 1 = a channel enable/disable does not change an internal or output register but stops counter CN0 (in SOMP mode), comparison (in SOMC/SOMB mode) and shifting (in SOMS mode)

13.3.2 ATOM Signal Output Mode Compare (SOMC)

13.3.2.1 Overview

In ATOM Signal Output Mode Compare (SOMC) the output action is performed in dependence of the comparison between input values located in **CMO** and/or **CM1** registers and the two (three) time base values *TBU_TS0* or *TBU_TS1* (or *TBU_TS2*) provided by the TBU. For a description of the time base generation please refer to the TBU specification in chapter 10. It is configurable, which of the two (three) time bases is to be compared with one or both values in **CMO** and **CM1**.

The behavior of the two compare units CCU0 and CCU1 is controlled either with the bits 4 downto 2 of **ACB** bit field inside the **ATOM[i]_CH[x]_CTRL** register, when the ARU connection is disabled or with the ACBI bit field of the **ATOM[i]_CH[x]_STAT** register, when the ARU is enabled. In that case the **ACB** bit field is updated via the ARU control bits 52 downto 48.

The CCUx trigger signals *TRIG_CCU0* and *TRIG_CCU1* always create edges, dependent on the predefined signal level in **SL** bit in combination with two control bits that can be specified by either ARU or CPU within the aforementioned **ATOM[i]_CH[x]_CTRL** or **ATOM[i]_CH[x]_STAT** registers.

In SOMC mode the channel is always disabled after the specified compare match event occurred. The shadow registers are used to store two time stamp values at the match time. The channel compare can be re-enabled by first reading the shadow registers, either by CPU or ARU and by providing new data for CMx registers through CPU or ARU. For a detailed description please refer to the sections 13.3.2.2 and 13.3.2.3.

If three time bases exist for the GTM-IP there must be a preselection between TBU_TS1 and TBU_TS2 for the ATOM channel. This can be done with **TB12_SEL** bit in the **ATOM[i]_CH[x]_CTRL** register.

The comparison in CCU0/1 with time base TBU_TS1 or TBU_TS2 can be done on a greater-equal or less-equal compare according to the **CMP_CTRL** bit. This control bit has no effect to a compare unit CCU0 or CCU1 that compares against TBU_TS0. In this case always a greater-equal compare is done. The bit **CMP_CTRL** is part of the **ATOM[i]_CH[x]_CTRL** register.

When configured in SOMC mode, the channel port pin has to be initialized to an initial signal level. This initial level after enabling the ATOM channel is determined by the **SL** bit in the **ATOM[i]_CH[x]_CTRL** register. If the output is disabled, the signal level is set to the inverse level of the **SL** bit.

If the channel is disabled, the register SOUR is set to the **SL** bit in the **ATOM[i]_CH[x]_CTRL** register.

On a compare match event the shadow register **SR0** and **SR1** are used to capture the TBU time stamp values. **SR0** always holds *TBU_TS0* and **SR1** either holds *TBU_TS1* or *TBU_TS2* dependent on the **TB12_SEL** bit in the **ATOM[i]_CH[x]_CTRL** register.

Please note, that when the channel is disabled and the compare registers are written, the compare registers CMx are loaded with the written value and the channel starts with the comparison on behalf of this values, when the channel is enabled.

As already mentioned above the ATOM channel can be controlled either by CPU or by ARU. When the channel should be controlled by CPU, the **ARU_EN** bit inside the **ATOM[i] CH[x] CTRL** register has to be reset.

The output of the ATOM channel is set on a compare match event depending on the **ACB10** bit field in combination with the **SL** bit both located in the **ATOM[i]_CH[x]_CTRL** register. The output behavior according to the **ACB10** bit field in the control register is shown in the following table:

SL	ACB10(5)	ACB10(4)	Output behavior
0	0	0	No signal level change at output (exception in table 13.3.2.2.4 mode ACB42=001)
0	0	1	Set output signal level to 1
0	1	0	Set output signal level to 0
0	1	1	Toggle output signal level (exception in table 13.3.2.2.4 mode ACB42=001)
1	0	0	No signal level change at output (exception in table 13.3.2.2.4 mode ACB42=001)
1	0	1	Set output signal level to 0
1	1	0	Set output signal level to 1
1	1	1	Toggle output signal level (exception in table 13.3.2.2.4 mode ACB42=001)

13.3.2.2.1 Output behavior according to the **ACB10** bit field in the control register

The capture/compare strategy of the two CCUx units can be controlled with the **ACB42** bit field inside the **ATOM[i]_CH[x]_CTRL** register. The meaning of these bits is shown in the following table:

13.3.2.2.2 Capture/compare strategy of the two CCUx units controlled by **ACB42** bit field

ACB42(8)	ACB42(7)	ACB42(6)	CCUx control
0	0	0	Serve First: Compare in CCU0 using <i>TBU_TS0</i> and in parallel in CCU1 using <i>TBU_TS1</i> or <i>TBU_TS2</i> . Disable other CCUx on compare match. Output signal level on the compare match of the matching CCUx unit is defined by combination of SL, ACB10(5) and ACB10(4). Details see table 13.3.2.2.4

Revision 3.1.5.1

0	0	1	Serve First: Compare in CCU0 using <i>TBU_TS0</i> and in parallel in CCU1 using <i>TBU_TS1</i> or <i>TBU_TS2</i> . Disable other CCUx on compare match. Output signal level on the compare match of the matching CCUx unit is defined by combination of SL, ACB10(5) and ACB10(4). Details see table 13.3.2.2.4
0	1	0	Compare in CCU0 only, use time base <i>TBU_TS0</i> . Output signal level is defined by combination of SL, ACB10(5) and ACB10(4) bits.
0	1	1	Compare in CCU1 only, use time base <i>TBU_TS1</i> or <i>TBU_TS2</i> . Output signal level is defined by combination of SL, ACB10(5) and ACB10(4) bits.
1	0	0	Serve Last: Compare in CCU0 and then in CCU1 using <i>TBU_TS0</i> . Output signal level when CCU0 matches is defined by combination of SL, ACB10(5) and ACB10(4). On the CCU1 match the output level is toggled.
1	0	1	Serve Last: Compare in CCU0 and then in CCU1 using <i>TBU_TS1</i> or <i>TBU_TS2</i> . Output signal level when CCU0 matches is defined by combination of SL, ACB10(5) and ACB10(4). On the CCU1 match the output level is toggled.
1	1	0	Serve Last: Compare in CCU0 using <i>TBU_TS0</i> and then in CCU1 using <i>TBU_TS1</i> or <i>TBU_TS2</i> . Output signal level when CCU1 matches is defined by combination of SL, ACB10(5) and ACB10(4).
1	1	1	Cancels pending comparison independent on ARU_EN.

The behavior of the **ACBI/ACB42** bit combinations 0b000 and 0b001 is described in more detail in tables 13.3.2.2.3 and 13.3.2.2.4.

13.3.2.2.3 ATOM CCUx Serve first definition ACB42 = 0b000

						CCU0	CCU1	level
ACB4	ACB3	ACB2	ACB1	ACB0	SL	match	match	new
0	0	0	0	0	0	0	1	hold
						1	0	hold
						1	1	hold
0	0	0	0	1	0	0	1	1
						1	0	1
						1	1	1
0	0	0	1	0	0	0	1	0
						1	0	0
						1	1	0
0	0	0	1	1	0	0	1	toggle
						1	0	toggle
						1	1	toggle
0	0	0	0	0	1	0	1	hold
						1	0	hold
						1	1	hold
0	0	0	0	1	1	0	1	0
						1	0	0
						1	1	0
0	0	0	1	0	1	0	1	1
						1	0	1
						1	1	1
0	0	0	1	1	1	0	1	toggle
						1	0	toggle

1

1

toggle

Specification

Revision 3.1.5.1

BOSCH

Pin

13.3.2.2.4 ATOM CCUx Serve first definition ACB42 = 0b001

283/868

GTM-IP

-			
Sp	ecifi	cation	

							00110	0014	Pin
4004						A	CCU0	CCU1	level
ACB4			ACB1		_	SL	match	match	new
0	0	1	0	0		0	0	1	hold
							1	0	toggle
							1	1	hold
0	0	1	0	1		0	0	1	0
							1	0	1
							1	1	0
0	0	1	1	0		0	0	1	1
							1	0	0
							1	1	1
0	0	1	1	1		0	0	1	toggle
							1	0	hold
							1	1	toggle
0	0	1	0	0		1	0	1	hold
							1	0	toggle
							1	1	hold
0	0	1	0	1		1	0	1	1
							1	0	0
							1	1	1
0	0	1	1	0		1	0	1	0
							1	0	1
							1	1	0
0	0	1	1	1		1	0	1	toggle
							1	0	hold
							1	1	toggle

If the ATOM channel is enabled, the **CM0** and/or **CM1** registers and the **ACB42** bit field of the **ATOM[i]_CH[x]_CTRL** register can be updated by the CPU as long as the first match event occurs in case of a 'serve last' compare strategy or as long as the overall match event in case of the other compare strategies.

After a compare match event that causes an update of the shadow registers **SR0/SR1** and before reading the **SR0** and/or **SR1** register via ARU, the update of the registers **CM0** and/or **CM1** is possible but has no effect.

To set up a new compare action, first the **SR0** and/or **SR1** register containing captured values have to be read and then new compare values have to be written into the register **CM0** and/or **CM1**.

Specification

Which **CMx** register has to be updated depends on the compare strategy defined in the **ACB42** bit field of the channel control register. Since the channel immediately starts with the comparison after the **CMx** register was/were written, the compare strategy has to be updated before the **CMx** registers are written.

For the 'serve last' compare strategies, if the register **CM0** and **CM1** are updated, it can happen that one or both compare values are already located in the past. In any way the ATOM channel will first wait until both compare values are written before it starts the time base comparisons to avoid a deadlock.

The CPU can check at any time if at least one of the ATOM channels' capture compare register contains valid data and waits for a compare event to happen. This is signaled by the **DV** bit inside the **ATOM[i]_CH[x]_STAT** register.

Note, for 'serve last' compare strategies, if **DV** bit is currently not set, writing to **CM0** or **CM1** sets immediately the **DV** bit although the compare is only started if both values are written.

An exception for update of register **CM0/CM1** exists in SOMC mode and CCUx control mode 'serve last'. If in this mode the CCU0 compare match event occurred, the update of register **CM0/CM1** via CPU is blocked until the CCU1 compare match event.

In the 'serve last' mode (ACB42= 0b100 or ACB42=0b101) it is possible to generate very small spikes on the output pin by loading **CM0** and **CM1** with two time stamp values for *TBU_TS0*, *TBU_TS1* or *TBU_TS2* close together. The output pin will then be set or reset dependent on the **SL** bit and the specified **ACB10(5)** and **ACB10(4)** bits in the **ACB10** bit field of the **ATOM[i]_CH[x]_CTRL** register on the first match event and the output will toggle on the second compare event in the CCU1 compare unit.

It is important to note, that the bigger (smaller) time stamp has to be loaded into the **CM1** register, since the CCU0 will enable the CCU1 once it has reached its comparison time stamp. The order of the comparison time stamps depends on the defined greater-equal or less-equal comparison of the CCUx units.

In addition to storing the captured time stamps in the shadow registers, the ATOM channel provides the result of the compare match event in the **ACBO(4)** and **ACBO(3)** bits of the **ATOM[i]_CH[x]_STAT** register. The meaning of the bits is shown in the following table:

13.3.2.2.5 Compare match event ACBO(4) and ACBO(3) bits of ATOM[i]_CH[x]_STAT

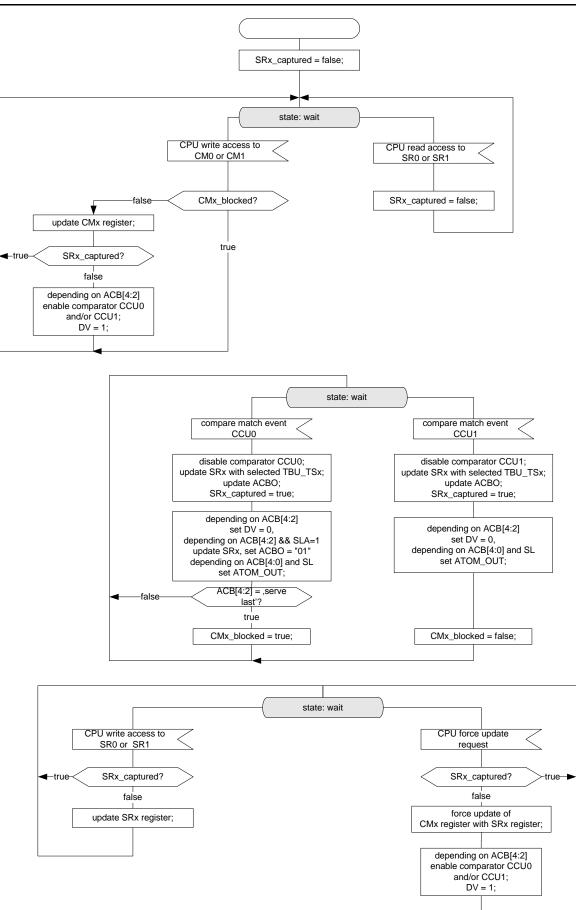
ACBO(4)	ACBO(3)	Indication
0	1	CCU0 compare match occurred
1	0	CCU1 compare match occurred

Please note, that in case of the 'serve last' compare strategy, when the bit **SLA** in the **ATOM[i]_CH[x]_CTRL** register is not set, the **ACBO(4)** bit is always set and the **ACBO(3)** bit is always reset after the compare match event occurred.

The **ACBO** bit field is reset, when the **DV** bit is set.

Depending on the capture compare unit where the time base matched the interrupt *CCU0TCx_IRQ* or *CCU1TCx_IRQ* is raised.

Note that in case of 'serve first' compare strategy, if both events CCU0 and CCU1 occur at the same point in time, both interrupts will be raised.


The behavior of an ATOM channel in SOMC mode under CPU control is depicted in figure 13.3.2.2.6.

13.3.2.2.6 SOMC state diagram for channel under CPU control

Specification

Confidential

13.3.2.3 SOMC Mode under ARU control

When the channel should be controlled by ARU, the **ARU_EN** bit inside the **ATOM[i]_CH[x]_CTRL** register has to be set.

In case, the ATOM channel is under ARU control the content for the compare registers **CM0** and **CM1** as well as the update of the compare strategy can be loaded via the 53 bit ARU word.

The ARU word 23 to 0 is loaded into the **CM0** register while the ARU word 47 to 24 is loaded into the **CM1** register. The five ARU control bits 52 to 48 are loaded into the **ACBI** bit field of the **ATOM[i]_CH[x]_STAT** register and control the channel compare strategy as well as the output behavior in case of compare match events.

For the five ARU control bits 52 to 48 the bits 49 and 48 are loaded into the **ACBI** bits 1 and 0. The output behavior also depends on the setting of the **SL** bit inside of the **ATOM[i]_CH[x]_CTRL** register and is shown in the following table:

SL	ACBI(1)	ACBI(0)	Output behavior					
0	0	0	No signal level change at output (exception in tables 13.3.2.2.3 and 13.3.2.2.4 mode ACB42=001)					
0	0	1	Set output signal level to 1					
0	1	0	Set output signal level to 0					
0	1	1	Toggle output signal level (exception in table 13.3.2.2.3 and 13.3.2.2.4 mode ACB42=001)					
1	0	0	No signal level change at output (exception in table's 13.3.2.2.3 and 13.3.2.2.4 mode ACB42=001)					
1	0	1	Set output signal level to 0					
1	1	0	Set output signal level to 1					
1	1	1	Toggle output signal level (exception in table 13.3.2.2.3 and 13.3.2.2.4 mode ACB42=001)					

13.3.2.3.1 Output behavior depends on **SL** bit inside of the **ATOM[i]_CH[x]_CTRL** and **ACBI** bits 1 and 0

For the five ARU control bits 52 to 48 the bits 52 to 50 are loaded into the **ACBI** bits 4 to 2. With these three bits the capture/compare units CCUx can be controlled as shown in the following table:

13.3.2.3.2 Capture/compare units CCUx controlled by **ACBI** bits 4 to 2

ACBI(4)	ACBI(3)	ACBI(2)	CCUx control
0	0	0	Serve First: Compare in CCU0 using <i>TBU_TS0</i> and in parallel in CCU1 using <i>TBU_TS1</i> or <i>TBU_TS2</i> . Disable other CCUx on compare match. Output signal level on the compare match of the matching CCUx unit is defined by combination of SL, ACBI(1) and ACBI(0). Details see table 13.3.2.2.4
0	0	1	Serve First: Compare in CCU0 using <i>TBU_TS0</i> and in parallel in CCU1 using <i>TBU_TS1</i> or <i>TBU_TS2</i> . Disable other CCUx on compare match. Output signal level on the compare match of the matching CCUx unit is defined by combination of SL, ACBI(1) and ACBI(0). Details see table 13.3.2.2.3
0	1	0	Compare in CCU0 only, use time base <i>TBU_TS0</i> . Output signal level is defined by combination of SL, ACBI(1) and ACBI(0) bits.
0	1	1	Compare in CCU1 only, use time base <i>TBU_TS1</i> or <i>TBU_TS2</i> . Output signal level is defined by combination of SL, ACBI(1) and ACBI(0) bits.
1	0	0	Serve Last: Compare in CCU0 and then in CCU1 using <i>TBU_TS0</i> . Output signal level when CCU0 matches is defined by combination of SL, ACBI(1) and ACBI(0). On the CCU1 match the output level is toggled.
1	0	1	Serve Last: Compare in CCU0 and then in CCU1 using <i>TBU_TS1</i> or <i>TBU_TS2</i> . Output signal level when CCU0 matches is defined by combination of SL, ACBI(1) and ACBI(0). On the CCU1 match the output level is toggled.
1	1	0	Serve Last: Compare in CCU0 using <i>TBU_TS0</i> and then in CCU1 using <i>TBU_TS1</i> or <i>TBU_TS2</i> . Output signal level when CCU1 matches is defined by combination of SL, ACBI(1) and ACBI(0).
1	1	1	Change ARU read address to ATOM_RDADDR1 DV flag is not set. Neither ACBI(1) nor ACBI(0) is evaluated.

It is important to note that the bit combination 0b111 for the ACBI(4), ACBI(3) and ACBI(2) bits forces the channel to request new compare values from another destination read address defined in the ATOM_RDADDR1 bit field of the ATOM[i]_CH[x]_RDADDR register. After data was successfully received and the compare event occurred the ATOM channel switches back to ATOM_RDADDR0 to receive the next data from there.

After the specified compare match event, the captured time stamps are stored in **SR0** and **SR1** and the compare result is stored in the **ACBO** bit field of the **ATOM[i]_CH[x]_STAT** register. The meaning of the **ACBO(4)** and **ACBO(3)** bits of the **ATOM[i]_CH[x]_STAT** is shown in the following table:

13.3.2.3.3 Compare match event ACBO(4) and ACBO(3) bits of ATOM[i]_CH[x]_STAT

ACBO(4)	ACBO(3)	Return value to ARU
0	1	CCU0 compare match occurred
1	0	CCU1 compare match occurred

Please note, that in case of the 'serve last' compare strategy, when the bit **SLA** in the **ATOM[i]_CH[x]_CTRL** register is not set, the **ACBO(4)** bit is always set and the **ACBO(3)** bit is always reset after the compare match event occurred.

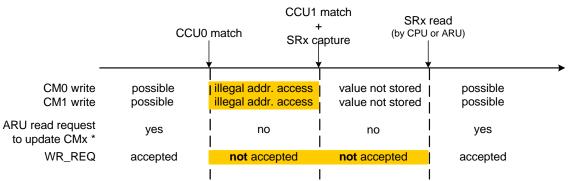
The **ACBO** bit field is reset, when the **DV** bit is set.

Depending on the capture compare unit where the time base matched the interrupt $CCU0TCx_IRQ$ or $CCU1TCx_IRQ$ is raised.

When CCU0 and CCU1 is used for comparison it is possible to generate very small spikes on the output pin by loading **CM0** and **CM1** with two time stamp values for *TBU_TS0*, *TBU_TS1* or *TBU_TS2* close together. The output pin will then be set or reset dependent on the **SL** bit and the specified **ACBI(0)** and **ACBI(1)** bits in the **ACBI** bit field of the **ATOM[i]_CH[x]_STAT** register on the first match event and the output will toggle on the second match event.

It is important to note, that the bigger (smaller) time stamp has to be loaded into the **CM1** register, since the CCU0 will enable the CCU1 once it has reached its comparison time stamp. The order of the comparison time stamps depends on the defined greater-equal or less-equal comparison of the CCUx units.

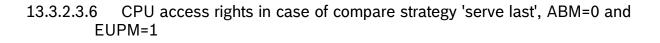
For compare strategy 'serve last' the CCU0 and CCU1 compare match may occur sequentially. During different phases of compare match the CPU access rights to register **CM0** and **CM1** as well as to **WR_REQ** bit is different.

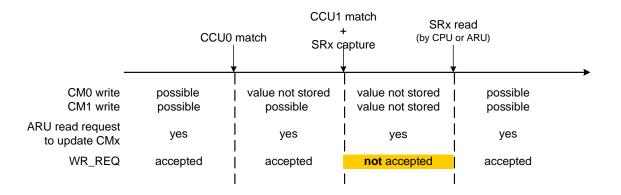

For the case of bit **ABM**=0 and **EUPM**=0 (register **ATOM[i]_CH[x]_CTRL**) these access rights by CPU to register **CM0** and **CM1** and the **WR_REQ** are depicted in the following figure.

13.3.2.3.4 CPU access rights in case of compare strategy 'serve last', ABM=0 and EUPM=0

For the case of bit **ABM**=1 and **EUPM**=0 (register **ATOM[i]_CH[x]_CTRL**) these access rights by CPU to register **CM0** and **CM1** and the **WR_REQ** are depicted in the following figure.

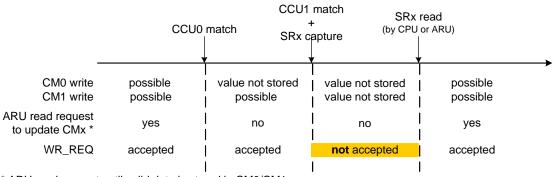
13.3.2.3.5 CPU access rights in case of compare strategy 'serve last', ABM=1 and EUPM=0


* ARU read request until valid data is stored in CM0/CM1


(i.e. indicated by DV bit in register ATOM[i]_CH[x]_STAT set)

For the case of bit **EUPM**=1 (register **ATOM[i]_CH[x]_CTRL**), after CCU0 compare match (and before CCU1 compare match) an update of **CM1** as well as a late update via **WR_REQ** is possible. The value is used for compare. After CCU0 compare match an update of **CM0** is not possible, means the value is not stored.

The ARU read request is not paused between the compare matches.


This behavior is depicted in the following figures.

The behavior in case of EUPM=1 and ABM=1 is depicted in the following figure:

13.3.2.3.7 CPU access rights in case of compare strategy 'serve last', ABM=1 and EUPM=1

* ARU read request until valid data is stored in CM0/CM1 (i.e. indicated by DV bit in register ATOM[i]_CH[x]_STAT set)

In case of EUPM=1 a write access to CM0 or CM1 never causes an AEI write status 0b10.

13.3.2.3.8 ARU Non-Blocking mode

When the compare registers are updated via ARU the update behavior of the channel is configurable with the ABM bit inside the **ATOM[i]_CH[x]_CTRL** register. When the **ABM** bit is reset, the ATOM channel is in ARU non-blocking mode.

In the ARU non-blocking mode, data received via ARU is continuously transferred to the registers **CM0** and **CM1** and the bit field **ACBI** of register **ATOM[i]_CH[x]_STAT** as long as no specified compare match event occurs.

After a compare match event that causes an update of the shadow register **SR0/SR1** and before reading the **SR0/SR1** register via CPU or ARU, the update of the registers **CM0/ CM1** via CPU or ARU is possible but the data is not accepted to be valid (no **DV** bit is set i register **ATOM[i]_CH[x]_CTRL**).

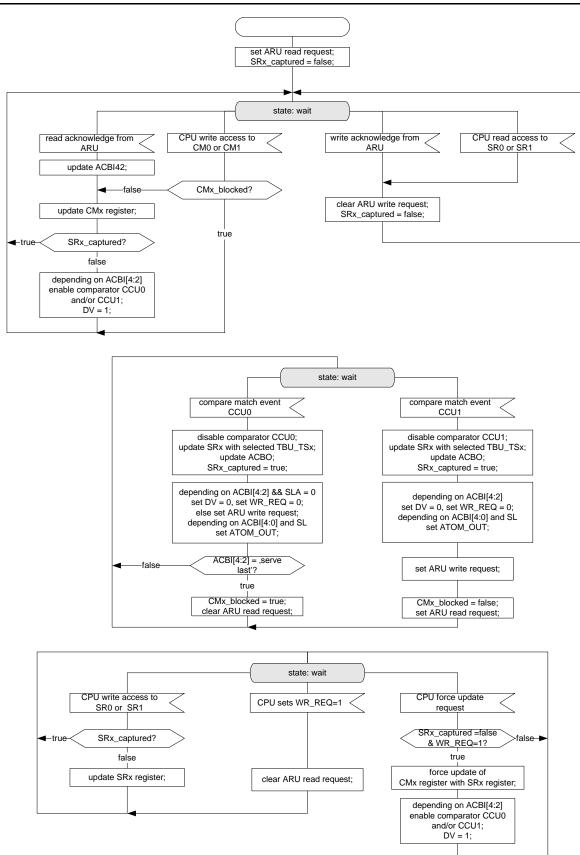
To set up a new compare action, first the **SR0/SR1** register containing captured values have to be read and then new compare values have to be written into the register **CM0/CM1**. This can be done either by ARU or by CPU.

When the CPU does the register accesses, only one of the shadow registers has to be read. Dependent on the compare strategy, the CPU has to write one or both of the compare registers.

An exception for update of register **CM0/CM1** exists in SOMC mode and CCUx control mode 'serve last' if EUPM=0. If in this mode the CCU0 compare match event occurred, the update of register **CM0/CM1** via CPU is not possible until the CCU1 compare match event occurs.

Note that a write access to either **CM0** or **CM1** in this case leads to a write status 0b10.

The CPU can check at any time if the ATOM channel has received valid data from the ARU and waits for a compare event to happen. This is signaled by the **DV** bit inside the **ATOM[i]_CH[x]_STAT** register.


The behavior of an ATOM channel in SOMC mode, when ARU is enabled and ARU blocking mode is disabled is shown in figure 13.3.2.3.8.1.

13.3.2.3.8.1 SOMC State diagram for SOMC mode, ARU enabled, ABM disabled

Specification

13.3.2.3.9 ARU Blocking mode

When the compare registers are updated by ARU, the ATOM channel can be configured to receive ARU data in a blocking manner. This can be configured by setting the **ABM** bit in the **ATOM[i]_CH[x]_CTRL** register.

If the **ABM** and **ARU_EN** bits are set, depending on compare strategy, **CM0** and/or **CM1** can be updated via ARU with new compare values. If the compare registers **CM0** and/or **CM1** are accepting these new data to be valid (indicated by bit **DV** in register **ATOM[i]_CH[x]_STAT**), the ATOM channel stops requesting new data via ARU and waits for the compare match event to happen.

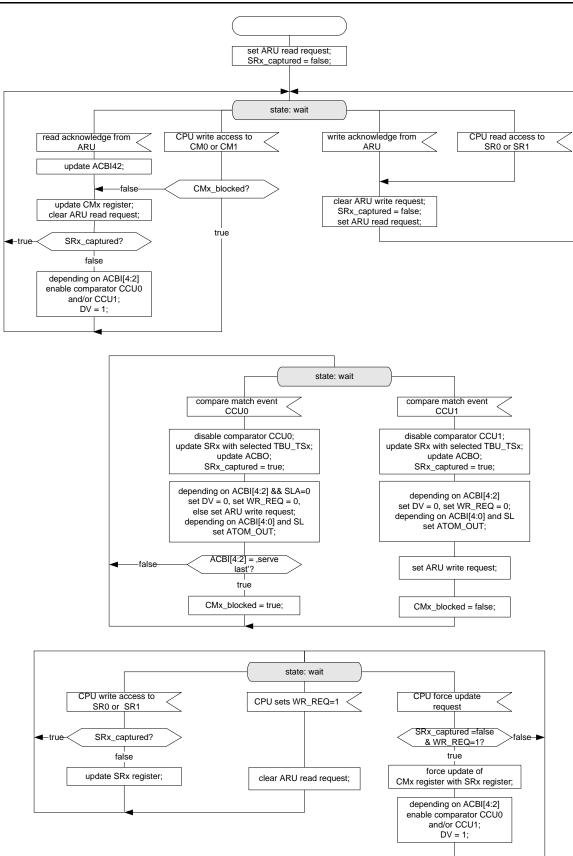
When the specified compare match event happens, the shadow registers **SR0** and **SR1** are updated together with the **ACBO** bits in the **ATOM[i]_CH[x]_STAT** register. The data in the shadow registers is marked as valid for the ARU and the **DV** bit or register **ATOM[i]_CH[x]_CTRL** is reset.

If the register **SR0** and **SR1** holding the captured TBU time stamp values are read by either the ARU or the CPU, the next write access to or update of the register **CM0** or **CM1** via ARU or the CPU enables the new compare match check again.

At least one of the registers **SR0** or **SR1** has to be read either via ARU or by CPU, before new data is requested via ARU.

Note that in case of ABM=1 the application has to handle the situation that the ATOM does not request update of new data for CM0/CM1 until the captured values are read. E.g. if an MCS task starts to write via ARU new data (with AWR(I) command) after capture of data in SR0/SR1, the task sticks in the command until captured data is read by another taks via ARU or via the CPU interface.

The CPU can check at any time if the ATOM channel has received valid data from the ARU and waits for a compare event to happen. This is signaled by a set **DV** bit inside the **ATOM[i]_CH[x]_STAT** register.


The behavior of an ATOM channel in SOMC mode, when ARU is enabled and ARU blocking mode is enabled is shown in figure 13.3.2.3.9.1.

13.3.2.3.9.1 SOMC State diagram for SOMC mode, ARU enabled and ABM enabled

Specification

13.3.2.3.10 ATOM SOMC Late update mechanism

Although, the ATOM channel may be controlled by data received via the ARU, the CPU is able to request at any time a late update of the compare register. This can be initiated by setting the **WR_REQ** bit inside the **ATOM[i]_CH[x]_CTRL** register. By doing this, the ATOM will request no further data from ARU (if ARU access was enabled). The channel will in any case continue to compare against the values stored inside the compare registers (if bit **DV** was set). The CPU can now update the new compare values until the compare event happens by writing to the shadow registers, and force the ATOM channel to update the compare registers by writing to the force update register bits in the **AGC** register.

If the **WR_REQ** bit is set and a compare match event happens, any further access to the shadow registers **SR0**, **SR1** is blocked and the force update of this channel is blocked. In addition, the **WRF** bit is set in the **ATOM[i]_CH[x]_STAT** register. Thus, the CPU can determine that the late update failed by reading the **WRF** bit.

In case of bit **EUPM**=0 (register **ATOM[i]_CH[x]_CTRL**) the following statements are true:

If a compare match event already happened, the **WR_REQ** bit could not be set until the channel is unlocked for a new compare match event by reading the shadow registers. In addition, the **WRF** bit is set if the CPU tries to write the **WR_REQ** bit in that case.

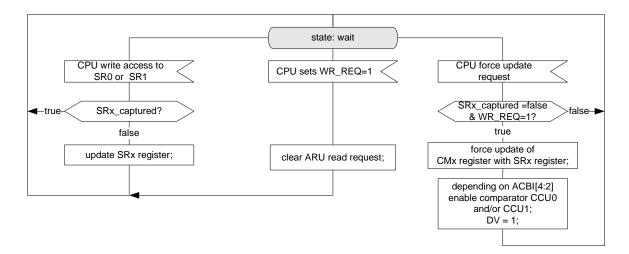
In case of bit **EUPM**=1 (register **ATOM[i]_CH[x]_CTRL**) the following statements are true:

If in case of 'serve last' strategy a CCU1 or in any other compare strategy a CCU0 or CCU1 compare match event already happened, the **WR_REQ** bit could not be set until the channel is unlocked for a new compare match event by reading the shadow registers. In addition, the **WRF** bit is set if the CPU tries to write the **WR_REQ** bit in that case.

In general, for a late update the following has to be taken into account:

If between a correct **WR_REQ** bit set, a correct shadow register write, and before the force update is requested by the AGC a match event occurs on the old compare values, the **WRF** bit will be set. The force update will be blocked.

The **WRF** bit will be set in any case if the CPU tries to write to a blocked shadow register.


The **WR_REQ** bit and the **DV** bit will be reset on a compare match event.

After a capture event for register **SR0** and/or **SR1** the force update mechanism will be blocked until a read access to the register **SR0** or **SR1** by either the ARU or the CPU happens.

Writing to **SR0** or **SR1** after compare match causes an AEI write status 0b10.

The ATOM SOMC late update mechanism from CPU is shown in figure 13.3.2.3.10.1.

13.3.2.3.10.1 SOMC State diagram for late update requests by CPU

13.3.2.3.11 Register ATOM[i]_CH[x]_CTRL in SOMC mode

Address Offset:	see Appendix B										Initial Value: 0x0000_0x00)										
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	3	2	1 0
Bit	FREEZE	Not used	Not used	Reserved	ABM	Not used	SLA	TRIGOUT	EXTTRIGOUT	Not used		Not used	Not used		Not used	WR_REQ	Not used		Not used		SL	EUPM	CMP_CTRL		ACB42		ACB10		ARU_EN	TB12_SEL	MODE
Mode	RW	RW	RW	Я	RW	RW	RW	RW	RW	Ж		RW	RW		RW	RW	RW		RW		RW	RW	RW		RW		Ma		RW	RW	RW
Initial Value	0	0	0	0	0	0	0	0	0	0090		0	0000		0	0	0		000q0		х	0	0		000q0		0040	0000	0	0	0b00
Bit 1:0 MODE: ATOM channel mode select. 0b01 = ATOM Signal Output Mode Compare (SOMC) Bit 2 TB12_SEL: Select time base value TBU_TS1 or TBU_TS2. 0 = TBU_TS1 selected for comparison 1 = TBU_TS2 selected for comparison Note: This bit is only applicable if three time bases are present in the GTM-IP. Otherwise, this bit is reserved.																															
Bit 3 Bit 5:4	 ARU_EN: ARU Input stream enable. 0 = ARU Input stream disabled 1 = ARU Input stream enabled ACB10: Signal level control bits. 0b00 = No signal level change at output (exception in tables 13.3.2.2.3 and 13.3.2.2.4 mode ACB42=001). 																														

GTM-IP	Specification	Revision 3.1.5.1
	0b01 = Set output signal level to 1 when SL bit = 0 el to 0.	lse output signal level
	0b10 = Set output signal level to 0 when SL bit = 0 el to 1.	lse output signal level
	0b11 = Toggle output signal level (exception in ta 13.3.2.2.4 mode ACB42=001).	
	Note: These bits are only applicable if ARU_EN = '0)'.
Bit 8:6	 ACB42: ATOM control bits ACB(4), ACB(3), ACB(2) 0b000 = Compare in CCU0 and CCU1 in parallel, di compare match on either of compare units. Us and TBU_TS1 or TBU_TS2 in CCU1. 0b001 = Compare in CCU0 and CCU1 in parallel, di compare match on either compare units. Use and TBU_TS1 or TBU_TS2 in CCU1. 0b010 = Compare in CCU0 only against TBU_TS0. 0b011 = Compare in CCU1 only against TBU_TS1 0b100 = Compare first in CCU0 and then in CCU1. 0b101 = Compare first in CCU0 and then in CCU1. 0b101 = Compare first in CCU0 and then in CCU1. 	isable the CCUx on a is <i>TBU_TS0</i> in CCU0 isable the CCUx on a e <i>TBU_TS0</i> in CCU0 or <i>TBU_TS0</i> . Use <i>TBU_TS0</i> . J1. Use <i>TBU_TS1</i> or
	 0b110 = Compare first in CCU0 and then in CCU CCU0 and TBU_TS1 or TBU_TS2 in CCU1. 0b111 = Cancel pending compare events. Note: These bits are defining the compare strategy Note: Independent of ARU_EN, a writing of 0b111 CCU0 or CCU1 compare. 	only if ARU_EN = 0.
Bit 9	 CMP_CTRL: CCUx compare strategy select. 0 = Greater-equal compare against TBU time base >= CM0/1) 1 = Less-equal compare against TBU time base va CM0/1) 	
	Note: The compare unit CCU0 or CCU1 that compare (depending on CCUx control mode defined by always performs a greater-equal comparis CMP_CTRL bit.	ACBI(4:2) or ACB42)
Bit 10	 EUPM: Extended Update Mode 0 = No extended update of CM0 and CM1 via CPU 1 = Extended update mode in case of compare update of CM1 after CCU0 compare match CPU. Note: If EUPM=1 a write access to CM0 or CM1 r write status 0b10. Note: this bit is only applicable in SOMC and SOME 	strategy 'serve last': possible via ARU or never causes an AEI
Bit 11	SL: Initial signal level after channel enable.	

- 0 = Low signal level
- 1 = High signal level
- Note: Reset value depends on the hardware configuration chosen by silicon vendor.
- Note: If the output is disabled, the output ATOM_OUT[x] is set to inverse value of SL.
- If FREEZE=0, following note is valid:
- Note: If the channel is disabled, the output register of SOU unit is set to value of SL.
- If FREEZE=1, following note is valid:
- Note: If the channel is disabled, the output register of SOU unit is not changed and output ATOM_OUT[x] is not changed.
- Bit 14:12 Not used
 - Note: Not used in this mode.
- Bit 15 Not used
 - Note: Not used in this mode.
- Bit 16 **WR_REQ**: CPU write request bit
 - 0 = No late update requested by CPU
 - 1 = Late update requested by CPU
 - Note: The CPU can disable subsequent ARU read requests by the channel and can update the shadow registers with new compare values, while the compare units operate on old compare values received by former ARU accesses, if occurred.
 - Note: On a compare match event, the WR_REQ bit will be reset by hardware.
 - Note: At the point of the force update only the shadow registers SR0 and SR1 are transferred into the **CM0**, **CM1** registers. The output action is still defined by the ACBI bit field described by the ARU together with the old compare values for **CM0/CM1**.
- Bit 17 Not used
 - Note: Not used in this mode.

Bit 19:18 **Not used**

- Note: Not used in this mode.
- Bit 20 Not used : not used in this mode
- Note: Not used in this mode.

Bit 22:21 Not used

- Note: Not used in this mode.
- Bit 23 **EXTTRIGOUT**: select *TIM_EXT_CAPTURE(x)* as potential output signal *TRIG_[x]*
 - 0 = signal *TRIG_[x-1]* is selected as output on *TRIG_[x]* (if TRIGOUT=1)
 - 1 = signal *TIM_EXT_CAPTURE(x)* is selected as output on *TRIG_[x]* (if TRIGOUT=1)
- Bit 24 **TRIGOUT**: Trigger output selection (output signal *TRIG_CHx*) of module ATOM_CHx.

	Cresting	
GTM-IP	Specification	Revision 3.1.5.1
Bit 25	0 = TRIG_[x] is TRIG_[x-1] or TIM_EXT_CAPTU 1 = TRIG_[x] is TRIG_CCU0 SLA : 'serve last' ARU communication strategy. 0 = Capture SRx time stamps after CCU0 match ARU 1 = Capture SRx time stamps after CCU0 match	ch event not provided to
	Note: Please note, that setting of this bit has only is configured for 'serve last' compare str "110").	
	Note: When this bit is not set, the captured time registers SRx are only provided after the The ACBO(4:3) bits always return "10" in th	CCU1 match occurred.
	Note: By setting this bit, the ATOM channel als time stamps after the CCU0 match ev ACBO(4:3) bits are set to "01" in that case event, the time stamps are captured again provided to the ARU. The ACBO(4:3) bits a data in the shadow registers after the consumed by an ARU destination and the o data in the shadow registers is overwritten b stamps. The ATOM channel does not req ARU when the CCU0 match values a destination.	vent to the ARU. The e. After the CCU1 match in the SRx registers and are set to "10". When the CCU0 match was not CCU1 match occurs, the by the new captured time juest new data from the
Bit 26 Bit 27	Not used : not used in this mode Note: Not used in this mode. ABM: ARU blocking mode	
	 0 = ARU blocking mode disabled: ATOM reads and updates CM0,CM1 and ACB bits in compare match event. 1 = ARU blocking mode enabled: after update of via ARU, no new data is read via ARU unit occurred and SR0 and/or SR1 are read. 	f CM0, CM1 and ACB bit
Bit 28	Reserved Note: Read as zero, should be written as zero.	
Bit 29	Not used : not used in this mode Note: Not used in this mode.	
Bit 30	Not used Note: Not used in this mode.	
Bit 31	FREEZE 0 = a channel disable/enable may change inte	rnal register and output

0 = a channel disable/enable may change internal register and output register

1 = a channel enable/disable does not change an internal or output register but stops counter CN0 (in SOMP mode), comparison (in SOMC/SOMB mode) and shifting (in SOMS mode)

13.3.3 ATOM Signal Output Mode PWM (SOMP)

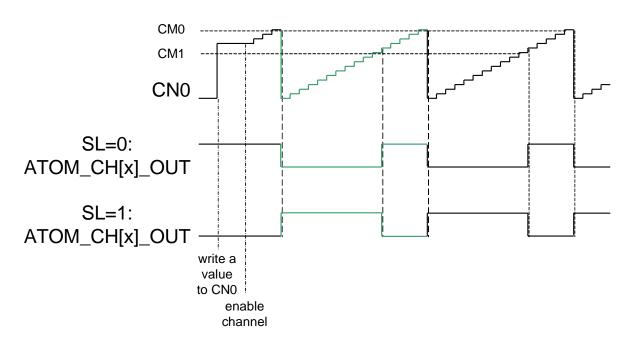
In ATOM Signal Output Mode PWM (SOMP) the ATOM sub-module channel is able to generate complex PWM signals with different duty cycles and periods. Duty cycles and periods can be changed synchronously and asynchronously. Synchronous change of the duty cycle and/or period means that the duty cycle or period duration changes after the end of the preceding period. An asynchronous change of period and/or duty cycle means that the duration changes during the actual running PWM period.

The signal level of the pulse generated inside the period can be configured inside the channel control register (**SL** bit of **ATOM[i]_CH[x]_CTRL** register). The initial signal output level for the channel is the inverse pulse level defined by the **SL** bit. Figure 13.3.3.1.1 depicts this behavior.

The counter **CN0** of each channel can run in two different modes depending on configuration of **UDMODE** in register **ATOM[i]_CH[x]_CTRL**. By default the counter counts only up until it reaches **CM0** and is then reset to 0. In the up down counter mode **CN0** switches between counting up and counting down.

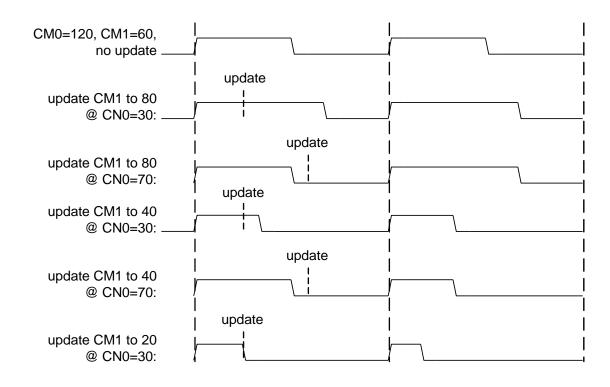
13.3.3.1 Continuous Counting Up Mode

In SOMP mode with **UDMODE**=0b00 (i.e. **CN0** counts only up), depending on configuration bits RST_CCU0 of register **ATOM[i]_CH[x]_CTRL** the counter register **CN0** can be reset either when the counter value is equal to the compare value **CM0** (i.e. **CN0** counts only from 0 to **CM0**-1 and is then reset to 0) or when signaled by the ATOM[i] trigger signal $TRIG_{[x-1]}$ of the preceding channel [x-1] (which can also be the last channel of preceding instance TOM[i-1]) or the trigger signal $TIM_EXT_CAPTURE(x)$ of the assigned TIM channel [x].


In this case, if **UPEN_CTRL[x]**=1, also the working register **CM0**, **CM1** and **CLK_SRC** are updated.

Note: As an exception, the input *TRIG_[0]* of instance ATOM0 is triggered by its own last channel cCATO via signal *TRIG_[cCATO]*. Please refer to device specific Appendix B for value cCATO of ATOM0.

13.3.3.1.1 PWM Output behavior with respect to the SL bit in the ATOM[i]_CH[x]_CTRL register if UDMODE = 0b00



On an asynchronous update, it is guaranteed, that no spike occurs at the output port of the channel due to a too late update of the operation registers. The behavior of the output signal due to the different possibilities of an asynchronous update during a PWM period is shown in figure 13.3.3.1.2.

13.3.3.1.2 PWM Output behavior in case of an asynchronous update of the duty cycle

The duration of the pulse high or low time and period is measured with the counter in sub-unit CCU0. The trigger of the counter is one of the eight CMU clock signals configurable in the channel control register **ATOM[i]_CH[x]_CTRL**. The register **CM0** holds the duration of the period and the register **CM1** holds the duration of the duty cycle in clock ticks of the selected CMU clock.

If counter register **CN0** of channel x is reset by its own CCU0 unit (i.e. the compare match of **CN0**>=**CM0**-1 configured by **RST_CCU0**=0), following statements are valid: - **CN0** counts from 0 to **CM0**-1 and is then reset to 0

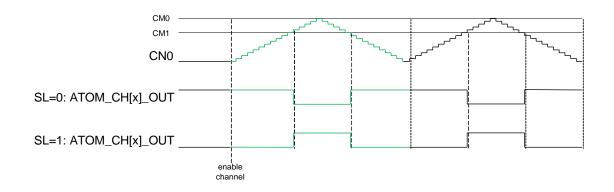
- When **CN0** is reset from **CM0** to 0, an edge to SL is generated.
- When **CN0** is incrementing and reches **CN0** > **CM1**, an edge to !SL is generated.
- if **CM0**=0 or **CM0**=1, the counter **CN0** is constant 0.
- if **CM1**=0, the output is **!SL** = 0% duty cycle
- if **CM1** >= **CM0** and **CM0**>1, the output is **SL** = 100% duty cycle

If the counter register **CN0** of channel x is reset by the trigger signal coming from another channel or the assigned TIM module (configured by **RST_CCU0**=1), following statements are valid:

- CN0 counts from 0 to MAX-1 and is then reset to 0 by trigger signal
- CM0 defines the edge to SL value, CM1 defines the edge to !SL value.
- if CM0=CM1, the output switches to SL if CN0=CM0=CM1 (CM0 has higher priority)
- if CM0=0 and CM1=MAX, the output is SL = 100% duty cycle
- if **CM0** > MAX, the output is **!SL** = 0% duty cycle, independent of **CM1**.

In case the counter value **CN0** reaches the compare value in register **CM0** (in fact **CM0**-1) or the channel receives an external update trigger via the FUPD(x) signal, a synchronous update is performed. A synchronous update means that the registers **CM0** and **CM1** are updated with the content of the shadow registers **SR0** and **SR1** and the **CLK_SRC** register is updated with the value of the **CLK_SRC_SR** register.

The clock source for the counter can be changed synchronously at the end of a period. If ARU access is disabled, this is done by using the bit field **CLK_SRC_SR** of register **ATOM[i]_CH[x]_CTRL** as shadow registers for the next CMU clock source.


13.3.3.2 Continuous Counting Up-Down Mode

In SOMP mode, if **CN0** counts up and down (**UDMODE** != 0b00), depending on configuration bit **RST_CCU0** of register **ATOM[i]_CH[x]_CTRL** the counter register **CN0** changes the direction either when the counter value is equal to the compare value **CM0** (in fact **CM0**-1), has counted down to 0 or when triggered by the ATOM[i] trigger signal $TRIG_{[x-1]}$ of the preceding channel [x-1] (which can also be the last channel of preceding instance ATOM[i-1]) or the trigger signal $TIM_{EXT}_{CAPTURE(x)}$ of the assigned TIM channel [x].

In this case, if **UPEN_CTRL[x]**=1, also the working register **CM0**, **CM1** and **CLK_SRC** are updated depending on **UDMODE**.

Specification

13.3.3.2.1 PWM Output behavior with respect to the SL bit in the ATOM[i]_CH[x]_CTRL register if UDMODE != 0b00

The clock of the counter register **CN0** can be one of the CMU clocks *CMU_CLK[x]*. If **ARU_EN=0**, the clock for **CN0** is defined by **CLK_SRC_SR** value in register **ATOM[i]_CH[x]_CTRL**.

If **ARU_EN**=1, the clock for **CN0** is defined by **CLK_SRC** value received via ARU. The duration of a period in multiples of selected **CN0** counter clock ticks is defined by the **CM0** configuration value (i.e. **CM0** defines half of period in up-down mode). **CM1** defines the duty cycle value in clock ticks of selected **CN0** counter clock (i.e. **CM0** defines half of duty cycle in up-down mode).

If counter register **CN0** of channel x is reset by its own CCU0 unit (i.e. the compare match of **CN0**>=**CM0**-1 configured by **RST_CCU0**=0), following statements are valid: - **CN0** counts continuously first up from 0 to **CM0**-1 and then down to 0.

- if CN0 >= CM1, the output is set to SL

- if **CM1**=0, the output is **SL** (i.e. 100% duty cycle)

- if CM1>= CM0, the output is !SL (i.e. 0% duty cycle)

- On output *ATOM[i]_CHx]_OUT* a PWM signal is generated. The period is defined by **CM0**, the duty cycle is defined by **CM1**.

This behavior is depicted in figure 13.3.3.2.1.

If the counter register **CN0** of channel x is reset by the trigger signal coming from another channel or the assigned TIM module (configured by **RST_CCU0**=1), following statements are valid:

- **CN0** counts continuously first up. On a trigger signal the counter switches to count down mode. If **CN0** has reached 0, it counts up again.

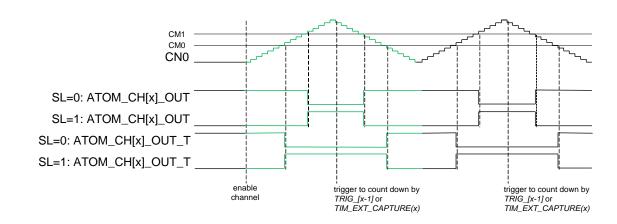
- if CN0 >= CM1, the output is set to SL

- if **CM1**=0, the output is **SL** (i.e. 100% duty cycle)

- if CM1>= CM0, the output is !SL (i.e. 0% duty cycle)

- On output *ATOM[i]_CHx]_OUT* a PWM signal is generated. The period is defined by the CCU0 trigger of triggering channel, the duty cycle is defined by **CM1**.

- On output *ATOM[i]_CHx]_OUT_T* a PWM signal is generated. The period is defined by the CCU0 trigger of triggering channel, the duty cycle is defined by **CM0**.


This behavior is depicted in figure 13.3.3.2.2.

Note that in case of up-down counter mode and RST_CCU0=1 it is recommended that - the triggering channel and the triggered channel are both running in up-down mode and that

- the time between two trigger signals is equal to the time needed for CN0 of triggered channel to count back to 0 and again up to the same upper value.

The second recommendation can be reached by synchronizing the start of triggering channel and of triggered channel, i.e. let both channel start with a CN0 value 0.

Note that if there is a synchronization register in the trigger chain (indicated by value ATOM_TRIG_CHAIN in register **CCM[i]_HW_CONF**), the additional delay of the trigger by one clock period has to be taken into account by starting at triggering channel with a CN0 vaue 1 (+1 compared to CN0 of triggered channel).

13.3.3.2.2 PWM Output behavior in case of RST_CCU0=1

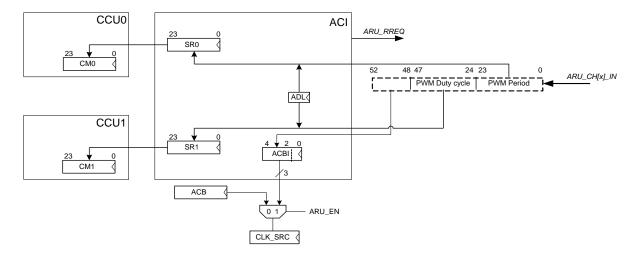
13.3.3.3 ARU controlled update

If ARU access is enabled, the bits **ACBI(4)**, **ACBI(3)** and **ACBI(2)** received via ARU and stored in register **ATOM_[i]_CH[x]_STAT** are used as shadow register for the update of the CMU clock source register **CLK_SRC**.

For the synchronous update mechanism the generation of a complex PWM output waveform is possible without CPU interaction by reloading the shadow registers **SR0**, **SR1** and the **ACBI** bit field over the ACI sub-unit from the ARU, while the ATOM channel operates on the **CM0** and **CM1** registers.

This internal update mechanism is established, when the old PWM period ends. The shadow registers are loaded into the operation registers, the counter register is reset,

Specification


the new clock source according to the CLK_SRC_SR and ACBI(4), ACBI(3) and ACBI(2) bits is selected and the new PWM generation starts.

In parallel, the ATOM channel issues a read request to the ARU to reload the shadow registers with new values while the ATOM channel operates on the operation registers. To guarantee the reloading, the PWM period must not be smaller than the worst case ARU round trip time and source for the PWM characteristic must provide the new data within this time. Otherwise, the old PWM values are used from the shadow registers.

When updated over the ARU the user has to ensure that the new period duration is located in the lower (bits 23 to 0) and the duty cycle duration is located in the upper (bits 47 to 24) ARU data word and the new clock source is specified in the ARU control bits 52 to 50.

This pipelined data stream character is shown in figure 13.3.3.1.

13.3.3.3.1 ARU Data input stream pipeline structure for SOMP mode

When an ARU transfer is in progress which means the *ARU_RREQ* is served by the ARU, the ACI locks the update mechanism of **CM0**, **CM1** and **CLK_SRC** until the read request has finished. The CCU0 and CCU1 operate on the old values when the update mechanism is locked.

13.3.3.4 CPU controlled update

The shadow registers **SR0** and **SR1** can also be updated over the AEI bus interface. In this case, **ARU_EN** hat to be set to 0.

When updated via the AEI bus the **CM0** and **CM1** update mechanism has to be locked via the **AGC_GLB_CTRL** register with the *UPENx* signal in the AGC sub-unit. To select the new clock source in this case, the CPU has to write to the CLK_SRC_SR bit field of the **ATOM[i]_CH[x]_CTRL** register.

For an asynchronous update of the duty cycle and/or period the new values must be written directly into the compare registers **CM0** and/or **CM1** while the counter **CN0** continues counting. This update can be done only via the AEI bus interface immediately by the CPU or by the *FUPD(x)* trigger signal triggered from the AGC global trigger logic. Values received through the ARU interface are never loaded asynchronously into the operation registers **CM0** and **CM1**. Therefore, the ATOM channel can generate a PWM signal on the output port pin *ATOM[i]_CH[x]_OUT* on behalf of the content of the **CM0** and **CM1** registers, while it receives new PWM values via the ARU interface ACI in its shadow registers.

On a compare match of **CN0** and **CM0** or **CM1** the output signal level of $ATOM[i]_CH[x]_OUT$ is toggled according to the signal level output bit **SL** in the **ATOM[i]_CH[x]_CTRL** register.

Thus, the duty cycle output level can be changed during runtime by writing the new duty cycle level into the **SL** bit of the channel configuration register. The new signal level becomes active for the next trigger *CCU_TRIGx* (since bit **SL** is written).

Since the $ATOM[i]_CH[x]_OUT$ signal level is defined as the reverse duty cycle output level when the ATOM channel is enabled, a PWM period can be shifted earlier by writing an initial offset value to **CN0** register. By doing this, the ATOM channel first counts until **CN0** reaches **CM0** and then it toggles the output signal at $ATOM[i]_CH[x]_OUT$.

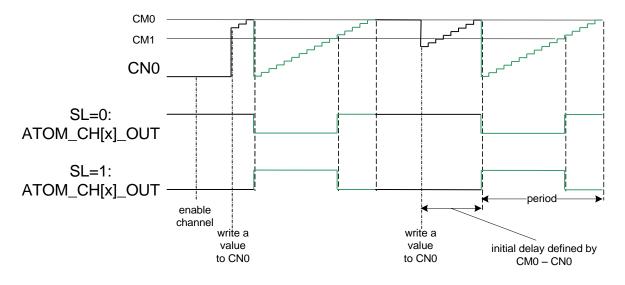
13.3.3.5 One-shot Counting Up Mode

The ATOM channel can operate in One-shot mode when the **OSM** bit is set in the channel control register. One-shot mode means that a single pulse with the pulse level defined in bit **SL** is generated on the output line.

First the channel has to be enabled by setting the corresponding **ENDIS_STAT** value. In one-shot mode the counter **CN0** will not be incremented once the channel is enabled.

A write access to the register **CN0** triggers the start of pulse generation (i.e. the increment of the counter register **CN0**).

If the counter **CN0** is reset from **CM0**-1 back to zero, the first edge at $ATOM[i]_CH[x]_OUT$ is generated.


To avoid an update of **CMx** register with content of **SRx** register at this point in time, the automatic update should be disabled by setting **UPEN_CTRL[x]** = 0b00 (in register **ATOM[i]_CH[x]_CTRL**)

The second edge is generated if **CN0** is greater or equal than **CM1** (i.e. **CN0** was incremented until it has reached **CM1** or **CN0** is greater than **CM1** after an update of **CM1**).

If the counter **CN0** has reached the value of **CM0**-1 a second time, the counter stops. The new value of **CN0** determines the start delay of the first edge. The delay time of the first edge is given by (**CM0-CN0**) multiplied with period defined by current value of **CLK_SRC**.

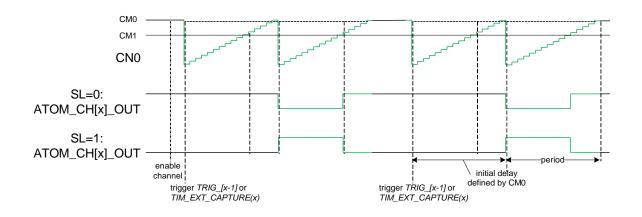
Figure 13.3.3.5.1 depicts the pulse generation in SOMP one-shot mode.

13.3.3.5.1 PWM Output with respect to configuration bit SL in One-shot counting up mode: trigger by writing to CN0

Further output of single pulses can be started by a write access to register **CN0**. If **CN0** is already incrementing (i.e. started by writing to **CN0** a value CN0start < **CM0**), the effect of a second write access to **CN0** depends on the phase of CN0: phase 1: update of **CN0** before **CN0** reaches first time **CM0** (in fact **CM0**-1) phase 2: update of **CN0** after **CN0** has reached first time **CM0** (in fact **CM0**-1) but is less than **CM1**

phase 3: update of **CN0** after **CN0** has reached first time **CM0** (in fact **CM0**-1) and **CN0** is greater than or equal **CM1**

In phase 1: writing to counter **CN0** a value CN0new < **CM0** leads to a shift of first edge (generated if **CN0** is reset first time from **CM0**-1 back to 0) by the time **CM0**-CN0new.


In phase 2: writing to incrementing counter **CN0** a value CN0new < **CM1** while CN0old is below **CM1** leads to a lengthening of the pulse. The counter **CN0** stops if it reaches **CM0**.

In phase 3: Writing to incrementing counter **CN0** a value CN0new while CN0old is already greater than or equal **CM1** leads to an immediate restart of a single pulse generation inclusive the initial delay defined by **CM0** - CN0new.

Specification

If a channel is configured to one-shot mode and configuration bit **OSM_TRIG** is set to 1, the trigger signal *OSM_TRIG* (i.e. *TRIG_[x-1]* or *TIM_EXT_CAPTURE(x)*) triggers start of one pulse generation.

13.3.3.5.2 PWM Output with respect to configuration bit SL in one-shot mode: trigger by *TRIG_[x-1]* or TIM_*EXT_CAPTURE(x)*

13.3.3.6 One-shot Counting Up-Down Mode

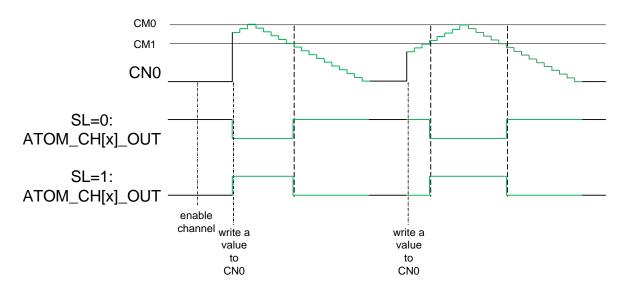
The ATOM channel can operate in one-shot counting up-down mode when the bit **OSM** = 1 and the **UDMODE** != 0b00. One-shot mode means that a single pulse with the pulse level defined in bit **SL** is generated on the output line.

First the channel has to be enabled by setting the corresponding **ENDIS_STAT** value. In one-shot mode the counter **CN0** will not be incremented once the channel is enabled.

A write access to the register **CN0** triggers the start of pulse generation (i.e. the increment of the counter register **CN0**).

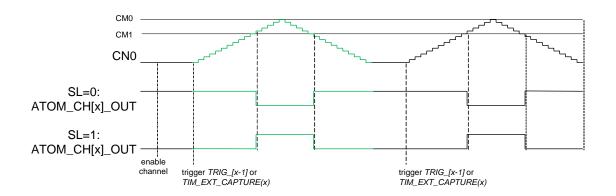
To avoid an update of **CMx** register with content of **SRx** register at this point in time, the automatic update should be disabled by writing **UPEN_CTRL[x]** = 0b01 (see register **ATOM[i]_AGC_GLB_CTRL**).

If the counter **CN0** is greater or equal than **CM1**, the output $ATOM[i]_CH[x]_OUT$ is set to **SL** value.


If the counter **CN0** is less than **CM1**, the output $ATOM[i]_CH[x]_OUT$ is set to !**SL** value.

If the counter **CN0** has reached the value 0 (by counting down), it stops.

The new value of **CN0** determines the start delay of the first edge. The delay time of the first edge is given by (**CM1-CN0**) multiplied with period defined by current value of **CLK_SRC**.


Figure 13.3.3.6.1 depicts the pulse generation in SOMP one-shot mode.

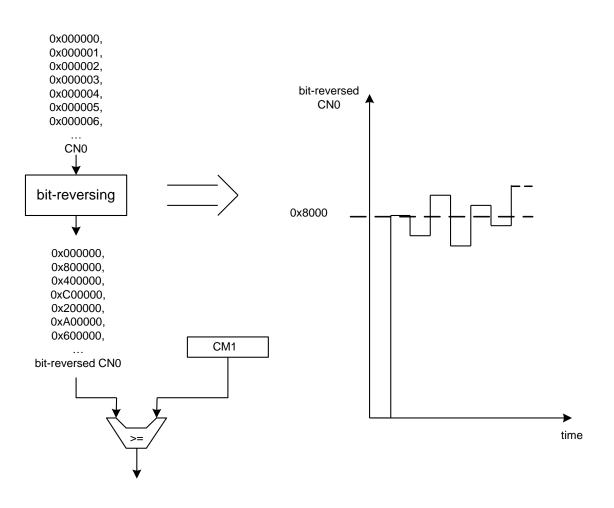
13.3.3.6.1 PWM Output with respect to configuration bit SL in one-shot counting updown mode: trigger by writing to CN0

Further output of single pulses can be started by writing to register **CN0**. If a channel is configured to one-shot counting up-down mode and configuration bit **OSM_TRIG** is set to 1, the trigger signal OSM_TRIG (i.e. $TRIG_[x-1]$ or $TIM_EXT_CAPTURE(x)$) triggers start of one pulse generation.

13.3.3.6.2 PWM Output with respect to configuration bit SL in one-shot counting updown mode: trigger by *TRIG_[x-1]* or TIM_*EXT_CAPTURE(x)*

13.3.3.7 Pulse Count Modulation Mode

At the output $ATOM[i]_CH[x]_OUT$ a pulse count modulated signal can be generated instead of the simple PWM output signal in SOMP mode.


The PCM mode is enabled by setting bit **BITREV** to 1 (bit 6 in **ATOM[i]_CH[x]_CTRL** register).

Please note that it is device specific, in which channel the PCM mode is available. Please refer to device specific Appendix B for this information.

With the configuration bit **BITREV**=1 a bit-reversing of the counter output **CN0** is configured. In this case the bits LSB and MSB are swapped, the bits LSB+1 and MSB-1 are swapped, the bits LSB+2 and MSB-2 are swapped and so on.

The effect of bit-reversing of the **CN0** register value is shown in the following figure 13.3.3.7.1.

13.3.3.7.1 Bit reversing of counter **CN0** output

In the PCM mode the counter register **CN0** is incremented by every clock tick depending on configured CMU clock (*CMU_CLK*).

The output of counter register **CN0** is first bit-reversed and then compared with the configured register value **CM1**.

If the bit-reversed value of register **CN0** is greater or equal than **CM1**, the SR-FlipFlop of sub-module SOU is set (i.e. set to inverse value of **SL**) otherwise the SR-FlipFlop is reset (i.e. to the value of **SL**). This generates at the output $ATOM[i]_CH[x]_OUT$ a pulse count modulated signal.

In PCM mode the **CM0** register - in which the period is defined - normally has to be set to its maximum value 0xFFFFF.

To reduce time period of updating duty cycle value in **CM1** register, it is additionally possible to setup period value in **CM0** register to smaller values than maximum value as described before.

Possible values for **CM0** register are each even numbered values to the power of 2 e.g. 0x800000, 0x400000, 0x200000

In this case the duty cycle has to be configured in the following manner.

Depending on how much the period in **CM0** register is decreased - means shifted right starting from 0x1000000 - the duty cycle in **CM1** register has to be shifted left (= rotated: shift MSB back into LSB) with same value, e.g. :

period CM0 = 0x001000 -> shifted 8 bits right from 0x1000000
--> so duty cycle has to be shifted left 8 bit :
e.g. 50% duty cycle = 0x0008000 -> shift 8 bits left -> CM1 = 0x800000

More examples :

period CM0	->	duty cycle	->	shift	->	CM1
0xFFFFF	->	0x800000	->	no shift	->	0x800000
0x800000	->	0x400000	->	shift 1 bit left	->	0x800000
0x400000	->	0x100000	->	shift 2 bits left	->	0x400000
0x200000	->	0x0FFFFF	->	shift 3 bits left	->	0x7FFF8
0x100000	->	0x033333	->	shift 4 bits left	->	0x333330
0x080000	->	0x005555	->	shift 5 bits left	->	0x0AAAA0
 0x000020 0x000010 	-> ->	0x000008 0x000005	-> ->	shift 19 bits left shift 20 bits left	-> ->	0x400000 0x500000

Note: In this mode the interrupt CCU1TC (see register **ATOM[i]_CH[x]_IRQ_NOTIFY**) is set every time if bit reverse value of **CN0** is greater or equal than **CM1** which may

be multiple times during one period. Therefore, from application point of view it is not useful to enable this interrupt.

13.3.3.8 Trigger generation

For applications with constant PWM period defined by **CM0**, it is not necessary to update regularly the **CM0** register with **SR0** register. For these applications the **SR0** register can be used to define an additional output signal and interrupt trigger.

If bit **SR0_TRIG** in register **ATOM[i]_CH[x]_CTRL** is set, the register **SR0** is no longer used as a shadow register for register **CM0**. Instead, **SR0** is compared against **CN0** and if both are equal, a pulse of signal level 1 is generated at the output $ATOM[i]_CH[x]_OUT_T$.

The bit **SR0_TRIG** should only be set if bit RST_CCU0 of this channel is 0.

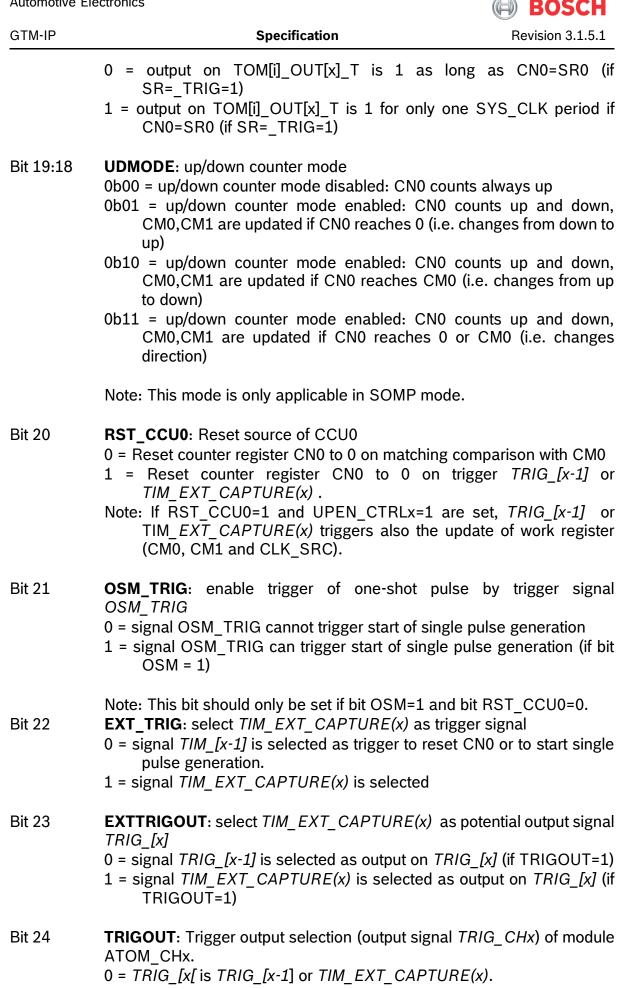
Note: If **ARU_EN**=1 and both **SR0** and **SR1** are updated via ARU, the new **SR0** value is used immediately after update. Update of **SR0** via ARU can be suppressed by ADL configuration in register **ATOM[i]_CH[x]_CTRL.**

If bit **SR0_TRIG** is set the interrupt notify flag **CCU1TC** is no longer set on a compare match of **CM1** and **CN0**. Instead, the **CCU1TC** interrupt notify flag is set in case of a compare equal match of **SR0** and **CN0**.

With configuration bit **TRIG_PULSE** one can select if the output $ATOM[i]_CH[x]_OUT_T$ is high as long as **CN0=SR0** (**TRIG_PULSE=0**) or if there will be only one pulse of length one *SYS_CLK* period when **CN0** becomes **SR0** (**TRIG_PULSE=1**).

The ATOM output signal routing to DTM or GTM-IP top level is described in chapter 14.7

13.3.3.8.1 Register ATOM[i]_CH[x]_CTRL in SOMP mode



Specification

Revision 3.1.5.1

Address Offset:	S	ee	A	pp	er	۱di	ix	В								In	niti	al	Va	alu	ie:	;		0x0000_0x00					
	31	30	29	28	27	26	25	24	23	22	21	20	19 18	17	16	15	14	13	12	11	10	6	8	7	9	5 4	e	2	1 0
Bit	FREEZE	Not used	EXT_FUPD	Reserved	Not used	OSM	Not used	TRIGOUT	EXTTRIGOUT	EXT_TRIG	OSM_TRIG	RST_CCU0	UDMODE	TRIG PULSE	Not used	ECLK_SRC		CLK_SRC_SR		SL	Not used	Not used	Not used	SRO_TRIG	BITREV	ADL	ARU_EN	Not used	MODE
Mode	RW	RW	RW	В	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW		RW		RW	RW	RW	RW	RW	RW	RW	RW	RW	RŴ
Initial Value	0	0	0	0090	0	0	0	0	0	0	0	0	0090	0	0	0		000q0		×	0	0	0	0	0	0090	0	0	0090
Bit 1:0		MODE : ATOM channel mode select. 0b10 = ATOM Signal Output Mode PWM (SOMP)																											
Bit 2		Not used																											
Bit 3 Bit 5:4	A 0 1 A	Note: Not used in this mode. ARU_EN : ARU Input stream enable 0 = ARU Input stream disabled 1 = ARU Input stream enabled ADL : ARU data select for SOMP. 0b00 = Load both ARU words into shadow registers																											
	0 0	0b01 = Load ARU low word (Bits 230) into shadow register SR0 0b10 = Load ARU high word (Bits 4724) into shadow register SR1 0b11 = Reserved Note: This bit field is only relevant in SOMP mode to select the ARU data source.																											
Bit 6	tł	BITREV : Bit-reversing of output of counter register CN0 . This bit enables the PCM mode Note : It is device specific, in which channel the PCM mode is available. Please refer to device specific Appendix B for this information.																											
Bit 7	A 0 1 N	 SR0_TRIG: SR0 is used to generate a trigger on output ATOM[i]_CH[x]_OUT_T if equal to CN0. 0 = SR0 is used as a shadow register for register CM0. 1 = SR0 is not used as a shadow register for register CM0. SR0 is compared with CN0 and if both are equal, a trigger pulse is generated at output ATOM[i]_CH[x]_OUT_T. Note: This bit is only relevant in SOMP mode. Note: This bit should only be set if RST_CCU0 of this channel is 0. 																											
Bit 8				se No		us	ed	in	ı th	nis	m	оd	e.																
Bit 9	Ν	lot	t u	se	d																								
Bit 10				No se		us	ed	in	h th	nis	m	od	e.																

GTM-IP	Specification	Revision 3.1.5.1
Bit 11	Note: Not used in this mode. SL : Signal level for pulse of PWM. 0 = Low signal level 1 = High signal level Note: Reset value depends on the hardware confi silicon vendor.	-
	Note: If the output is disabled, the output ATOM_OU value of SL. If FREEZE=0, the following note is valid Note: If the channel is disabled, the output register of	
	inverse value of SL. If FREEZE=1, the following note is valid Note: If the channel is disabled, the output register changed and output ATOM_OUT[x] is not chan	of SOU unit is not
Bit 14:12	<pre>CLK_SRC_SR: Shadow register for CMU close CLK_SRC If ECLK_SRC=0 / ECLK_SRC=1: 0b000 = CMU_CLK0 selected / CMU_CLK0 selected 0b011 = CMU_CLK1 selected / CMU_CLK1 selected 0b010 = CMU_CLK2 selected / CMU_CLK2 selected 0b101 = CMU_CLK3 selected / Reserved 0b100 = CMU_CLK4 selected / clock stopped 0b101 = CMU_CLK5 selected / TIM_EXT_CAPTUR 0b111 = CMU_CLK6 selected / TIM_EXT_CAPTUR 0b111 = CMU_CLK7 selected / CMU_CLK7 selected Note: This register is a shadow register for the regist if the CMU_CLK source for PWM generation during operation, the old CMU_CLK has to ope of the ATOM channels internal CLK_SRC CLK_SRC_SR content is done either by an e FORCE_UPDATE. Note: After (channel) reset the selected CLK_SRC va (input of Global Clock Divider). To use in SOM CMU_CLKx, it is recommended to perform CLK_SRC with the value of CLK_SRC_SR enabling the channel. Note: In case of ECLK_SRC=1 and 0b011/0b100/0b101/0b110 a force update lea update of CM0, CM1 and CLK_SRC.</pre>	d d d RE[x] selected d er CLK_SRC. Thus, should be changed rate until the update C register by the nd of a period or a ulue is the SYS_CLK MP mode one of the a forced update of a value before/with CLK_SRC_SR =
Bit 15	ECLK_SRC: Extend CLK_SRC 0 = CLK_SRC_SR set 1 selected 1 = CLK_SRC_SR set 2 selected	
Bit 16	See bit CLK_SRC_SR description for details. Not used	
Bit 17	Note: Not used in this mode. TRIG_PULSE : Trigger output pulse length of one SN	S_CLK period

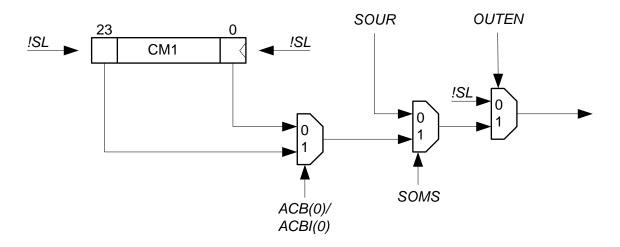
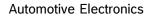
GTM-IP	Specification	Revision 3.1.5.1
	1 = TRIG_[x] is TRIG_CCU0	
Bit 25	Not used	
	Note: Not used in this mode.	
Bit 26	OSM: One-shot mode	
	0 = Continuous PWM generation after channel enable	
	1 = A single pulse is generated	
Bit 27	Not used	
D# 00	Note: Not used in this mode.	
Bit 28	Reserved	
Bit 29	Note: Read as zero, should be written as zero. EXT FUPD: external forced update	
DIL 23	0 = use FUPD(x) signal from AGC to force update	
	1 = use TIM EXT CAPTURE signal to force update	
	Note: This bit is only applicable in SOMP and SOMS n	node.
Bit 30	Not used	
	Note: Not used in this mode.	
Bit 31	FREEZE	
	0 = a channel disable/enable may change internal re register	egister and output
	 1 = a channel enable/disable does not change an register but stops counter CN0 (in SOMP mode SOMC/SOMB mode) and shifting (in SOMS mod 	e), comparison (in
	Note: if channel is disabled and ouptut is enabled, in UDMODE!=0b00 the output is dependng dir independent on FREEZE mode.	

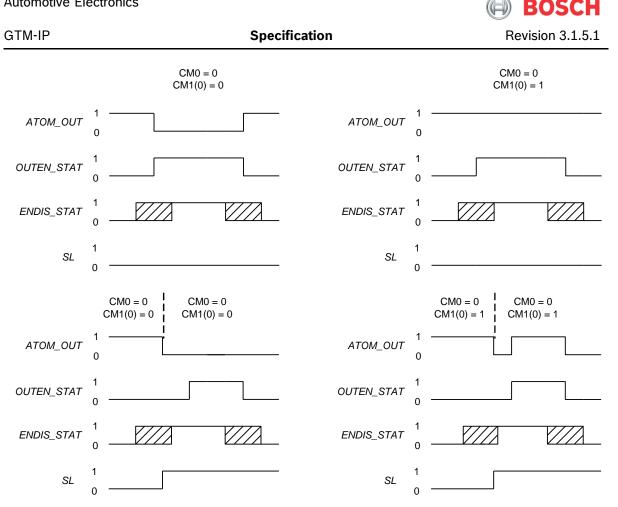
13.3.4 ATOM Signal Output Mode Serial (SOMS)

In ATOM Signal Output Mode Serial (SOMS) the ATOM channel acts as a serial output shift register where the content of the **CM1** register in the CCU1 unit is shifted out whenever the unit is triggered by the selected *CMU_CLK* input clock signal. The shift direction is configurable with the **ACB(0)** bit inside the **ATOM[i]_CH[x]_CTRL** register when ARU is disabled and the **ACBI(0)** bit inside the **ATOM[i]_CH[x]_STAT** register when ARU is enabled.

The data inside the **CM1** register has to be aligned according to the selected shift direction in the **ACB(0)/ACBI(0)** bit. This means that when a right shift is selected, that the data word has to be aligned to bit 0 of the **CM1** register and when a left shift is selected, that the data has to be aligned to bit 23 of the **CM1** register.

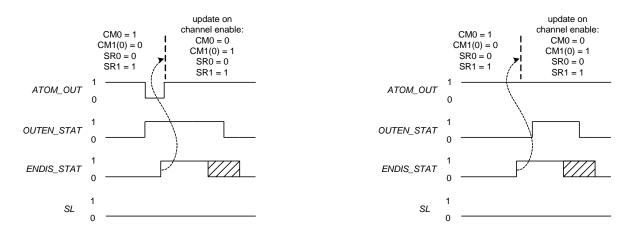
13.3.4.1 SOMS Mode output generation


Figure 13.3.4.1 shows the output generation in case of SOMS mode is selected. In SOMS mode CCU0 runs in counter/compare mode and counts the number of bits shifted out so far. The total number of bits that should be shifted is defined as **CM0**. The total number of bits that are visible at *ATOM_OUT* is **CM0**+1.

When the output is disabled the *ATOM_OUT* is set to the inverse **SL** bit definition. When the content of the **CM1** register is shifted out, the inverse signal level is shifted into the **CM1** register.

When the output is enabled while **UPEN_CTRL[x]** is disabled, the ATOM_OUT signal level is defined by **CM1** bit 0 or 23, dependent on the shift direction defined by **ACB(0)** or **ACBI(0)** register setting. Figure 13.3.4.2 should clarify the ATOM channel startup behavior in this case for right shift. For left shift the **CM1** bit 0 in 13.3.4.2 has to be replaced by **CM1** bit 23.


13.3.4.2 SOMS Output signal level at startup, UPEN_CTRL[x] disabled

If UPEN_CTRL[x] is set and the channel is enabled, the output level is defined by bit 0 or 23 of CM1 register dependent on the shift direction. Figure 13.3.4.3 shows the output behavior in that case.

13.3.4.3 SOMS Output signal level at startup, UPEN CTRL[x] enabled

When the serial data to be shifted is provided via ARU the number of bits that should be shifted has to be defined in the lower 24 bits of the ARU word (23 to 0) and the data that is to be shifted has to be defined in the ARU bits 47 to 24 aligned according to the shift direction. This shift direction has to be defined in the ARU word bit 48 (ACB0 bit).

If bit **UPEN_CTRL[x]** of a channel x is set, after update of **CM0/CM1** register with the content of the **SR0/SR1** register, a new ARU read request is set up.

If bit **UPEN_CTRL[x]** of a channel x is not set, no (further) ARU read request is set up (because the **SR0/SR1** register are never used for update) and the ATOM may stop shifting after **CN0** has reached **CM0**. Note, that in this case also no automatic restart of shifting is possible.

If a channel is enabled with the settings SOMS mode and **ARU_EN** = 1, the first received values from ARU are stored in register **SR0** and **SR1**. If **CN0** and **CM0** are 0 (i.e. **CN0** is not counting) and the update of channel x is enabled (**UPEN_CTRL[x]**=1), an immediate update of the register **CM0** and **CM1** is also done. This update of **CM0** and **CM1** triggers the start of shifting.

It is recommended to configure the ATOM channel in One-shot mode when the **ARU_EN** bit is not set, since the ATOM channel would reload new values from the shadow registers when **CN0** reaches **CM0**.

13.3.4.4 SOMS mode with $ARU_EN = 1$ and OSM = 0, $UPEN_CTRL[x] = 1$:

In case of bit **ARU_EN** is set and bit **OSM** is not set, the channel is running in the SOMS continuous mode. Then, if the content of the **CM0** register equals the counter **CN0**, the **CM0** and **CM1** registers are reloaded with the **SR0** and **SR1** content and new values are requested from the ARU. If the update of the shadow registers does not happen before **CN0** reaches **CM0** the old values of **SR0** and **SR1** are used to reload the operation registers.

In contrast to controlling the channel via AEI, the shift direction defined by ARU word bit 48 has only effect after the update of **CMx** operation registers from the **SRx** registers.

13.3.4.5 SOMS mode with ARU_EN = 1 and OSM = 1, UPEN_CTRL[x] = 1:

In case of bit **ARU_EN** is set and bit **OSM** is set, the channel is running in the SOMS one-shot mode. Then, if the content of the **CM0** register equals the counter **CN0** and if new values are available in **SR0** and **SR1** (bit DV set), the **CM0** and **CM1** registers are reloaded with the **SR0** and **SR1** content and new values are requested from the ARU. If no new values are available in **SR0** and **SR1**, the register **CM0** and **CM1** will not be updated, the counter **CN0** stops and the ATOM channel continues to request new data from ARU. A later reception of new ARU data in **SR0** and **SR1** will immediately force the update of the register **CM0** and **CM1** and restart the counter **CN0**.

13.3.4.6 SOMS mode with $ARU_EN = 0$ and OSM = 0, $UPEN_CTRL[x] = 1$:

In case of bit **ARU_EN** is not set and bit **OSM** is not set, the ATOM channel updates its CM0/CM1 register with the content of the SR0/SR1 register and restarts shifting immediately. The first bit of new CM1 register value will be applied at the output without any gap to the last bit of the previous CM1 register value.

13.3.4.7 SOMS mode with $ARU_EN = 0$ and OSM = 1, $UPEN_CTRL[x] = 1$:

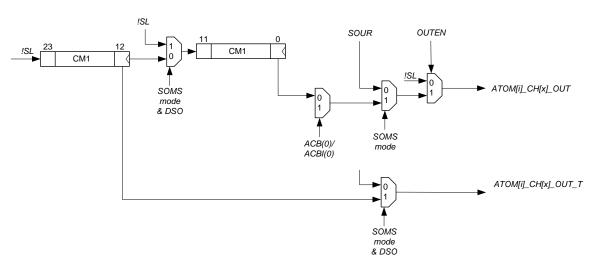
In case of bit **ARU_EN** is not set and bit **OSM** is set, the ATOM channel stops shifting when **CN0** reaches **CM0** and no update of **CM0** and **CM1** is performed.

Then, the shifting of the channel can be restarted again by writing a zero to the **CN0** register again. Please note, that the **CN0** register should be written with a zero since the **CN0** register counts the number of bits shifted out by the ATOM channel. The writing of a zero to **CN0** causes also an immediate update of **CM0/CM1** register with the content of **SR0/SR1** register.

13.3.4.8 SOMS mode with double output

If in SOMS mode additionally the mode bit DSO is set (in register **ATOM[i]_CH[x]_CTRL**) two 12 bit data streams can be shifted out on the outputs *ATOM_OUT* and *ATOM_OUT_T* in parallel.

This is reached by splitting the register **CM1** into two parts. The lower 12 bits are used as a shift register of output $ATOM_OUT$ (i.e. bit 0 is assigned to output $ATOM_OUT$), the upper 12 bits are used as a shift register of output $ATOM_OUT_T$ (i.e. bit 12 is assigned to output $ATOM_OUT_T$).


On bit 23 and 11 of register **CM1** the value **!SL** is shifted in.

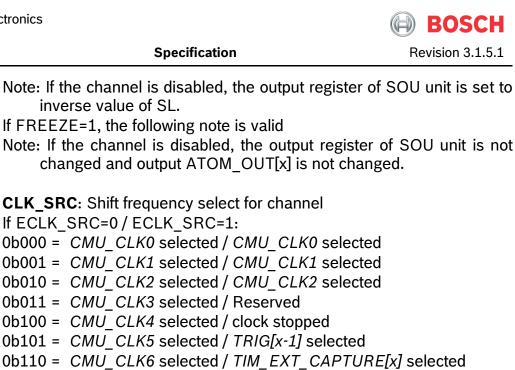
Note: In this mode only shift right is possible. Bit **ACB0** is ignored.

This behavior is depicted in the following figure:

13.3.4.8.1 Double Output Shift Mode

Specification

13.3.4.9 Interrupts in SOMS mode


In ATOM Signal Output Mode Serial only the interrupt CCU0TC (ATOM[i]_CH[x]_IRQ_NOTIFY) in case of CN0 >= CM0 is generated. The interrupt CCU1TC has no meaning and is not generated.

Address Offset:	S	see Appendix B											Initial Value:						0x0000_0x00						
	31	30	29	28	27	26	25	24	23 22 21	20	19 18	17	16	15	14 13 12	11	10	6	8	7	6 5	4	Э	2	1 0
Bit	FREEZE	Not used	EXT_FUPD	Reserved	Not used	OSM	Not used	Not used	Not used	Not used	Not used	Not used	Not used	ECLK_SRC	CLK_SRC_SR	SL	Not used	Not used	Not used	DSO	Not used	ACB0	ARU_EN	Not used	MODE
Mode	RW	RW	RW	£	RW	RW	RW	RW	Я	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW
Initial Value	0	0	0	00q0	0	0	0	0	00900	0	00q0	0	0	0	00000	×	0	0	0	0	00q0	0	0	0	0040
Bit 1:0		-				-		-	annel i nal Ou	-		-		-	rial (SC	M	S)								
Bit 2	-	0b11: ATOM Signal Output Mode Serial (SOMS) Not used Note: Not used in this mode.																							
Bit 3	0	Note: Not used in this mode. ARU_EN : ARU Input stream enable 0 = ARU Input stream disabled 1 = ARU Input stream enabled																							

13.3.4.9.1 Register ATOM[i]_CH[x]_CTRL in SOMS mode

GTM-IP	Specification	Revision 3.1.5.1
Bit 4	 ACB0: Shift direction for CM1 register 0 = Right shift of data is started from bit 0 of CM1 1 = Left shift of data is started from bit 23 of CM1 Note: the data that has to be shifted out has to be al register according to the defined shift direction Note: this bit is only applicable if ARU_EN = 0. Note: if the direction (ACB0) is changed the or switches immediately to the other 'first' bit of 0, bit 23 if ACB0 = 1). 	utput ATOM_OUT[x]
Bit 6:5	Not used	
Bit 7	Note: Not used in this mode. DSO : Double Shift Output 0 = CM1 is used as a 24 bit shift register 1 = CM1 is split into two 12 bit shift register Note: if DSO=1, only shift right is possible	
Bit 8	Not used	
Bit 9	Note: Not used in this mode. Not used	
Bit 10	Note: Not used in this mode. Not used Note: Not used in this mode.	
Bit 11	 SL: Defines signal level when channel and output is 0 = High signal level 1 = Low signal level Note: Reset value depends on the hardware con silicon vendor. Note: If the output is disabled, the output ATOM_OU value of SL. Note: If the output is enabled, the output ATOM_OU 23 of CM1 register. Note: The inverse value of SL is shifted into the CW Note: An enable or disable of the channel x ATOM_OUT[x]. 	figuration chosen by JT[x] is set to inverse JT[x] is set to bit 0 or I1 register.
	 0 = Low signal level 1 = High signal level Note: Reset value depends on the hardware consilicon vendor. Note: If the output is enabled, the output ATOM_OU 23 of CM1 register. Note: The inverse value of SL is shifted into the CW Note: If the output is disabled, the output ATOM_OU value of SL. If FREEZE=0, the following note is valid 	UT[x] is set to bit 0 or 1 register.

Bit 14:12

- 0b111 = CMU CLK7 selected / CMU CLK7 selected
- Note: This register is a shadow register for the register CLK SRC. Thus. if the CMU CLK source for PWM generation should be changed during operation, the old CMU CLK has to operate until the update of the ATOM channels internal CLK SRC register by the CLK SRC SR content is done either by an end of a period or a FORCE UPDATE.
- Note: After (channel) reset the selected CLK SRC value is the SYS CLK (input of Global Clock Divider). To use in SOMP mode one of the CMU CLKx, it is recommended to perform a forced update of CLK SRC with the value of CLK SRC SR value before/with enabling the channel.

Bit 15	ECLK_SRC: Extend CLK_SRC
	0 = CLK_SRC_SR set 1 selected
	1 = CLK_SRC_SR set 2 selected
	See bit CLK_SRC_SR description for details.
Bit 16	Not used
	Note: Not used in this mode.
Bit 17	Not used
	Note: Not used in this mode.
Bit 19:18	Not used
	Note: Not used in this mode.
Bit 20	Not used
	Note: Not used in this mode.
Bit 23:21	Not used
	Note: Not used in this mode.
Bit 24	Not used
	Note: Not used in this mode.
Bit 25	Not used
	Note: Not used in this mode.

inverse value of SL.

	Specification	Revision 3.1.5.1
GTM-IP	Specification	Revision 3.1.3.1
Bit 26	OSM: One-shot mode	
	0 = Continuous shifting is enabled	
	1 = Channel stops, after number of bits defined in C	M0 is shifted out
Bit 27	Not used	
Bit 28	Note: Not used in this mode. Reserved	
DIL 20	Note: Read as zero, should be written as zero.	
Bit 29	EXT FUPD: external forced update	
	0 = use FUPD(x) signal from AGC to force update	
	1 = use TIM_EXT_CAPTURE signal to force update	2
	Note: This bit is only applicable in SOMP and SOM	S mode.
Bit 30	Not used	
	Note: Not used in this mode.	
Bit 31	FREEZE	
	0 = a channel disable/enable may change interna register	I register and output
	1 = a channel enable/disable does not change a register but stops counter CN0 (in SOMP mo SOMC/SOMB mode) and shifting (in SOMS m	ode), comparison (in

13.3.5 ATOM Signal Output Mode Buffered Compare(SOMB)

13.3.5.1 Overview

In ATOM Signal Output Mode buffered Compare (SOMB) the output action is performed according to the comparison result of the input values located in **CM0** and/or **CM1** registers and the two (three) time base values *TBU_TS0* or *TBU_TS1* (or *TBU_TS2*) provided by the TBU. For a description of the time base generation please refer to the TBU specification in chapter 10. It is configurable, which of the two (three) time bases is to be compared with one or both values in **CM0** and **CM1**.

The compare strategy of the two compare units CCU0 and CCU1 is controlled by the value of bit field ACBI of register ATOM[i]_CH[x]_STAT. This bit field is only readable by CPU. If ARU is disabled, the bit field ACBI can only be updated with the value of bit field ACB of register ATOM[i]_CH[x]_CTRL. If ARU is enabled, the ACBI bit field can be updated with the value of shadow register ACB_SR which contains a value received via ARU or the value of bit field ACB of register ATOM[i]_CH[x]_CTRL.

The table below lists all valid control configurations for bit field **ACBI** of register **ATOM[i]_CH[x]_STAT**.

ACBI(4)	ACBI(3)	ACBI(2)	CCUx control
0	0	0	Reserved. Has no effect.
0	0	1	Reserved. Has no effect.
0	1	0	Compare in CCU0 only, use time base <i>TBU_TS0</i> . Output signal level is defined by combination of SL, ACB10/ACBI(10) bits.
0	1	1	Compare in CCU1 only, use time base <i>TBU_TS1</i> or <i>TBU_TS2</i> . Output signal level is defined by combination of SL, ACBI[1:0] bits.
1	0	0	Serve Last: Compare in CCU0 and then in CCU1 using <i>TBU_TS0</i> . Output signal level when CCU0 matches is defined by combination of SL, ACBI[1:0]. On the CCU1 match the output level is toggled.
1	0	1	Serve Last: Compare in CCU0 and then in CCU1 using <i>TBU_TS1</i> or <i>TBU_TS2</i> . Output signal level when CCU0 matches is defined by combination of SL, ACBI[1:0] . On the CCU1 match the output level is toggled.
1	1	0	Serve Last: Compare in CCU0 using <i>TBU_TS0</i> and then in CCU1 using <i>TBU_TS1</i> or <i>TBU_TS2</i> . Output signal level when CCU1 matches is defined by combination of SL, ACBI[1:0]
1	1	1	Cancels pending comparison independent on ARU_EN

13.3.5.1.1	ATOM SOMB compare strategies
------------	------------------------------

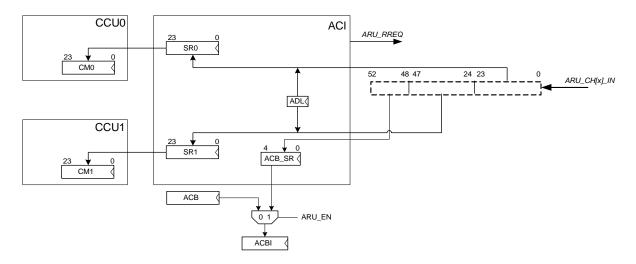
The CCUx trigger signals *TRIG_CCU0* and *TRIG_CCU1* creates edges depending on the combination of the predefined signal level in **SL** bit and the two control bits **ACBI[1:0]**.

In SOMB mode, if ARU access is enabled, the new compare values received via ARU are always stored in the shadow register **SR0** and **SR1** and the **ACB** bits are stores in an internal register **ACB_SR**.

If the scheduled compare matches in CCU0 and/or CCU1 are occurred and the **SRx** register contain new valid values, the register **CM0** and **CM1** are updated automatically with the content of the corresponding **SRx** register, the **ACBI** bit field is updated with the content of internal **ACB_SR** register and the DV bit of register **ATOM[i]_CH[x]_STAT** is set. If the **SRx** register and the **CMx** register contain no valid value, the compare units are waiting in an idle state.

Specification

BOSCH


On a compare match of one of the compare units CCUx units the output ATOM_OUT is set according to combination of **ACBI** bit 1 down to 0 (in register **ATOM[i]_CH[x]_STAT**) and the **SL** bit of register **ATOM[i]_CH[x]_CTRL**.

13.3.5.1.2 ATOM SOMB output control by ACBI[1:0] and SL

SL	ACBI(1)	ACBI(0)	Output Behavior
0	0	0	No signal level change at output.
0	0	1	Set output signal level to 1.
0	1	0	Set output signal level to 0.
0	1	1	Toggle output signal level.
1	0	0	No signal level change at output.
1	0	1	Set output signal level to 0.
1	1	0	Set output signal level to 1.
1	1	1	Toggle output signal level.

In opposite to SOMC mode no time stamp value of TBU is captured in SRx register.

13.3.5.1.3 **ARU interface behavior in SOMB mode**

The flag **DV** of register **ATOM[i]_CH[x]_STAT** indicates that at least one of the **CMx** register contains valid data and a compare event may be pending (if channel is enabled).

328/868

The **DV** flag is reset if none of the **CMx** register contains valid data.

13.3.5.2 SOMB under CPU control

24.03.2016

If bit **ARU_EN** of register **ATOM[i]_CH[x]_CTRL** is not set, the ATOM channel can only be controlled via CPU.

Writing to one of the **CMx** register sets automatically the **DV** bit to validate the new compare value. A comparison depending on value **ACBI** of register **ATOM[i]_CH[x]_STAT** is started immediately.

Because only the ACB bit of register ATOM[i]_CH[x]_CTRL can be written and this bit field serves as a shadow register for the work register ACBI (bit field of register ATOM[i]_CH[x]_STAT), it is recommended to first update the ACB bit field before updating CMx/SRx register.

The compare strategy is controlled by the value stored in bit field **ACBI** of register **ATOM[i]_CH[x]_STAT**. If ARU is disabled, this bit field can only be updated with the value of bit field **ACB** of register **ATOM[i]_CH[x]_CTRL**.

The update of bit field **ACBI** can be triggered by a forced update or the normal update mechanism controlled by bit **UPEN_CTRL[x]** in register **ATOM[i]_AGC_GLB_CTRL**.

Writing to one of the **SRx** register and triggering a forced update, updates the **CMx** register with the value of **SRx** register and the **ACBI** bit field with the content of **ACB** bit field of register **ATOM[i]_CH[x]_CTRL**. A new comparison is started.

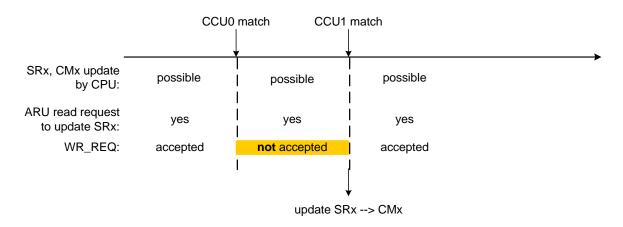
Writing to one of the **SRx** register while update of **CMx** register is disabled (**UPEN_CTRL[x]**= 0 in **ATOM[i]_AGC_GLB_CTRL**) and enabling update afterwards, triggers the update of **CMx** register and the **ACBI** bit field and starts comparison if previous comparison is finished (**DV** bit was reset).

If ARU access is disabled (**ARU_EN**=0), a force update updates the **CMx** register with the content of **SRx** register and the **ACBI** bit field with the content of **ACB** bit field of register **ATOM[i]_CH[x]_CTRL**.

13.3.5.3 SOMB under ARU control

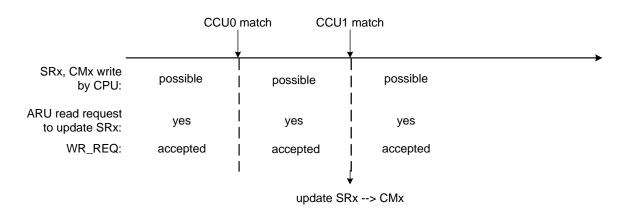
If both compare units CCU0/CCU1 are finished with previous job (depending on compare strategy) and the **SRx** register contain no new value, they are waiting until new data was received via ARU and stored in **SRx** register. Then, an immediately update takes place.

If both compare units are finished with previous job (depending on compare strategy) and there are new data available in **SRx** register, the update the **CMx** register with the value of the **SRx** register and the **ACBI** bit field with the value of internal **ACB_SR** register takes place and a new compare job is started immediately.


After an update of the **CMx** register, a new ARU read request is set.

New compare values received via the ARU are stored in shadow register **SRx**. The **ACB** bits received via ARU are stored in the internal register **ACB_SR**.

If ARU access is enabled (**ARU_EN**=1), a force update updates the **CMx** register with the content of **SRx** register and the **ACBI** bit field with the content of internal **ACB_SR** register.


For compare strategy 'serve last' the CCU0 and CCU1 compare match may occur sequentially. During different phases of compare match the CPU access rights to register **CM0** and **CM1** as well as to **WR_REQ** bit is different. These access rights by CPU to register **CM0** and **CM1** and the **WR_REQ** are depicted in the following figure for the case of **EUPM=0** (register **ATOM[i]_CH[x]_CTRL**)

13.3.5.3.1 CPU access rights in case of compare strategy 'serve last' and EUPM=0

The access rights by CPU to register **CM0** and **CM1** and the **WR_REQ** are depicted in the following figure for the case of **EUPM**=1 (register **ATOM[i]_CH[x]_CTRL**)

13.3.5.3.2 CPU access rights in case of compare strategy 'serve last' in case of EUPM=1

13.3.5.3.3 ARU Non-blocking mode

If bit **ABM** in register **ATOM[i]_CH[x]_CTRL** is not set, the ARU blocking mode is disabled. In this case the ATOM channel is continuously reading via ARU and storing new values in the **SRx** register and the ACB shadow register **ACB_SR**.

If **ARU_EN** is not set, the bit **ABM** has no meaning.

13.3.5.3.4 ARU Blocking mode

If bit **ABM** in register **ATOM[i]_CH[x]_CTRL** is set, the ARU blocking mode is enabled. In this case the ATOM channel stops requesting new **SRx** values via ARU after reception of a new **SRx** value and restarts requesting a new value via ARU after compare match on both compare units (depending on compare strategy) followed by the immediate update of the **CMx** register with content of **SRx** register and an update of **ACBI** with the content of **ACB_SR**.

If **ARU_EN** is not set, the bit **ABM** has no meaning.

13.3.5.3.5 Late Update by CPU

Although, the ATOM channel may be controlled by data received via the ARU, the CPU is able to request at any time a late update of the compare register. This can be initiated by setting the **WR_REQ** bit inside the **ATOM[i]_CH[x]_CTRL** register.

If none of the two compare match event happened, the ATOM channel accepts the setting of **WR_REQ** bit. In this case, the ATOM will request no further data from ARU (if ARU access was enabled) and will disable the update of **CMx** register with the content of **SRx** register on a compare match event.

If at least one of the requested compare match events happened (depending on strategy) the **WR_REQ** bit is not set and the **WRF** flag in register **ATOM[i]_CH[x]_STAT** is set to indicate that the late update was not successful.

The channel will in any case continue to compare against the values stored inside the compare registers (if bit **DV** was set). The CPU can now update the compare values by writing to the shadow registers and force the ATOM channel to update the compare registers by writing to the force update register bits in the AGC register.

With a force update the **WR_REQ** bit is reset automatically and the ARU read request is set up again (if ARU access was enabled).

13.3.5.3.6	Register ATOM[i]_CH[x]_CTRL in SOMB mode	
------------	--	--

Address Offset:	see Appendix B										Initial Value: 0x0000_0x00)						
	31	30	29	28	27	26	25	24	23	22 21	20	19 18	17	16	15	14	13	12	11	10	6	8	7	9	5 4	· ε	2	1 0
Bit	FREEZE	SOMB	Not used	Reserved	ABM	Not used	Not used	TRIGOUT	EXTTRIGOUT	Not used	Not used	Not used	Not used	WR_REQ	Not used		Not used		SL	EUPM	CMP_CTRL		ACB[4:2]		ACB[1:0]	ARU_EN	TB12_SEL	MODE
Mode	RW	RW	RW	Я	RW	RW	RW	RW	RW	£	RW	RW	RW	RW	RW		RW		RW	RW	RW		RW		RW	RW	RW	RW
Initial Value	0	0	0	0	0	0	0	0	0	0090	0	0090	0	0	0		00090		×	0	0		000q0		0090	0	0	0090
Bit 2	Т 0 1	 MODE: ATOM channel mode select. Not used in ATOM SOMB mode. TB12_SEL: Select time base value TBU_TS1 or TBU_TS2. 0 = TBU_TS1 selected for comparison 1 = TBU_TS2 selected for comparison Note: This bit is only applicable if three time bases are present in the GTM-IP. Otherwise, this bit is reserved. 																										
Bit 3	0	ARU_EN : ARU Input stream enable. 0 = ARU Input stream disabled																										
Bit 5:4	A F 0 0 0																											
Bit 8:6	F 0 0 0	or b0 b0 b0 b0	de 000 001 010 011	eta) = L =) = L =	ils R R C C	se es es on on	ee er er np	13 ve ve are are	8.3 d. d. e ii e ii	.5.1 Has Has n CC n CC	.1 nc nc CU(CU)	omp o effe o effe 0 on 1 on CCU	ect ect ly a	ag	air air	nst nst	TI TI	8U 8U	[]	ΓS	1 0						Э.	

GTM-IP	Specification	Revision 3.1.5.1
	0b101 = Compare first in CCU0 and then in CCU1 TBU TS2.	L. Use <i>TBU_TS1</i> or
	0b110 = Compare first in CCU0 and then in CCU2 CCU0 and TBU_TS1 or TBU_TS2 in CCU1.	_
	0b111 = Cancel pending comparisons independent of Note: These bits are only applicable if ARU_EN = 0.	
Bit 9	<pre>CMP_CTRL: CCUx compare strategy select. 0 = Greater-equal compare against TBU time base >= CM0/1)</pre>	values (TBU_TS1/2
	1 = Less-equal compare against TBU time base val CM0/1)	ues (TBU_TS1/2 <=
	Note: The compare unit CCU0 or CCU1 that compare (depending on CCUx control mode defined always performs a greater-equal compariso CMP_CTRL bit.	by ACB_CM(4:2))
Bit 10	EUPM: Extended update mode	
	 0 = No extended update of CM0 and CM1 via CPU of 1 = Extended update mode in case of compare supdate of CM1 after CCU0 compare match p CPU. 	strategy 'serve last':
	Note: If EUPM=1 a write access to CM0 or CM1 ne write status 0b10.	ever causes an AEI
	Note: this bit is only applicable in SOMC and SOMB	mode.
Bit 11	SL : Initial signal level after channel enable. 0 = Low signal level	
	1 = High signal level Note: Reset value depends on the hardware confi	guration chosen by
	silicon vendor. Note: If the output is disabled, the output ATOM_OU value of SL.	T[x] is set to inverse
	If FREEZE=0, the following notes is valid	
	Note: If the channel is disabled, the output register of value of SL.	of SOU unit is set to
	If FREEZE=1, the following note is valid Note: If the channel is disabled, the output register changed and output ATOM_OUT[x] is not chan	
Bit 14:12	Not used	
Bit 15	Note: Not used in this mode. Not used	
Bit 16	Note: Not used in this mode. WR_REQ: CPU Write request bit for late compare re	egister undate
2 10	0 = No late update requested by CPU	-0.500, apaulo,

GTM-IP	Specification	Revision 3.1.5.1
	 1 = Late update requested by CPU Note: The CPU can disable subsequent ARU rechannel and can update the shadow register values, while the compare units operate on received by former ARU accesses, if occurred Note: On a compare match event, the WR_REQ hardware. Note: At the point of the force update only the shado 	rs with new compare old compare values I. a bit will be reset by
	SR1 are transferred into the CM0, CM1 registers is still defined by the ACBI bit field described with the old compare values for CM0/CM1.	ers. The output action
Bit 17	Not used Note: Not used in this mode.	
Bit 19:18	Note: Not used in this mode.	
Bit 20	Not used : not used in this mode Note: Not used in this mode.	
Bit 22:21	Not used : not used in this mode Note: Not used in this mode.	
Bit 23	<pre>EXTTRIGOUT: select TIM_EXT_CAPTURE(x) as p TRIG_[x] 0 = signal TRIG_[x-1] is selected as output on TRIC 1 = signal TIM_EXT_CAPTURE(x) is selected as o TRIGOUT=1)</pre>	G_[x] (if TRIGOUT=1)
Bit 24	TRIGOUT : Trigger output selection (output signal T ATOM_CHx. 0 = TRIG_[x] is TRIG_[x-1] or TIM_EXT_CAPTURE 1 = TRIG [x] is TRIG_CCU0	_
Bit 25	Not used : not used in this mode Note: Not used in this mode.	
Bit 26	Not used : not used in this mode Note: Not used in this mode.	
Bit 27	 ABM: ARU blocking mode 0 = ARU blocking mode disabled: ATOM reads co and updates SR0, SR1 and ACB bits inde compare match event. 1 = ARU blocking mode enabled: after update of SF 	ependent of pending
	via ARU, no new data is read via ARU until c occurred.	ompare match event
Bit 28	Reserved Note: Read as zero, should be written as zero.	
Bit 29	Note: Not used in this mode Note: Not used in this mode.	

Bit 30 **SOMB:** SOMB mode

GTM-IP	Specification	Revision 3.1.5.1
Bit 31	0 = ATOM channel mode defined by bit filed MODE 1 = ATOM SOMB mode enabled FREEZE	
DitOI	0 = a channel disable/enable may change internal r register	register and output
	1 = a channel enable/disable does not change an	internal or output

L = a channel enable/disable does not change an internal or output register but stops counter CN0 (in SOMP mode), comparison (in SOMC/SOMB mode) and shifting (in SOMS mode)

13.4ATOM Interrupt Signals

Signal	Description
CCU0TCx_IRQ	CCU0 Trigger condition interrupt for channel x
CCU1TCx_IRQ	CCU1 Trigger condition interrupt for channel x

13.5 ATOM Register Overview

Register name	Description	Details in Section
ATOM[i]_AGC_GLB_CTRL	ATOMi AGC global control register	13.6.1
ATOM[i]_AGC_ENDIS_CTRL	ATOMi AGC enable/disable control register	13.6.2
ATOM[i]_AGC_ENDIS_STAT	ATOMi AGC enable/disable status register	13.6.3
ATOM[i]_AGC_ACT_TB	ATOMi AGC action time base register	13.6.4
ATOM[i]_AGC_OUTEN_CTRL	ATOMi AGC output enable control register	13.6.5
ATOM[i]_AGC_OUTEN_STAT	ATOMi AGC output enable status register	13.6.6
ATOM[i]_AGC_FUPD_CTRL	ATOMi AGC force update control register	13.6.7
ATOM[i]_AGC_INT_TRIG	ATOMi AGC internal trigger control register	13.6.8
ATOM[i]_CH[x]_CTRL	ATOMi channel x control register	13.6.9
ATOM[i]_CH[x]_STAT	ATOMi channel x status register	13.6.10
ATOM[i]_CH[x]_RDADDR	ATOMi channel x ARU read address register	13.6.11

GTM-IP	Specification	Revision 3.1.5.1
ATOM[i]_CH[x]_CN0	ATOMi channel x CCU0 counter register	13.6.12
ATOM[i]_CH[x]_CM0	ATOMi channel x CCU0 compare register	13.6.13
ATOM[i]_CH[x]_SR0	ATOMi channel x CCU0 compare shadow register	13.6.14
ATOM[i]_CH[x]_CM1	ATOMi channel x CCU1 compare register	13.6.15
ATOM[i]_CH[x]_SR1	ATOMi channel x CCU1 compare shadow register	13.6.16
ATOM[i]_CH[x]_IRQ_NOTIFY	ATOMi channel x interrupt notification register	13.6.17
ATOM[i]_CH[x]_IRQ_EN	ATOMi channel x interrupt enable register	13.6.18
ATOM[i]_CH[x]_IRQ_FORCINT	ATOMi channel x software interrupt generation	13.6.19
ATOM[i]_CH[x]_IRQ_MODE	ATOMi channel x interrupt mode configuration register	13.6.20

13.6 ATOM Register Description

13.6.1 Register ATOM[i]_AGC_GLB_CTRL

Address Offset:	see Appendix B												Initial Value:									0x0000_0000											
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	с У	о ·	4	e	2	1	0
Bit	UPEN_CTRL7		UPEN CTRL6		LIPEN CTRI5		UPEN CTRL4	-	LIDEN CTD13		11DEN CTR13		LIDEN CTD11				RST_CH7	RST_CH6	RST_CH5				RST_CH1	RST_CH0		Recentred				Reserved			
Mode	RW		RW		RW		RW		14/0		DW	***					RAw	RAw	RAw	RAw	RAw	RAw	RAw	RAw		ά				Ľ			RAw
Initial Value	0000		0000		0040	0000	0000		0040	0000	0040	0000	0040	0000	0040	0000	0	0	0	0	0	0	0	0					nnxn				0
Bit 0	EN 0 = 1 =	DV ד = פ =	no se	5_ tr t t	ST igg rig	ſA ge g€	r re r re g is	ec	d (ue que	ÖL est est	JT t	ΕŇ	1_:	ST	A	Ĩ		-				-								re	egi	ste	÷r

GTM-IP	Specification	Revision 3.1.5.1
Bit 7:1	Reserved	
	Note: Read as zero, should be written as zero	
Bit 8	RST_CH0 : Software reset of channel 0	
	0 = No action	
	1 = Reset channel	
	Note: This bit is cleared automatically after write by registers are set to their reset values and ch stopped immediately. The output register of So inverse reset value of SL bit.	annel operation is
Bit 9	RST_CH1 : Software reset of channel 1 See bit 8	
Bit 10	RST_CH2 : Software reset of channel 2 See bit 8	
Bit 11	RST_CH3 : Software reset of channel 3 See bit 8	
Bit 12	RST_CH4 : Software reset of channel 4 See bit 8	
Bit 13	RST_CH5 : Software reset of channel 5 See bit 8	
Bit 14	RST_CH6 : Software reset of channel 6 See bit 8	
Bit 15	RST_CH7 : Software reset of channel 7 See bit 8	
Bit 17:16	UPEN_CTRL0 : ATOM channel 0 enable update of r and CLK_SRC from SR0, SR1 and CLK_SRC_SR. Write / Read :	egister CM0, CM1
	0b00 = don't care, bits 1:0 will not be change / update 0b01 = disable update /	disabled
	0b10 = enable update /	
	0b11 = don't care, bits 1:0 will not be changed / updat	te enabled
Bit 19:18	UPEN_CTRL1 : ATOM channel 1 enable update of r and CLK_SRC See bits 17:16	egister CM0, CM1
Bit 21:20	UPEN_CTRL2 : ATOM channel 2 enable update of r and CLK_SRC	register CM0, CM1
Bit 23:22	See bits 17:16 UPEN_CTRL3: ATOM channel 3 enable update of r and CLK_SRC	egister CM0, CM1
	See bits 17:16	
Bit 25:24	UPEN_CTRL4 : ATOM channel 4 enable update of r and CLK_SRC	egister CM0, CM1
Bit 27:26	See bits 17:16 UPEN_CTRL5: ATOM channel 5 enable update of r and CLK_SRC	egister CM0, CM1

GTM-IPSpecificationRevision 3.1.5.1Bit 29:28See bits 17:16Bit 29:28UPEN_CTRL6: ATOM channel 6 enable update of register CM0, CM1
and CLK_SRC
See bits 17:16Bit 31:30UPEN_CTRL7: ATOM channel 7 enable update of register CM0, CM1
and CLK_SRC
See bits 17:16

13.6.2 Register ATOM[i]_AGC_ENDIS_CTRL

Address Offset:	see Appendix B	Initial Value	e: 0x0000_0000
	31 30 29 27 26 26 26 25 25 23 23 23 23 23 23 23 21 21 21 21 21 21 21 21 21 21 21 21 21	15 14 13 13 12 11	10 9 6 6 6 7 7 7 2 3 3 3 3 2 2 2 0
Bit	Reserved	ENDIS_CTRL7 ENDIS_CTRL6 ENDIS_CTRL5	ENDIS_CTRL4 ENDIS_CTRL3 ENDIS_CTRL2 ENDIS_CTRL1 ENDIS_CTRL0
Mode	œ	RW RW	RW RW RW
Initial Value	0000×0	0600 0600 0600	0000 0000 0000 0000 0000

Bit 1:0 **ENDIS_CTRL0**: ATOM channel 0 enable/disable update value.

If FREEZE=0:

- If an ATOM channel is disabled, the counter **CN0** is stopped and the output register of SOU unit is set to the inverse value of control bit SL. On an enable event, the counter **CN0** starts counting from its current value.
- If FREEZE=1:
- If an ATOM channel is disabled, the counter **CN0** is stopped (SOMP, SOMS mode) and each comparison is stopped (SOMC, SOMB mode). On an enable event, the counter **CN0** starts counting from its current value or a comparison is restarted.

Write of following double bit values is possible:

- 0b00 = don't care, bits 1:0 of register ENDIS_STAT will not be changed on an update trigger
- 0b01 = disable channel on an update trigger
- 0b10 = enable channel on an update trigger
- 0b11 = don't change bits 1:0 of this register
- Note: if the output is disabled (OUTEN[0]=0), the ATOM channel 0 output ATOM_OUT[0] is the inverted value of bit SL.

Automotive Ele	ectronics	BOSCH
GTM-IP	Specification	Revision 3.1.5.1
Bit 3:2	ENDIS_CTRL1 : ATOM channel 1 enable/disable up See bits 1:0	odate value.
Bit 5:4	ENDIS_CTRL2 : ATOM channel 2 enable/disable up See bits 1:0	date value.
Bit 7:6	ENDIS_CTRL3 : ATOM channel 3 enable/disable up See bits 1:0	odate value.
Bit 9:8	ENDIS_CTRL4 : ATOM channel 4 enable/disable up See bits 1:0	odate value.
Bit 11:10	ENDIS_CTRL5 : ATOM channel 5 enable/disable up See bits 1:0	odate value.
Bit 13:12	ENDIS_CTRL6 : ATOM channel 6 enable/disable up See bits 1:0	odate value.
Bit 15:14	ENDIS_CTRL7 : ATOM channel 7 enable/disable up See bits 1:0	odate value.
Bit 31:16	Reserved Note: Read as zero, should be written as zero	

13.6.3 Register ATOM[i]_AGC_ENDIS_STAT

Address Offset:	see Appendix B	Initial Value:	0x0000_0000
	31 30 29 27 28 26 26 26 25 25 24 25 25 23 23 23 21 21 19 117 16	15 14 13 13 13 12 11 10	9 8 8 6 7 7 7 7 9 7 9 9 9 9 9 9 9 9 9 9 9 9 9
Bit	Reserved	ENDIS_STAT7 ENDIS_STAT6 ENDIS_STAT5 ENDIS_STAT5	ENDIS_STAT4 ENDIS_STAT3 ENDIS_STAT2 ENDIS_STAT1 ENDIS_STAT0
Mode	œ	RW RW RW	RW RW RW RW
Initial Value	00000×0	0b00 0b00	0000 0000 0000 0000

Bit 1:0 **ENDIS STAT0:** ATOM channel 0 enable/disable If FREEZE=0:

> If an ATOM channel is disabled, the counter CN0 is stopped and the output register of SOU unit is set to the inverse value of control bit SL. On an enable event, the counter CN0 starts counting from its current value.

If FREEZE=1:

If an ATOM channel is disabled, the counter CN0 is stopped (SOMP, SOMS mode) and each comparison is stopped (SOMC, SOMB mode). On an enable event, the counter CN0 starts counting from its current value or a comparison is restarted.

Write of following double bit values is possible:

GTM-IP	Specification	Revision 3.1.5.1
	0b00 = don't care, bits 1:0 of register ENDIS_STAT v on an update trigger	vill not be changed
	0b01 = disable channel on an update trigger	
	0b10 = enable channel on an update trigger	
	0b11 = don't change bits 1:0 of this register	
Bit 3:2	ENDIS_STAT1 : ATOM channel 1 enable/disable See bits 1:0	
Bit 5:4	ENDIS_STAT2 : ATOM channel 2 enable/disable See bits 1:0	
Bit 7:6	ENDIS_STAT3 : ATOM channel 3 enable/disable See bits 1:0	
Bit 9:8	ENDIS_STAT4 : ATOM channel 4 enable/disable See bits 1:0	
Bit 11:10	ENDIS_STAT5 : ATOM channel 5 enable/disable See bits 1:0	
Bit 13:12	ENDIS_STAT6 : ATOM channel 6 enable/disable See bits 1:0	
Bit 15:14	ENDIS_STAT7 : ATOM channel 7 enable/disable See bits 1:0	
Bit 31:16	Reserved Note: Read as zero, should be written as zero	

13.6.4 Register ATOM[i]_AGC_ACT_TB

Address Offset:	see Appendix B Initial Value: 0x000	0_0000		
	31 30 29 28 28 27 28 27 26 27 22 23 23 23 23 21 17 11 11 15 15 15 15 16 16 11 11 11 11 11 16 16 16 16 16 16	4 3 2 1 0		
Bit	Reserved TBU_SEL TBU_SEL ACT_TB			
Mode	RW RW RAW			
Initial Value	0 000000 00000 0000 0000 0000 0000 0000 0000	0 ⁻ 000 0000		
Bit 23:0 Bit 24	ACT_TB : specifies the signed compare value with selected signal $TBU_TS[x]$, x=02. If selected $TBU_TS[x]$ value is in the interval [ACT_TB -007FFFFh, ACT_TB] the event is in the past and the trigger is generated immediately. Otherwise the event is in the future and the trigger is generated if selected $TBU_TS[x]$ is equal to ACT_TB . TB_TRIG : Set trigger request 0 = no trigger request			

GTM-IP	Specification	Revision 3.1.5.1
	1 = set trigger request Note: This flag is reset automatically if the select (<i>TBU_TS0</i> or <i>TBU_TS1</i> or <i>TBU_TS2</i> if presen value ACT_TB and the update of the register we	t) has reached the
Bit 26:25	TBU_SEL : Selection of time base used for compariso 0b00 = <i>TBU_TS0</i> selected 0b01 = <i>TBU_TS1</i> selected 0b10 = <i>TBU_TS2</i> selected 0b11 = same as 0b00 Note: The bit combination 0b10 is only applicable if the contains three time base channels. Otherwise, to is also reserved. Please refer to GTM Architect on page 3 to determine the number of channel device.	e TBU of the device this bit combination ture block diagram
D'1 01 07		

Bit 31:27 Reserved

Note: Read as zero, should be written as zero

Address Offset:	see Appendix B	Initial	Value:	0x0000_0000
	31 30 29 28 27 26 26 26 26 26 25 25 23 23 23 23 23 21 19 117 16	15 14 13	12 11 10 9 8	6 6 7 7 0 1 1
Bit	Reserved	OUTEN_CTRL7	OUTEN_CTRL6	OUTEN_CTRL3 OUTEN_CTRL2 OUTEN_CTRL1 OUTEN_CTRL0
Mode	۳	RW	w w w	RW RW W
Initial Value	00000×0	0000	0000 0000 0000	00000 0000 0000 0000 0000 0000 0000 0000
Bit 1:0	OUTEN_CTRL0: Output ATOM_O	JT(0) e	enable/disat	ole update value

13.6.5 Register ATOM[i]_AGC_OUTEN_CTRL

Bit 1:0 **OUTEN_CTRL0**: Output ATOM_OUT(0) enable/disable update value Write of following double bit values is possible:

- 0b00 = don't care, bits 1:0 of register OUTEN_STAT will not be changed on an update trigger
- 0b01 = disable channel output on an update trigger
- 0b10 = enable channel output on an update trigger
- 0b11 = don't change bits 1:0 of this register
- Note: if the channel is disabled (ENDIS[0]=0) or the output is disabled (OUTEN[0]=0), the TOM channel 0 output ATOM_OUT[0] is the inverted value of bit SL.

BOSCH

GTM-IP	Specification	Revision 3.1.5.1
Bit 3:2	OUTEN_CTRL1: Output ATOM_OUT(1) enable/disable	update value
	See bits 1:0	
Bit 5:4	OUTEN_CTRL2: Output ATOM_OUT(2) enable/disable	update value
	See bits 1:0	
Bit 7:6	OUTEN_CTRL3: Output ATOM_OUT(3) enable/disable	update value
	See bits 1:0	
Bit 9:8	OUTEN_CTRL4: Output ATOM_OUT(4) enable/disable	update value
	See bits 1:0	
Bit 11:10	OUTEN_CTRL5: Output ATOM_OUT(5) enable/disable	update value
	See bits 1:0	
Bit 13:12	OUTEN_CTRL6: Output ATOM_OUT(6) enable/disable	update value
	See bits 1:0	
Bit 15:14	OUTEN_CTRL7: Output ATOM_OUT(7) enable/disable	update value
	See bits 1:0	
Bit 31:16	Reserved	
	Note: Read as zero, should be written as zero	

13.6.6 Register ATOM[i]_AGC_OUTEN_STAT

Address Offset:	see Appendix B	Initial Val	lue: 0	0x0000_0000						
	31 30 29 27 28 26 26 26 25 25 23 23 23 23 23 23 23 21 19 117 117	15 14 13 13 12	11 10 9 8 7	0 11 2 3 4 5 6						
Bit	Reserved	OUTEN_STAT7 OUTEN_STAT6	OUTEN_STAT5 OUTEN_STAT4	OUTEN_STAT3 OUTEN_STAT2 OUTEN_STAT1 OUTEN_STAT0						
Mode	۲	RW RW	R K	RW RW						
Initial Value	0000×0	0000 0000	0000	0b00 0b00 0b00						
Bit 1:0	OUTEN_STATO: Control/status of output ATOM_OUT(0) Write / Read : 0b00 = don't care, bits 1:0 will not be changed / output disabled 0b01 = disable output / 0b10 = enable output / 0b11 = don't care, bits 1:0 will not be changed / output enabled									
Bit 3:2	OUTEN_STAT1 : Control/status of o See bits 1:0	output ATO	M_OUT(1	1)						
Bit 5:4	OUTEN_STAT2 : Control/status of o See bits 1:0	output ATO	M_OUT(2	2)						
Bit 7:6	OUTEN_STAT3: Control/status of o	output ATO	M_OUT(3	3)						

BOSCH

Automotive El	ectronics	BOSCH
GTM-IP	Specification	Revision 3.1.5.1
Bit 9:8	See bits 1:0 OUTEN_STAT4: Control/status of output ATOM_OU See bits 1:0	JT(4)
Bit 11:10	OUTEN_STAT5 : Control/status of output ATOM_OU	JT(5)
Bit 13:12	OUTEN_STAT6 : Control/status of output ATOM_OU See bits 1:0	JT(6)
Bit 15:14	OUTEN_STAT7 : Control/status of output ATOM_OU See bits 1:0	JT(7)
Bit 31:16	Reserved Note: Read as zero, should be written as zero	

13.6.7 Register ATOM[i]_AGC_FUPD_CTRL

Address Offset:	see	Арр	end	ix B				Initial Value: 0x0000_0000								
	31 30	29 28	27 26	25 24	23 22	21 20	19 18	17 16	15 14	13 12	11 10	9 8	7 6	5 4	3	1 0
Bit	RSTCN0_CH7	RSTCN0_CH6	RSTCN0_CH5	RSTCN0_CH4	RSTCN0_CH3	RSTCN0_CH3 RSTCN0_CH2		RSTCN0_CH0	FUPD_CTRL7	FUPD_CTRL6	FUPD_CTRL5	FUPD_CTRL4	FUPD_CTRL3	FUPD_CTRL2	FUPD_CTRL1	FUPD_CTRL0
Mode	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RŴ
Initial Value	0090	0090	0090	0090	00q0	0090	0090	0090	0090	00q0	0090	0090	0090	0090	0090	0000
	 Bit 1:0 FUPD_CTRL0: Force update of ATOM channel 0 operation registers If enabled, force update of register CM0, CM1 and CLK_SRC triggered by HOST_TRIG, ACT_TB compare match or internal trigger. Write / Read : 0b00 = don't care, bits 1:0 will not be changed / force update disabled 0b01 = disable force update / 0b10 = enable force update / 0b11 = don't care, bits 1:0 will not be changed / force update enabled Note: In SOMP mode the force update request is stored and executed synchronized to the selected CMU_CLK. In all other modes the force update request is executed immediately. Note: In SOMP mode, in case of ECLK_SRC=1 and CLK_SRC_SR = 0b011/0b100/0b101/0b110 a force update leads to an immediate update of CM0, CM1 and CLK_SRC. 															
Bit 3:2 Bit 5:4	See	e bits	1:0			•					nel 1 nel 2	•				

Automotive E	lectronics (A) BOSC	:H
GTM-IP	Specification Revision 3.1	.5.1
	See bits 1:0	
Bit 7:6	FUPD_CTRL3 : Force update of ATOM channel 3 operation registers See bits 1:0	5
Bit 9:8	FUPD_CTRL4: Force update of ATOM channel 4 operation registers	5
Bit 11:10	See bits 1:0 FUPD_CTRL5 : Force update of ATOM channel 5 operation registers See bits 1:0	5
Bit 13:12	FUPD_CTRL6 : Force update of ATOM channel 6 operation registers See bits 1:0	S
Bit 15:14	FUPD_CTRL7 : Force update of ATOM channel 7 operation registers See bits 1:0	5
Bit 17:16	RSTCN0_CH0: Reset CN0 of channel 0 on force update event If enabled, reset CN0 triggered by HOST_TRIG, ACT_TB comp match or internal trigger. Write / Read :	pare
	0b00 = don't care, bits 1:0 will not be changed / CN0 is not reset on for update	rced
	0b01 = do not reset CN0 on forced update /	
	0b10 = reset CN0 on forced update / 0b11 = don't care, bits 1:0 will not be changed / CN0 is reset on for update	rced
Bit 19:18	RSTCN0_CH1 : Reset CN0 of channel 1 on force update event See bits 17:16	
Bit 21:20	RSTCN0_CH2 : Reset CN0 of channel 2 on force update event See bits 17:16	
Bit 23:22	RSTCN0_CH3 : Reset CN0 of channel 3 on force update event See bits 17:16	
Bit 25:24	RSTCN0_CH4 : Reset CN0 of channel 4 on force update event See bits 17:16	
Bit 27:26	RSTCN0_CH5 : Reset CN0 of channel 5 on force update event See bits 17:16	
Bit 29:28	RSTCN0_CH6 : Reset CN0 of channel 6 on force update event See bits 17:16	
Bit 31:30	RSTCN0_CH7 : Reset CN0 of channel 7 on force update event See bits 17:16	

13.6.8 Register ATOM[i]_AGC_INT_TRIG

Specification

Revision 3.1.5.1

Address Offset:	see Appendix B	Initi	ial Va	alue:	:	0x0000_0000							
	31 30 29 27 28 26 26 25 25 25 23 23 23 23 23 23 21 19 11 11 11	15 14	13 12	11 10	68	7 6	4	3 2	1 0				
Bit	Reserved	INT_TRIG7	INT_TRIG6	INT_TRIG5	INT_TRIG4	INT_TRIG3	INT_TRIG2 INT_TRIG1		INT_TRIG0				
Mode	۲	RW	RW	RW	RW	RW	RW	RW	RW				
Initial Value	0000×0	0090	0090	0090	0090	0090	0090	0090	0000				
	0b00 = don't care, bits 1:0 will no channel 0 (TRIG_0) not used 0b01 = do not use internal trigger fr 0b10 = use internal trigger from cha 0b11 = don't care, bits 1:0 will no channel 0 (TRIG_0) used	om c Innel	:hanr 0 (T	nel 0 RIG_	(TRI _0) /	G_0)) /						
Bit 3:2	INT_TRIG1 : Select input signal <i>TRI</i>	'G_1	as a	trigg	ger so	ource	e						
Bit 5:4 Bit 7:6	See bits 1:0 INT_TRIG2: Select input signal <i>TRI</i> See bits 1:0 INT_TRIG3: Select input signal <i>TRI</i>	_											
Bit 9:8	See bits 1:0 INT_TRIG4: Select input signal <i>TRI</i> See bits 1:0	_											
Bit 11:10	INT_TRIG5 : Select input signal <i>TRI</i> See bits 1:0	'G_5	as a	trigg	ger so	ource	9						
Bit 13:12	INT_TRIG6 : Select input signal <i>TRI</i> See bits 1:0	'G_6	as a	trigg	ger so	ource	Ð						
Bit 15:14	INT_TRIG7 : Select input signal <i>TRI</i> See bits 1:0	'G_7	as a	trigg	ger so	ource	Э						
Bit 31:16	Reserved Note: Read as zero, should be writt	en a	s zer	0									

13.6.9 Register ATOM[i]_CH[x]_CTRL

Specification

Revision 3.1.5.1

Address Offset:	see Appendix B								In	iti	al`	Va	Initial Value: 0x0000_0X00)									
	31	30	29	28	27	26	25	24	23	22	21	20	19 18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	З	2	1 0
Bit	FREEZE	SOMB	EXT_FUPD	Reserved	ABM	OSM	SLA	TRIGOUT	EXTTRIGOUT	EXT_TRIG	OSM_TRIG	RST_CCU0	UDMODE	TRIG PULSE	WR_REQ	ECLK_SRC		CLK_SRC_SR		SL	EUPM	CMP_CTRL			ACB			ARU_EN	TB12_SEL	MODE
Mode	RW	RW	RW	я	RW	RW	RW	RW	RW	RW	RPw	RW	RW	RW	RV N	RW		RW		RW	RW	RW			RW			RW	RW	RW
Initial Value	0	0	0	0	0	0	0	0	0	0	0	0	0090	c	0	0		00090		х	0	0		000040	0			0	0	0000
Bit 1:0	1:0 MODE : ATOM channel mode select. 0b00 = ATOM Signal Output Mode Immediate (SOMI) 0b01 = ATOM Signal Output Mode Compare (SOMC) 0b10 = ATOM Signal Output Mode PWM (SOMP) 0b11 = ATOM Signal Output Mode Serial (SOMS)																													
Bit 2	TB12_SEL : Select time base value <i>TBU_TS1</i> or <i>TBU_TS2</i> . 0 = <i>TBU_TS1</i> selected for comparison 1 = <i>TBU_TS2</i> selected for comparison Note: this bit is only applicable in SOMC mode.																													
Bit 3	0	=	A	RL	J Ir	npi	ut	str	ea	m	di	sa	m e bled		ble) .														
Bit 8:4			B: ie: MI MI MI MI	A ⁻ Th mc : : C : S :	TC ne: ode 13 13 13)M se .3. 3.3 3.3 3.3	M P 1 3 3.2 3.3	oc ts lea an ar ar ar	le ha ase d 1 nd nd nd	co ive 13. 13 13	nti efe .3. 3.3 3.3	rol liff 1.2 .3	bled bits eren to th 2 for .3.11 .8.1 .9.1 .3.6	tr e re Lf foi foi	mo egis or r re r re	de ste reg gi	e de r d gist ste ste	eso ter r d r d	cri cr de le:	pti ipt es sci sci	ior cri rip rip	n s ipti tio tio	ect ion n n	io			ЭN	1 c	ha	nnel
Bit 9	 CMP_CTRL: CCUx compare strategy select. 0 = Greater-equal compare against TBU time base values (TBU_TSx >= CMx) 1 = Less-equal compare against TBU time base values (TBU_TSx <= CMx) Note: this bit is only applicable in SOMC mode. 																													
Bit 10													node F CM		an	d (CM	۱ ۱	via	a C	CP	U	or <i>i</i>	AF	۶U	I				

GTM-IP	Specification	Revision 3.1.5.1
	1 = Extended update mode in case of compare update of CM1 after CCU0 compare match CPU.	
	Note: If EUPM=1 a write access to CM0 or CM1 write status 0b10.	never causes an AEI
	Note: this bit is only applicable in SOMC and SOM	B mode.
Bit 11	SL : Initial signal level. 0 = Low signal level 1 = High signal level	
	Note: Reset value depends on the hardware cor silicon vendor.	nfiguration chosen by
	Note: If the output is disabled, the output ATOM_O SL independent of the ATOM channel mode.	UT[x] is set to inverse
	If FREEZE=0, following notes are valid: Note: In SOMP, SOMI, SOMS mode, if the cha internal register SOUR inside ATOM sub unit value of SL. By enabling the channel the changed. Thus, if the output is enabled a ATOM OUT[x] is the inverse value of SL.	SOU is set to inverse register SOUR is not
	Note: In SOMC mode, if the channel is disabled SOUR inside ATOM sub unit SOU is set to va the channel the register SOUR is not change is enabled and the channel is disabled, the ou the value of SL.	lue of SL. By enabling ed. Thus, if the output
	If FREEZE=1, the following notes are valid:	
	Note: If the channel is disabled, the output regist changed and output ATOM_OUT[x] is not cha	
Bit 14:12	CLK_SRC/CLK_SRC_SR : actual CMU clock sou register for CMU clock source (SOMP). If ECLK_SRC=0 / ECLK_SRC=1:	rce (SOMS)/ shadow
	0b000 = CMU_CLK0 selected / CMU_CLK0 selected	ted
	0b001 = CMU_CLK1 selected / CMU_CLK1 selec	ted
	0b010 = CMU_CLK2 selected / CMU_CLK2 selec 0b011 = CMU_CLK3 selected / Reserved	ted
	0b100 = CMU CLK4 selected / Reserved 0b100 = CMU CLK4 selected / clock stopped	
	0b101 = CMU_CLK5 selected / TRIG[x-1] selected	d
	0b110 = CMU_CLK6 selected / TIM_EXT_CAPTU	
	0b111 = CMU_CLK7 selected / CMU_CLK7 select	
	Note: This register is a shadow register for the regi if the CMU_CLK source for PWM generation during operation, the old CMU_CLK has to op of the ATOM channels internal CLK_SI CLK_SRC_SR content is done either by an	n should be changed berate until the update RC register by the
	forced update. Note: After (channel) reset the selected CLK_SRC	value is the SYS_CLK

BOSCH

GTM-IP	Specification	Revision 3.1.5.1
	CMU_CLKx, it is recommended to per CLK_SRC with the value of CLK_S enabling the channel. Note: In case of ECLK_SRC=1 0b011/0b100/0b101/0b110 a force upon update of CM0, CM1 and CLK_SRC.	and CLK_SRC_SR =
Bit 15	ECLK_SRC: Extend CLK_SRC 0 = CLK_SRC_SR set 1 selected 1 = CLK_SRC_SR set 2 selected See bit CLK_SRC_SR description for details Note: This bit is only applicable in SOMP and	
Bit 16	 WR_REQ: CPU Write request bit for late contour of a non-late update requested by CPU 1 = Late update requested by CPU Note: The CPU can disable subsequent A channel and can update the shadow revealues, while the compare units operative received by former ARU accesses, if of Note: On a compare match event, the WF hardware. Note: At the point of the force update only the SR1 are transferred into the CM0, CM1 is still defined by the ACBI bit field des with the old compare values for CM0/C 	ARU read requests by the registers with new compare ate on old compare values ccurred. R_REQ bit will be reset by e shadow registers SR0 and registers. The output action cribed by the ARU together
Bit 17	 Note: This bit is only applicable in SOMC and TRIG_PULSE: Trigger output pulse length of 0 = output on TOM[i]_OUT[x]_T is '1' = SR=_TRIG=1) 1 = output on TOM[i]_OUT[x]_T is '1' for or CN0=SR0 (if SR=_TRIG=1) 	f one SYS_CLK period as long as CN0=SR0 (if
Bit 19:18	<pre>UDMODE: up/down counter mode 0b00 = up/down counter mode disabled: CN0 0b01 = up/down counter mode enabled: 0 CM0,CM1 are updated if CN0 reaches 0 up) 0b10 = up/down counter mode enabled: 0 CM0,CM1 are updated if CN0 reaches to down) 0b11 = up/down counter mode enabled: 0 CM0,CM1 are updated if CN0 reaches direction)</pre>	CN0 counts up and down, D (i.e. changes from down to CN0 counts up and down, CM0 (i.e. changes from up CN0 counts up and down,

Note: This mode is only applicable in SOMP mode.

Automotive El	ectronics	BOSCH
GTM-IP	Specification	Revision 3.1.5.1
Bit 20	 RST_CCU0: Reset source of CCU0 0 = Reset counter register CN0 to 0 on matching com 1 = Reset counter register CN0 to 0 on trigger TIM_EXT_CAPTURE(x). Note: If RST_CCU0=1 and UPEN_CTRLx=1 are set TIM_EXT_CAPTURE(x) triggers also the update (CM0, CM1 and CLK_SRC). Note: this bit is only applicable in SOMP mode. 	ger TRIG_[x-1] or set, TRIG_[x-1] or
Bit 21	Note: This bit should only be set if bit OSM=0 (i.e. in OSM_TRIG: enable trigger of one-shot pulse OSM_TRIG 0 = signal OSM_TRIG cannot trigger start of single pulse 1 = signal OSM_TRIG can trigger start of single pulse bit OSM = 1)	by trigger signal ulse generation
Bit 22	 Note: This bit should only be set if bit OSM=1 and bit EXT_TRIG: select <i>TIM_EXT_CAPTURE(x)</i> as trigger 0 = signal <i>TIM_[x-1]</i> is selected as trigger to reset CM pulse generation. 1 = signal <i>TIM_EXT_CAPTURE(x)</i> is selected 	r signal
Bit 23	<pre>EXTTRIGOUT: select TIM_EXT_CAPTURE(x) as po TRIG_[x] 0 = signal TRIG_[x-1] is selected as output on TRIG_ 1 = signal TIM_EXT_CAPTURE(x) is selected as out TRIGOUT=1)</pre>	[x] (if TRIGOUT=1)
Bit 24	TRIGOUT : Trigger output selection (output signal <i>TR</i> ATOM_CHx. 0 = <i>TRIG_[x[</i> is <i>TRIG_[x-1]</i> or TIM_ <i>EXT_CAPTURE(x</i> 1 = <i>TRIG_[x]</i> is <i>TRIG_CCU0</i>	_ `
Bit 25	 SLA: 'serve last' ARU communication strategy 0 = Capture SRx time stamps after CCU0 match ev ARU 1 = Capture SRx time stamps after CCU0 match even Note: This bit is only applicable in SOMC mode. 	-
	Note: Please note, that setting of this bit has only effe is configured for 'serve last' compare strategy 0b110).	
	Note: When this bit is not set, the captured time sta registers SRx are only provided after the CCL The ACBO(4:3) bits always return 0b10 in that c	J1 match occurred.

Note: By setting this bit, the ATOM channel also provides the captured time stamps after the CCU0 match event to the ARU. The

GTM-IP	Specification	Revision 3.1.5.1
	ACBO(4:3) bits are set to 0b01 in that case. event, the time stamps are captured again in provided to the ARU. The ACBO(4:3) bits are data in the shadow registers after the 0 consumed by an ARU destination and the C data in the shadow registers is overwritten by stamps. The ATOM channel does not requ ARU when the CCU0 match values are destination.	n the SRx registers and e set to 0b10. When the CCU0 match was not CU1 match occurs, the y the new captured time uest new data from the
Bit 26	OSM: One-shot mode 0 = Continuous PWM generation after channel er 1 = A single pulse is generated Note: this bit is only applicable in SOMP and SOM	
	Note: this bit is only applicable in Solim and Sol	No modes.
Bit 27	 ABM: ARU blocking mode 0 = ARU blocking mode disabled: ATOM reads of and updates CM0,CM1 and ACB bits in case of SOMB pending compare match event. 1 = ARU blocking mode enabled: after update of of in case of SOMC mode or SR0, SR1 and ACC mode via ARU, no new data is read via AR event occurred and in case of SOMC mode read. Note: This bit is only applicable in SOMC and SO 	ase of SOMC mode or mode independent of CM0, CM1 and ACB bit CB bits in case of SOMB CU until compare match e SR0 and/or SR1 are
D# 20	December	
Bit 28	Reserved Note: Read as zero, should be written as zero.	
Bit 29	EXT_FUPD: external forced update 0 = use FUPD(x) signal from AGC to force update 1 = use TIM_EXT_CAPTURE signal to force update	
	Note: This bit is only applicable in SOMP and SO	MS mode.
Bit 30	SOMB : SOMB mode 0 = ATOM channel mode defined by bit field MOE 1 = ATOM SOMB mode enabled	DE
Bit 31	 FREEZE 0 = a channel disable/enable may change interregister 1 = a channel enable/disable does not change register but stops counter CN0 (in SOMP SOMC/SOMB mode) and shifting (in SOMS Note: if channel is disabled and ouptut is enable 	e an internal or output mode), comparison (in mode)
	UDMODE!=0b00 the output is depending independent on FREEZE mode.	

13.6.10 Register ATOM[i]_CH[x]_STAT

Address Offset:	see Appendix B							Initial Value:	0x0000_000X	
	31 30 29	28 27	26 25 24	23	22	21	20 19 18 17 16	15 14 13 13 12 11 11 10 9	H 2 3 4 5 7 8	0
Bit	Reserved		ACBO	DR	WRF	DV	ACBI		Reserved	OL
Mode	۳		с	ĸ	RCw	æ	۲		٣	æ
Initial Value	00000		000000	0	0	0	0 0		00000×0	×
Bit 0	 OL: Actual output signal level of ATOM_CHx_OUT. 0 = Actual output signal level is low 1 = Actual output signal level is high Note: Reset value is the inverted value of bit SL which depends on the hardware configuration chosen by silicon vendor. 							he		
Bit 15:1 Bit 20:16	 Reserved Note: Read as zero, should be written as zero. ACBI: ATOM Mode control bits. Note: For ATOM SOMI, SOMC, SOMP and SOMS mode this register serves as a mirror for the five ARU control bits received through the ARU interface. The bits are valid, when the DV bit is set. Note: For SOMB mode this bit field serves as the work register of the 									
	compare strategy. It can be updated with the value of bit field ACB of register ATOM[i]_CH[x]_CTRL or the value of internal shadow register ACB_SR.									
Bit 21	 DV: Valid ARU Data stored in compare registers. 0 = No valid data stored in register CM0 and/or CM1, no comparison is activated. 1 = Valid data stored in CM0 and/or CM1, comparison activated. Note: This bit is only applicable in SOMC and SOMB mode. The CPU can determine the status of the ARU transfers with this bit. After the compare event occurred, the bit is reset by hardware. 									
Bit 22	 WRF: Write request of CPU failed for late update. 0 = Late update was successful, CCUx units wait for comparison. 1 = Late update failed. 									

Confidential

GTM-IP	Specification	Revision 3.1.5.1
	The bit WRF can be reset by writing a 1 to it. Note: This bit is only applicable in SOMC and SOM	B mode.
Bit 23	DR: ARU data rejected flag 0 = received ARU data stored 1 = received ARU data rejected Note: The flag is cleared if valid data is received an	d stored via ARU.
Bit 28:24	ACBO: ATOM Internal status bits. ACBO[3] = 1: CCU0 Compare match occurred ACBO[4] = 1: CCU1 Compare match occurred Note: These bits are only set in SOMC mode. Note: ACBO is reset to 0b00000 on an update of r (via ARU or CPU)	register CM0 or CM1
Bit 31:29	Note: In SOMC mode these bits are sent as ARU co Reserved Note: Read as zero, should be written as zero.	ontrol bits 52 48.

13.6.11 Register ATOM[i]_CH[x]_RDADDR

Address Offset:	see Appendix	В	Initial Value:	0x01FE_01FE
	31 30 29 28 27 26 26	24 23 23 22 21 20 19 18 17 17	15 14 13 13 12 11 11 10 9	8 6 6 7 3 3 3 3 0
Bit	Reserved	RDADR1	Reserved	RDADDR0
Mode	٣	RPw	٣	RPw
Initial Value	00×0	0x1FE	00×0	0x1FE

Bit 8:0 **RDADDR0**: ARU Read address 0.

Note: This read address is used by the ATOM channel to receive data from ARU immediately after the channel and ARU access is enabled (see ATOM[i]_CH[x]_CTRL register for details).

Note: this bit field is only writable if channel is disabled.

Bit 15:9 Reserved

Note: Read as zero, should be written as zero.

Bit 24:16 **RDADDR1**: ARU Read address 1.

Note: The ATOM channel switches to this read address, when requested in the ARU control bits 52 to 48 with the pattern "111--". The channel

GTM-IP	Specification	Revision 3.1.5.1
	switches back to the RDADDR0 after one AR received on RDADDR1 and the compare matc Note: This read address is only applicable in SOMC	h event is occurred.
Bit 31:25	Note: this bit field is only writable if channel is disabl Reserved Note: Read as zero, should be written as zero.	led.

Register ATOM[i]_CH[x]_CN0 13.6.12

Address Offset:	see Appendix B		Initial Value:	0x0000_0000
	31 30 29 28 28 26 26 25 24	23 22 21 20 19 18 17 17 16	15 14 13 13 12 11 10 9 8	7 6 5 4 4 3 3 2 2 1 1
Bit	Reserved		CNO	
Mode	٣		RW	
Initial Value	00000		000000	
Bit 23:0	CNO: ATOM CCUO	0 counter register	•	

Reserved Bit 31:24

Note: Read as zero, should be written as zero.

13.6.13 Register ATOM[i]_CH[x]_CM0

Address Offset:	see Appendix B Initial Value: 0x0000_000	0
	31 33 30 29 28 28 27 28 27 27 27 27 27 26 23 23 23 23 23 23 13 11 11 11 11 11 11 11 11 11 23 23 23 23 23 23 23 23 23 23 23 23 25 23 23 26 27 27 27 27 27 27 27 27 27 27 27 27 27	1 0
Bit	Reserved	
Mode	<i>μ</i> [₹]	
Initial Value	00000 00000 00000	
Bit 23:0	CM0: ATOM CCU0 compare register.	

BIT 23:0 **CMU**: A I OM CCOU compare register. BOSCH

Specification

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

Note: This register is write protected in SOMC mode and returns AEI_STATUS=0b10 on write access, when in 'serve last' compare strategy the first match of CCU0 occurred.

13.6.14 Register ATOM[i]_CH[x]_SR0

Address Offset:	see Appendix B		Initial Value:	0x0000_0000
	31 30 29 28 27 26 25 25	23 22 21 21 20 19 18 18 17 17	15 14 13 12 11 10 9 8	7 6 7 4 4 3 3 3 2 2 1 1
Bit	Reserved		S R0	
Mode	۲		RW	
Initial Value	00×0		000000	

Bit 23:0 **SR0**: ATOM channel x shadow register SR0. Note: The SR0 register is used as shadow register for CM0 in SOMP and SOMS modes and is used as capture register for time base

TBU TS0 in SOMC mode.

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

13.6.15 Register ATOM[i]_CH[x]_CM1

Specification

Address Offset:	see Appendix B		Initial Value:	0x0000_0000
	31 30 29 28 27 26 25 25	23 22 21 21 20 19 18 17 17	15 14 13 13 12 11 10 9 8	7 6 7 7 3 3 3 3 3 3 3 7 0 0
Bit	Reserved		CM1	
Mode	۲		RPw	
Initial Value	00×0		000000	
Bit 23:0	CM1: ATOM CCU	J1 compare registe	er.	

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

Note: This register is write protected in SOMC mode and returns AEI_STATUS=0b10 on write access, when in 'serve last' compare strategy the first match of CCU0 occurred.

13.6.16 Register ATOM[i]_CH[x]_SR1

Address Offset:	see Appendix B		Initial Value:	0x0000_0000
	31 30 29 28 27 26 25 25	23 22 21 20 20 19 18 17 17	15 14 13 13 12 11 10 9 8	7 6 6 7 7 1 4 7 2 3 3 0
Bit	Reserved		SR1	
Mode	٣		RW	
Initial Value	00×0		000000	

Bit 23:0 **SR1**: ATOM channel x shadow register SR0.

Note: The SR1 register is used as shadow register for CM1 in SOMP and SOMS modes and is used as capture register for time base TBU_TS1 or TBU_TS2 (when selected in ATOM[i]_CH[x]_CTRL register) in SOMC mode.

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

Specification

13.6.17 Register ATOM[i]_CH[x]_IRQ_NOTIFY

Address Offset:	see Appendix B Initial Value: 0x0000_000	0
	31 32 33 33 33 23 24 25 25 25 26 27 28 29 26 27 26 27 27 28 29 21 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 12 13 3 3	1 0
Bit	Reserved	CCU1TC CCU0TC
Mode	٣	RCw RCw
Initial Value	000000 000000	0 0
Bit 0 Bit 1	 CCUOTC: CCU0 Trigger condition interrupt for channel x. 0 = No interrupt occurred. 1 = CCU0 Trigger condition interrupt was raised by ATOM channel 1. Note: This bit will be cleared on a CPU write access of value 1. A access leaves the bit unchanged. CCU1TC: CCU1 Trigger condition interrupt for channel x. See bit 0. Note: If bit SR0_TRIG is set to 1 (only valid in SOMP mode), this internotify flag is set in case of SR0 is equal to CN0 and not set in of CM1 >=/<= CN0. 	read
Bit 31:2	Reserved Note: Read as zero, should be written as zero	

13.6.18 Register ATOM[i]_CH[x]_IRQ_EN

Address Offset:	see Appendix B Initial Value: 0x0000_0000				
	31 33 30 29 27 28 26 26 25 25 25 25 25 23 23 23 23 23 23 23 13 11 11 11 11 11 11 11 11 11 11 11 12 12	0			
Bit	Reserved	CCU0TC IRQ EN			
Mode	۳ کچ	RW			
Initial Value	000000 0000000000000000000000000000000				
Bit 0	CCU0TC_IRQ_EN: ATOM_CCU0TC_IRQ interrupt enable.				

GTM-IP	Specification	Revision 3.1.5.1
	0 = Disable interrupt, interrupt is not visible outside GTM 1 = Enable interrupt, interrupt is visible outside GTM-IP.	
Bit 1	CCU1TC_IRQ_EN: ATOM_CCU1TC_IRQ interrupt ena See bit 0.	ble.
Bit 31:2	Reserved Note: Read as zero, should be written as zero	

13.6.19 Register ATOM[i]_CH[x]_IRQ_FORCINT

Address Offset:	see Appendix B Initial Value: 0x0000_000	0
	31 33 33 33 33 33 33 34 36 35 33 33 33 33 33 33 33	1 0
Bit	Reserved	TRG_CCU1TC TRG_CCU0TC
Mode	٣	RAw RAw
Initial Value	0000×0	0 0
Bit 0	 TRG_CCU0TC: Trigger ATOM_CCU0TC_IRQ interrupt by software 0 = No interrupt triggering. 1 = Assert CCU0TC_IRQ interrupt for one clock cycle. Note: This bit is cleared automatically after write. Note: This bit is write protected by bit RF_PROT of register GTM_C 	
Bit 1	 TRG_CCU1TC: Trigger ATOM_CCU1TC_IRQ interrupt by software 0 = No interrupt triggering. 1 = Assert CCU1TC_IRQ interrupt for one clock cycle. Note: This bit is cleared automatically after write. Note: This bit is write protected by bit RF_PROT of register GTM_C 	
Bit 31:2	Reserved Note: Read as zero, should be written as zero	

13.6.20 Register ATOM[i]_CH[x]_IRQ_MODE

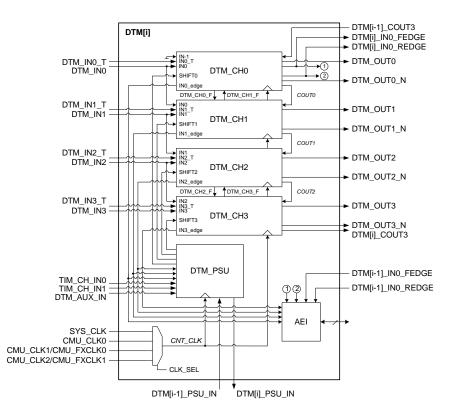
BOSCH

Specification

Revision 3.1.5.1

Address Offset:	see Appendix B Initial Value: 0x0000_0002	x
	31 30 29 28 27 28 27 26 26 24 23 23 23 23 23 23 17 11 17 11 17 11 13 11 11 11 11 11 11 11 11 11 11 11	1 0
Bit	Reserved	IRQ_MODE
Mode	٣	RW
Initial Value	00000 00000	ObXX
Bit 1:0	IRQ_MODE: IRQ mode selection 0b00 = Level mode 0b01 = Pulse mode 0b10 = Pulse-Notify mode 0b11 = Single-Pulse mode Note: The interrupt modes are described in section 2.5. Reserved	

Bit 31:2 Reserved


Note: Read as zero, should be written as zero

14 Dead Time Module (DTM)

14.1 Overview

The following figure gives an overview of the structure of the Dead Time Module (DTM).

14.1.1 DTM overview

The main function of the DTM is to derive for each input DTM_IN0 to DTM_IN3 the individual inverse signal ($DTM[i]_OUT[x]_N$) and to apply an edge specific delay between the edge of the original signal and the edge of the derived inverted signal (i.e., the dead time). This function is mainly used for controlling of half bridges.

A second function provided by DTM is to set the outputs of one channel to the value of the preceding channel if requested by a trigger on input *TIM_CH_IN0*, *TIM_CH_IN1* or *DTM_AUX_IN*. This feature allows a phase shift on one PWM signal to the phase of the preceding PWM signal up to the next edge on this channel.

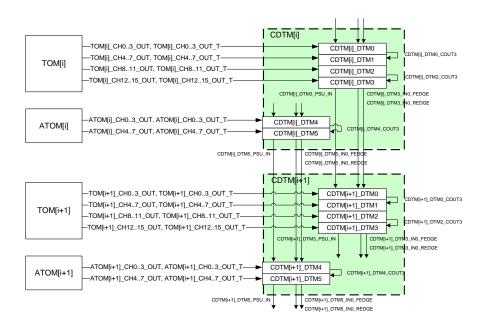
The third function provided by DTM is to (N)AND/(N)OR/X(N)OR combine the input *DTM_IN[x]* signal of one DTM channel with the signal on input *TIM_CH_IN0*, *TIM_CH_IN1* or *DTM_AUX_IN* (selected inside DTM_PSU and assigned to one of the

signals SHIFT[x]) or with the combinational output (signal COUT[x]) of preceding channel.

As a result COUT2 may be the combined signal of DTM_IN0 and TIM_CH_IN0, TIM_CH_IN1 or DTM_AUX_IN and the signal DTM_IN1. For COUT3 this chain can be combined again with signal DTM_IN3.

The outputs of each channel may be swapped individually to provide the function of combining signals on each output of a channel.

In general, the DTM instances are placed behind the TOM and the ATOM instances, i.e., the outputs $TOM_OUT[x]$ and $TOM_OUT[x]_T$ or $ATOM_OUT[x]$ and $ATOM_OUT[x]_T$ are each routed to the DTM instance inputs $DTM_IN[y]$ and $DTM_IN[y]_T$.


Four DTM instances behind a TOM instance i and two DTM instances behind an ATOM instance i are grouped together in a Cluster DTM hierarchy called CDTM[i].

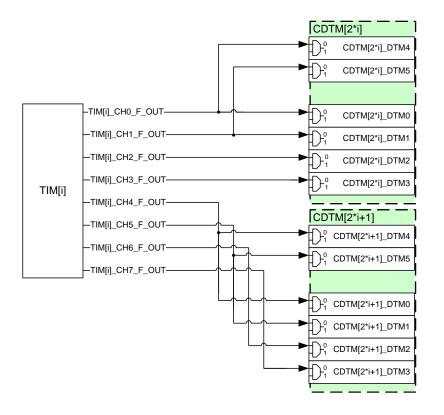
The connections between DTM and the modules TOM and ATOM are depicted in 14.1.2.

Note, depending on device configuration, not every DTM instance is available. E.g. a device may only have one DTM connected to the first four channels of ATOM. In this case, the other four channels (4 to 7) are connected directly to GTM outputs.

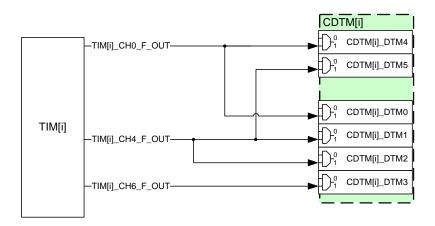
For detailed information, which DTM instance is available, refer to corresponding device specific Appendix B of this specification [1].

14.1.2 Connections of TOM and ATOM to DTM inputs DTM_IN[y]/DTM_IN[y]_T

Specification


Additionally, the DTM instances have inputs TIM_CH_IN0/TIM_CH_IN1 which are driven by TIM output signals $TIM[i]_CH[x]_F_OUT$.

There are two configurations of TIM to DTM connections possible depending on the DTM channel specific configuration bit TIM_SEL.


In case of TIM_SEL=0 the connected TIM input may not be of the same cluster as the DTM.

In case of TIM_SEL=1 the TIM input is of the same cluster as the DTM.

14.1.3 Connections of TIM to DTM inputs TIM_CH_IN0/TIM_CH_IN1 for TIM_SEL=0

14.1.4 Connections of TIM to DTM inputs TIM_CH_IN0/TIM_CH_IN1 for TIM_SEL=1

There are also connections between DTM instances of same CDTM instance. For each pair of DTM instance 2i and 2i+1 the combinatorial output *COUT(3)* of DTM[2i] channel 3 is connected to DTM[2i+1] channel 0 *COUT(0-1)*.

With this a combinatorial chain over two neighbored DTM instances can be configured. If one of the two neighbored DTM instances is not available (i.e. it is an empty instance) the inputs used for connections between two neighbored DTM instances are left open.

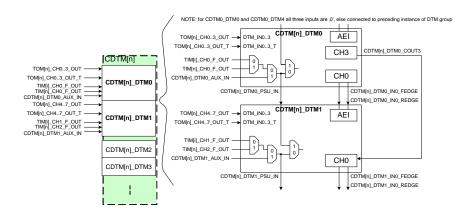
Note: For channel x=0 of DTM instance 2i input signals *COUT*[*x*-1] is unused and **I1SEL_[x]** is defined as 0.

An additional link between DTM instances behind an ATOM is a forwarding of $DTM[i]_PSU_IN$ signal to next available instance of DTM behind an ATOM (e.g. $DTM[i+1]_PSU_IN$).

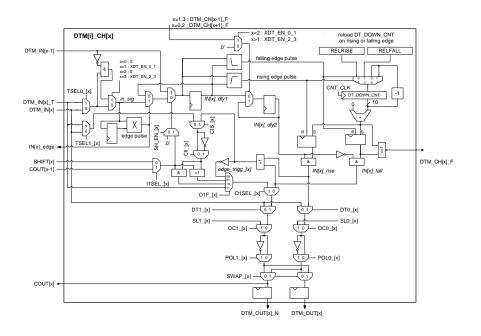
The same link is available between all available DTM behind a TOM.

Note, for unavailable DTM[i] instances (i.e. the instance DTM[i] is called empty) the signal *DTM*[*i*-1]_*PSU_IN* is passed through empty instance DTM[i] to *DTM*[*i*+1]_*PSU_IN*, *DTM*[*i*-1]_*IN0_FEDGE* and *DTM*[*i*-1]_*IN0_REDGE* are passed through DTM[i] to *DTM*[*i*+1]_*IN0_FEDGE* and *DTM*[*i*+1]_*IN0_REDGE*.

Further connections between neighbored DTM instances are depicted in the following figure:


14.1.5 Connections between DTM instances

fication



Specification

14.2 DTM Channel

The following figure depicts the functions of a DTM channel.

14.2.1 DTM channel overview

The main feature of each channel is to derive the inverse signal out of the input signal $DTM_IN[x]$, apply an edge dependent delay on the two resulting signal paths and provide these signals at the outputs $DTM[i]_OUT[x]$ and $DTM[i]_OUT[x]_N$.

There are two possibilities to apply dead time on GTM output signals. One is to use one DTM channel per TOM/ATOM channel and generate inside the DTM the second inverse signal. This is called the standard dead time generation. The second way is to generate two signals out of two TOM/ATOM channel and to apply inside the DTM entry the dead time by using two areas linked DTM channel.

inside the DTM only the dead time by using two cross linked DTM channel. This is called the cross dead time generation.

14.2.2 Standard dead time generation

The dead time can be configured for each edge individually. The bit field **RELRISE** in register **DTM[i]_CH[x]_DTV** contains the reload value for the counter and defines the delay for rising edges in multiples of selected clock ticks.

The bit field **RELFALL** in register **DTM[i]_CH[x]_DTV** contains the reload value for the counter and defines the delay for falling edges in multiples of selected clock ticks.

The counter is reloaded with the value of **RELRISE** on a rising edge and reloaded with the value of **RELFALL** on a falling edge on input $DTM_IN[x]$ (or $DTM_IN[x-1]$ in case of shift enable **SH_EN_[x]**).

On a reload of the counter the flip-flop following the counter output comparator is reset and stays reset until the counter has reached 0.

After reload, the counter **DT_DOWN_CNT** counts down until it reaches 0 and stops at 0.

The signal flow for function of standard dead time signal generation is depicted in following figure

14.2.2.1 Wave signals for function of dead time generation

Specification

Note: The delay from the input signal $DTM_IN[x]$ to the output signals $DTM[i]_OUT[x]$ and $DTM[i]_OUT[x]_N$ is three system clock periods by disabled feed through (see **DT0/1_[x]** in **DTM[i]_CH_CTRL2**).

Note: The delay from the input signal $DTM_IN[x]$ to the output signals $DTM[i]_OUT[x]$ and $DTM[i]_OUT[x]_N$ is one system clock periods by enabled feed through (see **DT0/1_[x]** in **DTM[i]_CH_CTRL2**).

Note: The delay from the input signal $DTM_IN[x]_T$ to the output signals $DTM[i]_OUT[x]$ and $DTM[i]_OUT[x]_N$ is three system clock periods in case of disabled feed through (see **O1F_[x]** and **O1SEL_[x]** in **DTM[i]_CH_CTRL2**).

Note: The delay from the input signal $DTM_IN[x]_T$ to the output signals $DTM[i]_OUT[x]$ and $DTM[i]_OUT[x]_N$ is one system clock periods in case of enabled feed through (see **O1F_[x]** and **O1SEL_[x]** in **DTM[i]_CH_CTRL2**).

Note: The reset level of the output signals $DTM[i]_OUT[x]$ connected from ATOM module depends on the hardware configuration value atom_out_reset_level_c chosen by silicon vendor.

Note: The reset level of the output signals *DTM[i]_OUT[x]_N* connected from ATOM module is defined by the inverse hardware configuration value atom_out_reset_level_c chosen by silicon vendor.

Specification

Note: The reset level of the output signals *DTM[i]_OUT[x]* connected from TOM module is defined by the hardware configuration value tom_out_reset_level_c chosen by silicon vendor.

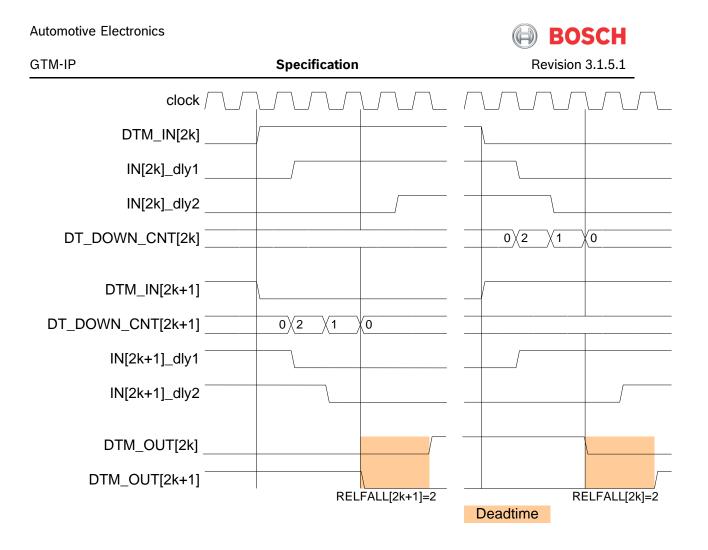
Note: The reset level of the output signals *DTM[i]_OUT[x]_N* connected from TOM module is defined by the inverse hardware configuration value tom_out_reset_level_c chosen by silicon vendor.

14.2.3 Cross channel dead time

A second way to apply a dead time value on two output signals is the cross channel dead time.

In opposite to the dead time described in chapter 14.2.2 the cross channel dead time mode does not generate out of one signal the corresponding inverse signal but tries to apply the dead time on the input signals of two neighbored DTM channel.

To do this, two neighbored DTM input signals (on DTM channel (2k) and (2k+1) for k=0,1) are cross linked together in the way that a falling edge on one channel leads to a hold phase of current signal value on the cross linked channel.


This behavior is reached by the following:

A falling edge on e.g. channel (2k) reloads the **DT_DOWN_CNT** with the value of **RELFALL**. While this counter is counting down, the output signal of the cross linked channel (2k+1) keeps its value. If the counter **DT_DOWN_CNT** has reached 0 again, the channel (2k+1) output is released and can follow the value on its input. The timing of the cross channel dead time is depicted in figure 14.2.3.1.

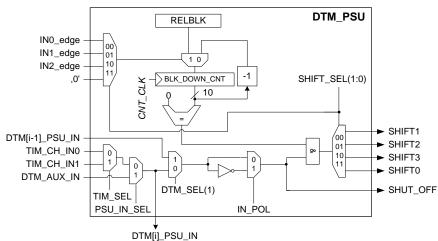
The following figure 14.2.3.1 shows the behavior in case of input edges at $DTM_IN[2k]$ and $DTM_IN[2k+1]$ occur at the same point in time.

Then the falling edge is forwarded immediately (with only two clock cycles delay) and the rising edge is delayed additionally by the number of clock ticks specified by the **RELFALL** parameter of the cross linked channel.

14.2.3.1 Cross channel dead time timing diagram

In case of high level (i.e. 1) at the DTM inputs $DTM_IN[2k]$ and $DTM_IN[2k+1]$ at the same point in time, the channel of (2k) has higher priority than the corresponding channel (2k+1). This means that in this case the input $DTM_IN[2k+1]$ is forced immediately at channel input to low level (i.e. 0).

As a result the DTM output of channel $DTM_OUT[2k+1]$ can never be high if the cross linked channel $DTM_OUT[2k]$ is high.

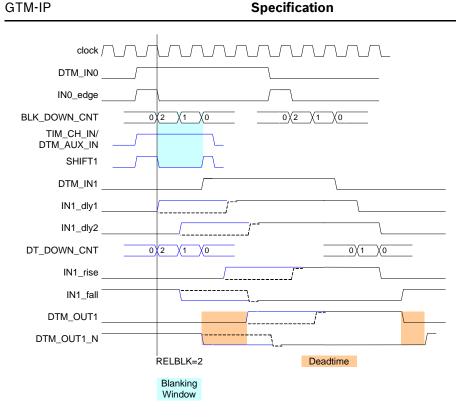

14.3 Phase Shift Control Unit

The phase shift unit (DTM_PSU) is depicted in the following figure. It supports the second major function of the DTM module to allow phase shifting of PWM signal on one of the channels.

14.3.1 Phase Shift Unit overview

This sub-module provides an additional counter **BLK_DOWN_CNT** and reload register **RELBLK** (bit field of register **DTM[i]_PS_CTRL**). The counter is reloaded on an edge detected on one of the selected signals *INO_edge* to *IN2_edge* (selected by bit field **SHIFT_SEL** in register **DTM[i]_PS_CTRL**). Then, the counter counts down until it reaches 0. While the counter is counting down, it blocks the trigger (i.e. the selected one of the signals *SHIFT[x]*) of one of the channels by one of the input signals *TIM_CH_IN0, TIM_CH_IN1* or *DTM_AUX_IN*.

If the counter **BLK_DOWN_CNT** is not counting, a pulse on the input *TIM_CH_IN0*, *TIM_CH_IN1* or *DTM_AUX_IN* is forwarded to one of the selected DTM_PSU outputs *SHIFT[x]*. This signal triggers in the selected channel (if **SH_EN_x**=1) the update of the first flip-flop on channel x (i.e. representing *IN[x]_DLY*) to the input value *DTM_IN[x-1]* of the preceding channel. If this update leads to an edge, the succeeding part of DTM channel derives the inverse signal and applies the corresponding dead time (i.e. the edge delay) to the output signals of the channel.


Note: For channel x=0 input signals $DTM_IN[x-1]$ is unused and **SH_EN_[x]** is defined as 0.

The following figure shows an example of phase shifting on channel 1.

14.3.2 Example wave of phase shift on channel 1

Revision 3.1.5.1

BOSCH

14.4 Multiple output signal combination

Each channel provides additionally the possibility to combine the channel inputs $DTM_IN[x]$ and SHIFT[x] or COUT[x-1] (selected by **IISEL_[x]**) by an AND or an XOR gate (selected by **O1F_[x]**).

It is recommended to use the combination of signals only if bit field **RELBLK** of register **DTM[i]_PS_CTRL** is 0. Otherwise, the signal *TIM_CH_IN0*, *TIM_CH_IN1* or *DTM_AUX_IN* may be disturbed by the blanking window counter.

Together with the inverter inside sub-module DTM_PSU (selected by **IN_POL**), the inverter on each output of a channel (selected by **POL0_[x]/POL1_[x]**) and the possibility to change polarity of $DTM_IN[x]$ inside connected TOM/ATOM channel, a (N)AND, (N)OR or X(N)OR combination of the signals is possible.

14.4.1 Combination of input signal TIM_CH_IN/AUX_IN with TOM/ATOM signal

If the input selection **IISEL_[x]** of a channel x is set to 0, the output selection **OISEL_[x]** is set to 1 and **SWAP_[x]** is set to 0, depending on **PSU_IN_SEL** either *TIM_CH_IN0, TIM_CH_IN1* or *DTM_AUX_IN* can be combined with signal *DTM_IN[x]*.

Specification

The function of combination on DTM output $DTM[i]_OUT[x]_N$ (and also COUT[x]) is defined by **O1F_[x]** in the following way:

14.4.1.1 Function of combination on DTM channel x=0 output DTM[i]_OUT[x]_N (and also COUT[x])

	O1F_x	POL1_x	IN_POL	(A)TOM output inverted
XOR	01	0	0	no
AND	10	0	0	no
XNOR	01	1	0	no
NAND	10	1	0	no
XNOR	01	1	1	yes
OR	10	1	1	yes
XOR	01	0	1	yes
NOR	10	0	1	yes

Note: The inversion of the (A)TOM output can be reached by switching the **SL** bit (for TOM and ATOM SOMP/SOMC mode).

14.4.2 Combination of multiple TOM/ATOM output signals

If the input selection **I1SEL_[x]** of a channel x (with x=1..3) is set to 1, the output selection **O1SEL_[x]** is set to 1 and **SWAP_[x]** is set to 0, the output of the preceding DTM channel COUT[x-1] can be combined with signal $DTM_IN[x]$.

The function of combination on DTM output $DTM[i]_OUT[x]_N$ (and also COUT[x]) is defined by **O1F_[x]** in the following way:

14.4.2.1 Function of combination on DTM on channel x=13 output DTM[i]_OUT[x]_N
(and also COUT[x])

	O1F_x	POL1_x	POL1_x-1	(A)TOM output inverted
XOR	01	0	0	no
AND	10	0	0	no
XNOR	01	1	0	no
NAND	10	1	0	no
XNOR	01	1	1	yes

Specification

Revision 3.1.5.1

OR	10	1	1	yes
XOR	01	0	1	yes
NOR	10	0	1	yes

By setting **IISEL_[x]** to 1 on all four channel, a combination of all four signals *DTM_IN0* to *DTM_IN3* can be achieved (combinatorial chain).

To allow also combination of signals generated for output $DTM[i]_OUT[x]$, the outputs 0 and 1 can be swapped by setting bit **SWAP_[x]** for channel x.

14.4.3 Pulse generation on edge

Another feature of the DTM is to generate on the second output $DTM[i]_OUT[x]_N$ a pulse on every edge of corresponding input signal $DTM[i]_IN[x]$.

This can be reached by configuring **O1SEL_[x]** to 1, i.e. selecting signal *edge_trigg_[x]* as the output signal (**O1F_[x]** has to be 0b00). The signal *edge_trigg_[x]* is depicted in figure 14.2.2.1

The pulse length can be adjusted individually for each edge type by the configuration value **REL_RISE** and **REL_FALL** of register **DTM[i]_CH[x]_DV**.

The parameter **REL_RISE** defines the pulse length in case of a rising edge on input $DTM[i]_IN[x]$, the parameter **REL_FALL** define the pulse length in case of a falling edge on input $DTM[i]_IN[x]$.

The generated edge signal $edge_trigg_[x]$ can be combined with the output signal of the preceding DTM channel x-1 at channel input COUT[x-1] (see figure 14.2.1).

With the configuration of CIS[x]=1 and $IISEL_[x]=1$, CII[x]=0 and $POL1_[x]=1$, the signal *edge_trigg_[x]* of channel x is ORed with the inverse signal at channel input COUT[x-1]. The signal at COUT[x-1] can be inverted by changing $POL1_[x-1]$ of channel x-1.

As a result of this configuration one can generate at each edge on DTM input $DTM_IN[x]$ a pulse signal and OR-combine these generated pulse signals with the generated signal of preceding DTM channel. If the combinatorial chain is configured over all four DTM channel the final signal is available at last DTM output DTM_OUT3_N .

14.5 Synchronous update of channel control register 2

It is possible to use the shadow register **DTM[i]_CH_CTRL2_SR** and a selected edge of one of the channel 0 to 3 to update the work register **DTM[i]_CH_CTRL2**. The update mechanism and its configuration are depicted in the following figure.

14.5.1 Synchronous update mechanism of register DTM[i]_CH_CTRL2

If enabled by the bit field UPD_MODE of register DTM[i]_CTRL (i.e. UPD_MODE=1xx), the register DTM[i]_CH_CTRL2_SR serves as a shadow register of register DTM[i]_CH_CTRL2. The update is then triggered by an edge on one of the selected inputs *DTM_IN0* to *DTM_IN3*.

The synchronous update allows the user to change output polarity, the selection of constant signal level, the constant signal level itself and the switch to/from feed through path on all four channels in parallel synchronized to one of the input edges on *DTM_IN0* to *DTM_IN3*.

14.6 DTM output shut off

A fast shut off for the eight outputs of DTM instance i can be triggered by one of the two assigned inputs TIM[n]_CH_IN or DTM[i]_AUX_IN or the two inputs TIM[m]_CH_IN or DTM[i-1]_AUX_IN of the previous DTM instance i-1. The selection of the trigger signal source is done by the bits **PSU_IN_SEL** and **DTM_SEL(1)** (see figure 14.3.1). The selected trigger signal is named *SHUT_OFF*.

Enabling of the shut off feature is done by setting **UPD_MODE(2:0)** to one of the values 0b001, 0b010 or 0b011.

The shut off behavior of the DTM outputs is defined by the value of register **DTM[i]_CH_CTRL2_SR**.

If the shut off feature is enabled by **UPD_MODE**, as long as the signal *SHUT_OFF_SYNC* is 0, the register **DTM[i]_CH_CTRL2** defines the output signal behavior.

If the signal *SHUT_OFF_SYNC* is 1, the register **DTM[i]_CH_CTRL2_SR** defines the output signal behavior.

The signal *SHUT_OFF_SYNC* is set to 1 if signal *SHUT_OFF* switches to 1. The reset depends on value of **UPD_MODE(2:0)**.

There are three different ways to reset the signal *SHUT_OFF_SYNC* to 0:

- the CPU writes a 1 to bit SHUT_OFF_RST of register DTM_CH_CTRL1

- synchronous to an edge on DTM channel 0 input of this DTM instance i or on an edge on DTM channel 0 input of preceding DTM instance i-1.

- asynchronous if signal SHUT_OFF switches back to 0

Additionally, setting **UPD_MODE(2:0)** to a value 0b000 or 0b1xx resets also the signal SHUT_OFF_SYNC.

Figure 14.5.1 depicts the shut off feature and the different shut off release possibilities. Note: The reset of *SHUT_OFF_SYNC* has lower priority than the set of this signal.

A second shadow register **DTM[i]_CH_SR** exist for the eight **SL** bits (SLx_y_SR) of the shadow register **DTM[i]_CH_CTRL2_SR**.

If enabled by configuration bit **SR_UPD_EN** of register **DTM[i]_CTRL**, the update of **SL** bits of register **DTM[i]_CH_CTRL2_SR** can be triggered by one of the signals selected by bit field **DTM_SEL** of register **DTM[i]_CTRL**. This trigger signal is either the rising or the falling edge detected on *DTM[i]_INO* of instance i or the rising or the falling edge on *DTM[i-1]_INO* of preceding instance i-1.

As depicted in figure 14.1.3, 14.1.4 and 14.3.1 the DTM input signal *TIM_CH_IN0*, *TIM_CH_IN1* or *DTM_AUX_IN* can be forwarded to the succeeding instance. Thus, it can be used to trigger shut off in two consecutive DTM instances.

14.7 DTM connections on GTM-IP top level

The DTM, if present, is placed behind the outputs of a TOM or ATOM. The outputs of the DTM are routed directly to the top level ports of GTM-IP.

If there is a DTM placed behind a TOM or ATOM depends on the GTM-IP device configuration.

In case of a DTM behind a TOM or ATOM, the outputs (A)TOM_OUT and (A)TOM_OUT_T are connected to DTM inputs DTM_IN and DTM_IN_T. The outputs of the DTM are routed directly to the top level of GTM-IP.

The behavior of DTM after reset is shown in figure 14.7.1.

14.7.1 DTM behavior after reset

GTM-IP			DTM behavior after re	sot]
			Dim behavior alter re-	301	
	(A)TOM_OUT[x]	DTM[k]_IN[z]		_ DTM[k]_OUT[z]	(A)TOM[i]_OUT[x]
(A)TOM[i] CH[x]	(A)TOM_OUT[x]_T	DTM[k]_IN[z]_T	DTM[k] CH[z]	DTM[k]_OUT[z]_N	(A)TOM[i]_OUT[x]_N
				<u> </u>	

Specification

To route the signal $DTM[k]_IN[z]_T$ to the DTM output DTM_[k]_OUT[z]_N, the following DTM channel configuration has to be chosen: O1F_[x] = 0b11, O1SEL_[x]=1 and DT1_[x]=1.

The signals names and the signal routing in the case of no DTM instance is placed behind a TOM or ATOM is shown in figure 14.7.2.

14.7.2 (A)TOM output signal routing in case of no DTM instance available

GTM-IP			o DTM instance availab		
		11	U D I W II ISlance availab	<i>ne</i>	
	(A)TOM_OUT[y]		<u></u>		(A)TOM[j]_OUT[y]
(A)TOM[j] CH[y]	(A)TOM_OUT[y]_T				(A)TOM[j]_OUT[y]_N
		. ,	·	.]	

14.8 Configuration Register Overview

Register name	Description	Details in Section
CDTM[i]_DTM[j]_CTRL (j:05)	CDTMi DTMj global	14.9.1
	configuration and	
	control register	
CDTM[i]_DTM[j]_CH_CTRL1	CDTMi DTMj channel	14.9.2
(j:05)	control register 1	
CDTM[i]_DTM[j]_CH_CTRL2	CDTMi DTMj channel	14.9.3
(j:05)	control register 2	
CDTM[i]_DTM[j]_CH_CTRL2_SR	CDTMi DTMj channel	14.9.4
(j:05)	control register 2	
	shadow	
CDTM[i]_DTM[j]_CH_CTRL3	CDTMi DTMj channel	14.9.5
(j:05)	control register 3	
CDTM[i]_DTM[j]_PS_CTRL	CDTMi DTMj phase	14.9.6
(j:05)	shift unit configuration	
	and control register	
CDTM[i]_DTM[j]_CH[z]_DTV	CDTMi DTMj dead time	14.9.7
(j=05, z:03)	reload values	
CDTM[i]_DTM[j]_CH_SR(j:05)	CDTM DTMj channel	14.9.8
	shadow register	

14.9 Configuration Register Description

14.9.1 Register CDTM[i]_DTM[j]_CTRL (j:0...5)

Address Offset:	see Appendix B		Initial Value:			0x0000_0000		
	31 30 29 28 27 26 26 25 25 24 25 23 23 23 21 21 21 21 21 21 21 21	16	15 14 13 13 12 11 10 9	8	7	6 5 4	3 2	1 0
Bit	Reserved	SHUT_OFF_RST	Reserved	SR_UPD_EN	Reserved	UPD_MODE	DTM_SEL	CLK_SEL
Mode	۳	RAw	œ	RW	œ	RW	RW	RW
Initial Value	0000×0	0	000000	0	0	000	00	00
Bit 1:0	CLK_SEL: clock source select 0b00 = SYS_CLK selected 0b01 = CMU_CLK0 selected 0b10 = CMU_CLK1 selected (if D CMU_FXCLK0 selected (if D 0b11 = CMU_CLK2 selected (if D CMU_FXCLK1 selected (if D	DT TN	M is connected t	to o a	TC an	OM) ATOM		
Bit 3:2	DTM_SEL : select DTM update ar 0b00 = select falling edge on DTM 0b01 = select rising edge on DTM 0b10 = select falling edge on DTM 0b11 = select rising edge on DTM 0b0- = shut off by signal <i>TIM_CH</i> 0b1- = shut off by signal <i>DTM[i-1]</i>	√[i] 1[i] √[i 1[i- _ //] channel 0 input channel 0 input -1] channel 0 inp 1] channel 0 inp N0, <i>TIM_CH_IN</i> 2	t but	t	_	UX_	IN
Bit 6:4	<pre>UPD_MODE: update mode 0b000 = asynchronous update - update of DTM[i]_CH_CTRI 0b001 = shut off release by writin DTM[i]_CTRL 0b010 = shut off release by an (defined by bit field DTM_SE 0b011 = shut off release by shut PSU_IN_SEL and IN_POL DTM_SEL(2) of register DTI 0b100 = Signal <i>IN0_edge</i> used to with content of DTM[i]_CH_ 0b101 = Signal <i>IN1_edge</i> used to with content of DTM[i]_CH_</pre>	L2 ig ec EL of M[o ti C o ti C o ti C o ti C	1 to bit SHUT_C dge on DTM[i]_I of register DTM if signal <i>SHUT_C</i> of register DTI i]_CTRL) rigger update of TRL2_SR rigger update of TRL2_SR rigger update of	DF N([i] OF M[D D	F_ 0 (<i>C</i> <i>F</i> <i>i</i>] <i>T</i>	_RST o or DTM CTRL) (define _PS_CT /[i]_CH	of reg /[i-1] ed by TRL I_CT I_CT	ister _IN0 bits and RL2 RL2

GTM-IP	Specification	Revision 3.1.5.1					
	 0b111= Signal <i>IN3_edge</i> used to trigger update of DTM[i]_CH_CTRL2 with content of DTM[i]_CH_CTRL2_SR Note: If an <i>INx_edge</i> is not implemented the value is unused. A write with this unused value returns 0b10 on status. 						
Bit 7	Reserved						
	Note: Read as zero, should be written as zero						
Bit 8	SR_UPD_EN: shadow register update enable 0 = no update of SLx_y_SR register b DTM[i]_CH_CTRL2_SR 1 = update of SLx_y_SR register bits in register DTM[i] on trigger	-					
Bit 15:9	Reserved						
	Note: Read as zero, should be written as zero						
Bit 16	SHUT_OFF_RST: shut off reset						
	Writing a 1 releases shut off (resets signal SHUT_OFF by UPD_MODE(2:0)=0b001)	_SYNC if selected					
Bit 31:17	Reserved						
	Note: Read as zero, should be written as zero						

14.9.2 Register CDTM[i]_DTM[j]_CH_CTRL1 (j:0...5)

Address Offset:	see Appendix B														Initial Value:								0x0000_0000									
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	9	5	4	3	2	1	0
Bit	Reserved		01F_3		SWAP_3	SH_EN_3	11SEL_3	01SEL_3	Reserved	XDT_EN_2_3 01F_2		SWAP_2	SH_EN_2	I1SEL_2	01SEL_2	Docorriod	Reserved		01F_1		SH_EN_1	11SEL_1	01SEL_1 Beserved		XDT_EN_0_1 01F_0		015_0	SWAP_0	Reserved	11SEL_0	O1SEL 0	
Mode	œ	:	RW		RW	RW	RW	RW	Ж	RW RW		RW	RW	RW	RW	٥	C	RW		RW	RW	RW	RW	Я	RW	RW W		RW	Я	RW	RW	
Initial Value	00	8 8		2	0	0	0	0	0	0 00		0	0	0	0	6	8	00		0	0	0	0	0		00		0	0	0	0	
Bit 0 Bit 1	0 1 11 0 1	= = .S = =	inv sp EL sig sig e:	ve (gn gn If i	rse cia) : i al al is	e d I fu np SF C(ev	ea uno ut IIF DU ver	ad 1 770 770 770	tin se 3 fi 1S	ne or le el ror El	ele sig n o ct o ect n l (ritt	gn out ch teo DT) is	al pu an d M s n	se t 1 ne [i-:	ele s el (1]	cte ele) se	ed ect lec	cte	d										.d a	as	ze	ro

BOSCH

		BOSCH
GTM-IP	Specification	Revision 3.1.5.1
Bit 2	Reserved	
	Note: Read as zero, should be written as zero	
Bit 3	SWAP_0: swap outputs DTM[i]_CH[0]_OUT0 and D	TM[i]_CH[0]_OUT1
	(before final output register)	
	0 = outputs not swapped	
	1 = swap outputs DTM[i]_OUT0 and DTM[i]_OUT0_N	I
Bit 5:4	O1F_0 : output 1 function channel 0	
	0b00 = Signal edge_trigg is selected	
	0b01 = XOR of <i>DTM[i]_IN0</i> and signal SHIFT0	
	0b10 = AND of <i>DTM[i]_IN0</i> and signal SHIFT0	
	0b11 = DTM[i]_IN0_T selected	
		14
Bit 6	XDT_EN_0_1 : cross dead time enable on channel 0 and 1	and 1
	0 = cross dead time disabled on channel 0 and 1	
	1 = cross dead time enabled on channel 0 and 1	o internal register
	Note: When a '1' is written to bit XDT_EN_0_1, th IN[x] dly1, IN[x] dly2 and DT DOWN CNT is re-	
	Note: TSEL0_[x] and SH_EN_1 must be '0' for using	cross dead time to
	avoid wrong input signals. (x:0,1)	
Bit 7	Reserved	
	Note: Read as zero, should be written as zero	
Bit 8	O1SEL_1 : output 1 select channel 1	
	0 = inverse dead time signal selected	
	1 = special function on output 1 selected (defined by	01F_1)
Bit 9	I1SEL_1 : input 1 select channel 1	
	0 = signal SHIFT1 selected	
	1 = signal OUT1 selected	
Bit 10	SH_EN_1: shift enable channel 1	
	0 = <i>DTM[i]_IN0</i> is not used; no input signal shift	
	1 = signal selected by I1SEL_1 triggers update of D7	<i>[M[i]_IN1</i> with input
	of <i>DTM[i]_IN0</i> -> input signal shift	
Bit 11	SWAP_1: swap outputs DTM[i]_CH[1]_OUT0 and D	
	(before final output register)	
	0 = outputs not swapped	
	1 = swap outputs DTM[i]_OUT1 and DTM[i]_OUT1_N	I
		•
Bit 13:12	O1F_1 : output 1 function channel 1	
	0b00 = Signal edge_trigg is selected	
	0b01 = XOR of DTM[i]_IN1 and signal SHIFT1/OUT0)
	0b10 = AND of DTM[i]_IN1 and signal SHIFT1/OUT0	
	0b11 = <i>DTM[i]_IN1_T</i> selected	
Bit 15:14	Reserved	
DIL 10:14	Note: Read as zero, should be written as zero	
Bit 16	O1SEL 2 : output 1 select channel 2	

GTM-IP	Specification	Revision 3.1.5.1
Bit 17	0 = inverse dead time signal selected 1 = special function on output 1 selected (defined by IISEL_2 : input 1 select channel 2 0 = signal <i>SHIFT1</i> selected 1 = signal <i>QUT1</i> selected	O1F_2)
Bit 18	 1 = signal OUT1 selected SH_EN_2: shift enable channel 2 0 = DTM[i]_IN1 is not used; no input signal shift 1 = signal selected by I1SEL_2 triggers update of DT of DTM[i]_IN1 -> input signal shift 	「M[i]_IN2 with input
Bit 19	SWAP_2: swap outputs DTM[i]_CH[2]_OUT0 and D (before final output register) 0 = outputs not swapped 1 = swap outputs <i>DTM[i]_OUT2</i> and <i>DTM[i]_OUT2_N</i>	
Bit 21:20	O1F_2 : output 1 function channel 2 0b00 = Signal edge_trigg is selected 0b01 = XOR of <i>DTM[i]_IN2</i> and signal <i>SHIFT2/OUT1</i> 0b10 = AND of <i>DTM[i]_IN2</i> and signal <i>SHIFT2/OUT1</i> 0b11 = <i>DTM[i]_IN2_T</i> selected	
Bit 22	<pre>XDT_EN_2_3: cross dead time enable on channel 0 0 = cross dead time disabled on channel 2 and 3 1 = cross dead time enabled on channel 2 and 3 Note: When a '1' is written to bit XDT_EN_2_3, th</pre>	ne internal register
24.00	Note: TSEL0_[x] and SH_EN_[x] must be '0' for using avoid wrong input signals. (x:2,3)	cross dead time to
Bit 23	Reserved Note: Read as zero, should be written as zero	
Bit 24	O1SEL_3 : output 1 select channel 3 0 = inverse dead time signal selected 1 = special function on output 1 selected (defined by	O1F 3)
Bit 25	I1SEL_3 : input 1 select channel 3 0 = signal <i>SHIFT2</i> selected	
Bit 26	 1 = signal OUT2 selected SH_EN_3: shift enable channel 3 0 = DTM[i]_IN2 is not used; no input signal shift 1 = signal selected by I1SEL_3 triggers update of DT of DTM[i]_IN2 -> input signal shift 	「M[i]_IN3 with input
Bit 27	SWAP_3: swap outputs DTM[i]_CH[3]_OUT0 and D (before final output register) 0 = outputs not swapped 1 = swap outputs <i>DTM[i]_OUT3</i> and <i>DTM[i]_OUT3_N</i>	

GTM-IP	Specification	Revision 3.1.5.1
Bit 29:28	O1F_3: output 1 function channel 3 0b00 = Signal edge_trigg is selected 0b01 = XOR of <i>DTM[i]_IN3</i> and signal <i>SHIFT3/OUT2</i> 0b10 = AND of <i>DTM[i]_IN3</i> and signal <i>SHIFT3/OUT2</i> 0b11 = <i>DTM[i]_IN3_T</i> selected	
Bit 31:30	Reserved Note: Read as zero, should be written as zero	

14.9.3 Register CDTM[i]_DTM[j]_CH_CTRL2 (j:0...5)

Address Offset:	see Appendix B												In	iti	al	Va	alu	ie:			03	k0	00	0_	00)0()					
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	3	2	1	0
Bit	DT1_3	DT1 SL1 OC1 OC1 DT0 DT1 POLO POLO															000	POL0_0														
Mode	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW
Initial Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit 0 Bit 1	0 1 C	= = 0C	0 0 0_	utp utp 0:	out out ou	t si t si utp	ari ign ign ut al	al al 0	nc in co	ot i ve ntr	nv rte	ver ed	te	d			el	0														
Bit 2	1 S 0	= 5L(=	Co)_(Si	on 0: : gn	sta sig Ial	ant gna Le	al I eve	utp ev el i	out el s (: d on) o	n o n	utµ ou	ou [.] tp	t 0 ut	cł if (na 00	nn 20	el _0	=1													
Bit 3	D 0)T(=)_ fe	0 : ed	de th	ac iro	eve I tii ug e p	me h f	e p fro	at m	h e D	ena TN	ab /	le	on	0	utp	but	t 0	cł					ole	ed						
Bit 4	Р 0	0 =	L1 0	_ 0 utp): p out	ool t si	ari ign ign	ty al	or nc	n o ot i	ut nv	pu ver	t 1		ha	nn	el	0														
Bit 5	C 0	ЭС =	1_ Γι	0 : uno	ou ctio	utp on	ut al t oi	1 ou	co tpı	ntr ut	ol	cł					0															
Bit 6	S 0	:L1 =	L_(Si	0: : gn	sig Ial	gna Le	al l eve eve	ev el i	el s (on) o	n o n	utµ ou	ou [.] tp	t 1 ut	cł if (na 00	- nn :1 _	el _0	=1													

GTM-IP	Specification	Revision 3
Bit 7	DT1_0 : dead time path enable on output 1 channel (0 = feed through from <i>DTM_IN0</i> to <i>DTM[i]_OUT0_N</i>	
Bit 8	1 = dead time path enabled POL0_1 : polarity on output 0 channel 1 0 = Output signal not inverted 1 = Output signal invorted	
Bit 9	1 = Output signal inverted OC0_1 : output 0 control channel 1 0 = Functional output 1 = Constant sutput defined by SL0_1	
Bit 10	 1 = Constant output defined by SL0_1 SL0_1: signal level on output 0 channel 1 0 = Signal Level is 0 on output if OC0_1=1 Cignal Level is 1 on output if OC0_1 1 	
Bit 11	<pre>1 = Signal Level is 1 on output if OC0_1=1 DT0_1: dead time path enable on output 0 channel : 0 = feed through from DTM_IN1 to DTM[i]_OUT1 en 1 = dead time with enabled</pre>	
Bit 12	1 = dead time path enabled POL1_1 : polarity on output 1 channel 1 0 = Output signal not inverted	
Bit 13	1 = Output signal inverted OC1_1: output 1 control channel 1 0 = Functional output	
Bit 14	<pre>1 = Constant output defined by SL1_1 SL1_1: signal level on output 1 channel 1 0 = Signal Level is 0 on output if OC1_1=1</pre>	
Bit 15	<pre>1 = Signal Level is 1 on output if OC1_1=1 DT1_1: dead time path enable on output 1 channel : 0 = feed through from DTM_IN1 to DTM[i]_OUT1_N</pre>	
Bit 16	1 = dead time path enabled POL0_2 : polarity on output 0 channel 2 0 = Output signal not inverted	
Bit 17	1 = Output signal inverted OC0_2: output 0 control channel 2 0 = Functional output	
Bit 18	 1 = Constant output defined by SL0_2 SL0_2: signal level on output 0 channel 2 0 = Signal Level is 0 on output if OC0_2=1 	
Bit 19	 1 = Signal Level is 1 on output if OC0_2=1 DT0_2: dead time path enable on output 0 channel 2 0 = feed through from DTM_IN2 to DTM[i]_OUT2 en 	
Bit 20	 1 = dead time path enabled POL1_2: polarity on output 1 channel 2 0 = Output signal not inverted 	
Bit 21	 1 = Output signal inverted OC1_2: output 1 control channel 2 0 = Functional output 	
Bit 22	 1 = Constant output defined by SL1_2 SL1_2: signal level on output 1 channel 2 0 = Signal Level is 0 on output if OC1_2=1 	

GTM-IP	Specification	Revision 3.1.5.1
Bit 23	1 = Signal Level is 1 on output if OC1_2 =1 DT1_2 : dead time path enable on output 1 channel 2	
	0 = feed through from <i>DTM_IN2</i> to <i>DTM[i]_OUT2_N</i> er 1 = dead time path enabled	nabled
Bit 24	<pre>POL0_3: polarity on output 0 channel 3 0 = Output signal not inverted 1 = Output signal inverted</pre>	
Bit 25	OC0_3 : output 0 control channel 3 0 = Functional output 1 = Constant output defined by SL0_3	
Bit 26	SL0_3 : signal level on output 0 channel 3 0 = Signal Level is 0 on output if OC0_3 =1 1 = Signal Level is 1 on output if OC0_3 =1	
Bit 27	DT0_3 : dead time path enable on output 0 channel 3 0 = feed through from <i>DTM_IN3</i> to <i>DTM[i]_OUT3</i> enab 1 = dead time path enabled	led
Bit 28	POL1_3 : polarity on output 1 channel 3 0 = Output signal not inverted 1 = Output signal inverted	
Bit 29	OC1_3: output 1 control channel 3 0 = Functional output 1 = Constant output defined by SL1_3	
Bit 30	SL1_3: signal level on output 1 channel 3 0 = Signal Level is 0 on output if OC1_3 =1 1 = Signal Level is 1 on output if OC1_3 =1	
Bit 31	DT1_3 : dead time path enable on output 1 channel 3 0 = feed through from <i>DTM_IN3</i> to <i>DTM[i]_OUT3_N</i> er 1 = dead time path enabled	nabled

14.9.4 Register CDTM[i]_DTM[j]_CH_CTRL2_SR (j:0...5)

Address Offset:	S	see Appendix B													In	iti	al	Va	alu	le:			0x0000_0000									
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	e	2	1	0
Bit	DT1_3_SR	SL1_3_SR	OC1_3_SR	POL1_3_SR	DT0_3_SR	SL0_3_SR	OC0_3_SR	POL0_3_SR	DT1_2_SR	SL1_2_SR	0C1_2_SR	POL1_2_SR	DT0_2_SR	SL0_2_SR	OC0_2_SR	POL0_2_SR	DT1_1_SR	SL1_1_SR	0C1_1_SR	POL1_1_SR	DT0_1_SR	SL0_1_SR	0C0_1_SR	POL0_1_SR	DT1_0_SR	SL1_0_SR	OC1_0_SR	POL1_0_SR	DT0_0_SR	SL0_0_SR	OC0_0_SR	POL0 0 SR
Mode	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW
Initial Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit 0	P	0	L0	_0)_9	SR	: p	ol	ari	ty	on	0	ut	out	t 0	cł	na	nn	el	0 s	sha	ad	ow	re	egi	ist	er					

GTM-IP	Specification	Revision 3.1.5.1
	Specification	Revision 3.1.3.1
	0 = Output signal not inverted	
	1 = Output signal inverted	
Bit 1	OC0_0_SR: output 0 control channel 0 shadow regis	ster
	0 = Functional output	
	1 = Constant output defined by SL0_0	
Bit 2	SL0_0_SR: signal level on output 0 channel 0 shado	w register
	0 = Signal Level is 0 on output if OC0_0 =1	
	1 = Signal Level is 1 on output if OC0_0 =1	
Bit 3	DT0_0_SR : dead time path enable on output 0 chann	_
	0 = feed through from <i>DTM_IN0</i> to <i>DTM[i]_OUT0</i> en	abled
	1 = dead time path enabled	
Bit 4	POL1_0_SR : polarity on output 1 channel 0 shadow	register
	0 = Output signal not inverted	
Bit 5	1 = Output signal inverted	tor
DIL 5	OC1_0_SR : output 1 control channel 0 shadow regis 0 = Functional output	olei
	1 = Constant output defined by SL1_0	
Bit 6	SL1_0_SR : signal level on output 1 channel 0 shado	w register
Dit U	0 = Signal Level is 0 on output if OC1_0 =1	
	1 = Signal Level is 1 on output if OC1_0 =1	
Bit 7	DT1_0_SR : dead time path enable on output 1 chann	el 0 shadow register
	0 = feed through from <i>DTM_IN0</i> to <i>DTM[i]_OUT0_N</i>	-
	1 = dead time path enabled	
Bit 8	POL0_1_SR : polarity on output 0 channel 1 shadow	register
	0 = Output signal not inverted	0
	1 = Output signal inverted	
Bit 9	OC0_1_SR: output 0 control channel 1 shadow regis	ster
	0 = Functional output	
	1 = Constant output defined by SL0_1	
Bit 10	SL0_1_SR : signal level on output 0 channel 1 shado	w register
	0 = Signal Level is 0 on output if OC0_1 =1	
	1 = Signal Level is 1 on output if OC0_1 =1	
Bit 11	DT0_1_SR: dead time path enable on output 0 chann	•
	0 = feed through from <i>DTM_IN1</i> to <i>DTM[i]_OUT1</i> en	abled
D'1 10	1 = dead time path enabled	• .
Bit 12	POL1_1_SR : polarity on output 1 channel 1 shadow	register
	0 = Output signal not inverted	
Di+ 12	1 = Output signal inverted	tor
Bit 13	OC1_1_SR : output 1 control channel 1 shadow regis 0 = Functional output	ster
	1 = Constant output defined by SL1_1	
Bit 14	SL1_1_SR : signal level on output 1 channel 1 shado	w register
	0 = Signal Level is 0 on output if OC1_1 =1	
	$1 = Signal Level is 0 on output if OC1_1=1$	
Bit 15	DT1_1_SR : dead time path enable on output 1 chann	el 1 shadow register
2	$0 = \text{feed through from } DTM_IN1 \text{ to } DTM[i]_OUT1_N$	
	1 = dead time path enabled	

GTM-IP	Specification	Revision 3.1.5.1
Bit 16	POL0_2_SR : polarity on output 0 channel 2 sha 0 = Output signal not inverted 1 = Output signal inverted	adow register
Bit 17	OC0_2_SR: output 0 control channel 2 shadow 0 = Functional output 1 = Constant output defined by SL0_2	register
Bit 18	<pre>SL0_2_SR: signal level on output 0 channel 2 s 0 = Signal Level is 0 on output if OC0_2=1 1 = Signal Level is 1 on output if OC0_2=1</pre>	hadow register
Bit 19	DT0_2_SR : dead time path enable on output 0 cl 0 = feed through from <i>DTM_IN2</i> to <i>DTM[i]_OUT</i> 1 = dead time path enabled	_
Bit 20	POL1_2_SR : polarity on output 1 channel 2 sha 0 = Output signal not inverted 1 = Output signal inverted	adow register
Bit 21	OC1_2_SR: output 1 control channel 2 shadow 0 = Functional output 1 = Constant output defined by SL1_2	register
Bit 22	SL1_2_SR : signal level on output 1 channel 2 s 0 = Signal Level is 0 on output if OC1_2 =1 1 = Signal Level is 1 on output if OC1_2 =1	hadow register
Bit 23	DT1_2_SR : dead time path enable on output 1 cl 0 = feed through from <i>DTM_IN2</i> to <i>DTM[i]_OUT</i> 1 = dead time path enabled	-
Bit 24	POL0_3_SR : polarity on output 0 channel 3 sha 0 = Output signal not inverted 1 = Output signal inverted	adow register
Bit 25	OC0_3_SR: output 0 control channel 3 shadow 0 = Functional output 1 = Constant output defined by SL0_3	register
Bit 26	<pre>SL0_3_SR: signal level on output 0 channel 3 s 0 = Signal Level is 0 on output if OC0_3=1 1 = Signal Level is 1 on output if OC0_3=1</pre>	hadow register
Bit 27	DT0_3_SR : dead time path enable on output 0 cl 0 = feed through from <i>DTM_IN3</i> to <i>DTM[i]_OUT</i>	
Bit 28	1 = dead time path enabled POL1_3_SR : polarity on output 1 channel 3 sha	
	0 = Output signal not inverted 1 = Output signal inverted	0
Bit 29	OC1_3_SR : output 1 control channel 3 shadow 0 = Functional output 1 = Constant output defined by SL1_3	register
Bit 30	SL1_3_SR: signal level on output 1 channel 3 s 0 = Signal Level is 0 on output if OC1_3=1 1 = Signal Level is 1 on output if OC1_3=1	hadow register
Bit 31	DT1_3_SR : dead time path enable on output 1 cl	hannel 3 shadow register

Specification

0 = feed through from *DTM_IN3* to *DTM[i]_OUT3_N*

1 = dead time path enabled

14.9.5 Register CDTM[i]_DTM[j]_CH_CTRL3 (j:0...5)

Address Offset:	see Appendix B													Initial Value:										0x0000_0000								
	31 30 29 28	27	26	25	24	23	22	21	02	19	ΩT	17	16	15	-	14	13	12	11	10	6	8	7		٥	2	4	e	2	1	0	
Bit	Reserved	TSEL1_3	TSEL0_3	CIS3	CI13		Reserved			TSEL1_2		CIS2	CII2			Reserved			TSEL1 1	TSEL0 1	CIS1	CII1			Reserved			TSEL1_0	TSEL0_0	CIS0	CIIO	
Mode	٣	RW	RW	RW	RW		£		:		×۲	RW	RW			щ			RW	RW	RW	RW			Ж			RW	RW	RW	RW	
Initial Value	0×0	0	0	0	0		0×0			0 0	0	0	0			0×0			0	0	0	0			0×0			0	0	0	0	
Bit 0 Bit 1	CIIO: combinational input invert channel 0 0 = do not invert input 1 = invert input CISO: combinational input select channel 0 0 = select input DTM[i]_IN0																															
Bit 2	 0 = select input DTM[i]_IN0 1 = select internal signal edge_trigg_0 TSEL0_0: input selection for dead time / edge trigger generation 0 = use DTM[i]_IN0 as input for dead time / edge trigger generation 1 = use DTM[i]_IN0_T as input for dead time / edge trigger generation 																															
Bit 3	 1 = use DTM[i]_IN0_T as input for dead time / edge trigger generation TSEL1_0: input selection combinational logic path 0 = use DTM[i]_IN0 as input for combinational logic path 1 = use DTM[i]_IN0_T as input for combinational logic path 																															
Bit 7:4	Reserv Note: R		4 2	20	70	'n	cł		ЧЧ	he		\./r	itt	۵n		20	7	۵r	0													
Bit 8	CII1 : co 0 = do r 1 = inve	mb Iot	in in	ati ve	on	al	inp												U													
Bit 9	CIS1 : co 0 = sele	om ct i	bir inp	nat out	D	T٨	Л[i]	_ <i>I</i> /	1							el	1															
Bit 10	1 = sele TSEL0_ 0 = use 1 = use	1 : D7	in M	pu 1[i]_	t s _//	ele 11	ecti as	ion in	fo วน	or c t fo	le or	ead d	d t ea	im ad	ie tii	m	е	/ e	d	ge	tri	gg	ger	· 8	gei	٦e	era	atio		on		
Bit 11	TSEL1	1:	in	pu	t s	ele	ecti	ion	С	om	b	in	ati	ior	าล		0	gio	2 0	at	h											

GTM-IP	Specification	Revision 3.1.5.1
	0 = use <i>DTM[i]_IN1</i> as input for combinational logic pa 1 = use <i>DTM[i]_IN1_T</i> as input for combinational logic	
Bit 15:12	Reserved Note: Read as zero, should be written as zero	
Bit 16	CII2 : combinational input invert channel 2 0 = do not invert input 1 = invert input	
Bit 17	CIS2 : combinational input select channel 2 0 = select input <i>DTM[i]_IN2</i> 1 = select internal signal <i>edge_trigg_2</i>	
Bit 18	TSEL0_2 : input selection for dead time / edge trigger 0 = use <i>DTM[i]_IN2</i> as input for dead time / edge trigge 1 = use <i>DTM[i]_IN2_T</i> as input for dead time / edge trigger	ger generation
Bit 19	TSEL1_2 : input selection combinational logic path 0 = use <i>DTM[i]_IN2</i> as input for combinational logic path 1 = use <i>DTM[i]_IN2_T</i> as input for combinational logic	
Bit 23:20	Reserved	
Bit 24	Note: Read as zero, should be written as zero CII3 : combinational input invert channel 3 0 = do not invert input	
Bit 25	1 = invert input CIS3 : combinational input select channel 3 0 = select input <i>DTM[i]_IN3</i>	
Bit 26	 1 = select internal signal edge_trigg_3 TSEL0_3: input selection for dead time / edge trigger 0 = use DTM[i]_IN3 as input for dead time / edge triggen 1 = use DTM[i]_IN3_T as input for dead time / edge triggen 	ger generation
Bit 27	TSEL1_3 : input selection combinational logic path 0 = use <i>DTM[i]_IN3</i> as input for combinational logic path 1 = use <i>DTM[i]_IN3_T</i> as input for combinational logic	
Bit 31:28	Reserved Note: Read as zero, should be written as zero	

14.9.6 Register CDTM[i]_DTM[j]_PS_CTRL (j:0...5)

Specification

Revision 3.1.5.1

Address Offset:	see Appendix B					Initial Value: 0x0000_0000											
	31 30 29 28 28 28 26 26 26 26 22 23 22 23 22	21 20	19	18	17	16	15 14 13 13 12 11 11	0 11 7 3 4 2 2 2 3 6									
Bit	Reserved	SHIFT_SEL	Reserved	TIM_SEL	IN_POL	PSU_IN_SEL	Reserved	RELBLK									
Mode	٣	RW	R	RW	RW	RW	٣	RW									
Initial Value	000×0	0000	0	0	0	0	00×00	000×0									
Bit 9:0 Bit 15:10	RELBLK: reload value Note: a value of 0x000 Reserved Note: Read as zero, s) res	et	s c	:0L	Int	er BLK_DOW	N_CNT									
Bit 16	PSU_IN_SEL : PSU in 0 = <i>TIM_CH_IN0</i> or <i>T</i> 1 = <i>DTM_AUX_IN</i> sel	iput s IM_C	sel CH	lec	t												
Bit 17	IN_POL : input polarity 0 = input signal is not 1 = input signal is inve	ı inveı	rte	d													
Bit 18	TIM_SEL: TIM input s 0 = select TIM_IN0 1 = select TIM_IN1																
Bit 19	Reserved Note: Read as zero, s	houl	d k	he	\ \ /r	ritta	en as zero										
Bit 21:20	SHIFT_SEL: shift sele 0b00 = DTM channel 1 TIM_CH_IN1 or 0b01 = DTM channel 2 TIM_CH_IN1 or 0b10 = DTM channel 3 TIM_CH_IN1 or	ect L is co DTM 2 is co DTM 3 is co DTM) is co	on 1_4 on 1_4 on 1_4	ne AU AU ne AU ne	cte X_ X_ X_ cte X_ cte	ed _//\ ed _//\ ed _//\ ed	via signal SHI I via signal SHI I via signal SHI I via signal SHI	FT1 with TIM_CH_INO, FT2 with TIM_CH_INO, FT3 with TIM_CH_INO,									
	Note: If a channel is r this unused valu							is unused. A write with									

Bit 31:22 Reserved

Note: Read as zero, should be written as zero

14.9.7 Register CDTM[i]_DTM[j]_CH[z]_DTV (j:0...5, z:0...3)

Address Offset:	see Append	ix B	Initial Value: 0x0000_0000				
	31 30 29 28 28 27 26	25 24 23 23 22 21 20 19 18 17 17	15 14 13 13 12 11 10	9 8 6 6 7 7 2 3 3 2 2 2 0			
Bit	Reserved	Reserved		RELRISE			
Mode	٣	RŴ	٣	RW			
Initial Value	0000	000X0	0000	000×0			
Bit 9:0 Bit 15:10	RELRISE: reload value for rising edge dead time Reserved Note: Read as zero, should be written as zero						
Bit 25:16 Bit 31:26	RELFALL: reload value for falling edge dead time Reserved Note: Read as zero, should be written as zero						

14.9.8 Register CDTM[i]_DTM[j]_CH_SR (j:0...5)

Address Offset:	see Appendix B	Initial Value:	0x0000_0000
	31 30 29 27 28 26 26 26 26 26 25 22 21 22 21 20 16 17 16	15 14 13 12 11 10 9 8	7 5 7 4 4 2 3 3 0
Bit	Reserved		SL1 3 SR SR SL0 3 SR SR SL1 2 SR SR SL0 2 SR SR SL1 1 SR SR SL0 1 SR SR SL0 0 SR SR
Mode	٣		RW R
Initial Value	0000×0		• • • • • • • • •
Bit 0	SL0_0_SR_SR: shadow registe DTM[i] CH CTRL2 SR	r for bit SL0_0	_SR of register
Bit 1		r for bit SL1_0	_SR of register
Bit 2	SL0_1_SR_SR: shadow registe DTM[i] CH CTRL2 SR	r for bit SL0_1	_SR of register
Bit 3		r for bit SL1_1	_SR of register

GTM-IP	Specif	ication			Re	evisio	on 3.1.5.1
Bit 4	SL0_2_SR_SR : shadow DTM[i]_CH_CTRL2_SR	register	for	bit	SL0_2_SR	of	register
Bit 5	SL1_2_SR_SR : shadow DTM[i]_CH_CTRL2_SR	register	for	bit	SL1_2_SR	of	register
Bit 6	SL0_3_SR_SR : shadow DTM[i] CH CTRL2 SR	register	for	bit	SL0_3_SR	of	register
Bit 7	SL1_3_SR_SR : shadow DTM[i]_CH_CTRL2_SR	register	for	bit	SL1_3_SR	of	register
Bit 31:8	Reserved	l ho writto	n	zoro			

Note: Read as zero, should be written as zero

Confidential

15 Multi Channel Sequencer (MCS)

15.1 Overview

The Multi Channel Sequencer (MCS) sub module is a generic data processing module that is connected to the ARU. One of its major applications is to calculate complex output sequences that may depend on the time base values of the TBU and are processed in combination with the ATOM sub module. Other applications can use the MCS sub module to perform extended data processing of input data resulting from the TIM sub module. Moreover, some applications may process data provided by the CPU within the MCS sub module, and the calculated results are sent to the outputs using the ATOM sub modules.

Table 15.1.1 summarizes all available generic design parameters of the MCS hardware structure.

Design Parameter	Description
W	Word width of the data path
Т	Number of available MCS channels
RDW	RAM data width of connected RAM
RAW	RAM address width used by the MCS for addressing memory
USR	Use second RAM port (0 - one RAM port available, 1 - two RAM ports available)
BAW	Bus Master Address Width
BDW	Bus Master Data Width
URIP	Use RAM input pipeline registers (0 - no register, 1 - use register)
UROP	Use RAM output pipeline registers (0 - no register , 1 - use register)

15.1.1 Generic Design Parameters

Specification

UDP	Use Decoder Pipeline register (0 - no register , 1 - use register)
UAP	Use ALU Pipeline register (0 - no register , 1 - use register)
NPS	Total number of pipeline stages (with NPS = 3 + URIP + UROP + UDP + UAP)

All MCS instances in the GTM use the values T=8, W=24, RDW=32, RAW=12, USR=1, BAW = 14, BDW = 32, URIP = 1, UROP = 1, UDP = 1, UAP = 1, and NPS = 7.

15.2 Architecture

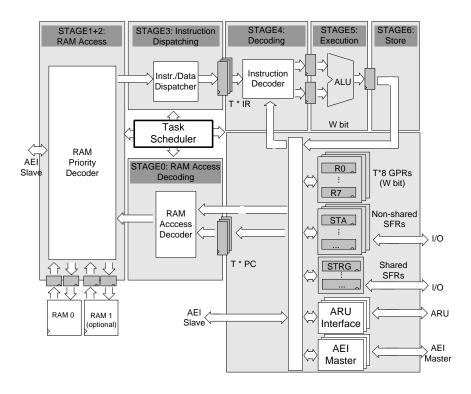


Figure 15.2.1 gives an overview of the MCS architecture assuming that all pipeline registers are implemented.

The data path of the MCS is shared by T so called MCS-channels, whereas each MCSchannel executes a dedicated micro-program that is stored inside the RAM connected to the MCS module.

The connected RAM may contain arbitrary sized code and data sections that are accessible by all MCS-channels and an externally connected master (e.g. a CPU) via AEI Slave interface. More details about the RAM can be found in section 15.4.

An MCS-channel can also be considered as an individual task of a processor that is scheduled to the commonly used data path at a specific point in time. The execution of the different MCS-channels on the different pipeline stages is controlled by a central hardware related task scheduler, which enables immediate task switches in parallel to the program execution. Details about the task scheduler and the available scheduling algorithms can be found in section 15.3.

Typically, if data has to be exchanged between different MCS-channels and/or the CPU, the connected RAM, which is accessible by all MCS-channels and the CPU, can be used.

Besides the commonly used data path, each MCS channel has

- a set of eight General Purpose Registers (GPRs), each W bit wide,
- a set of non-shared Special Function Registers (SFRs) that are only accessible within a dedicated MCS channels,
- a set of shared SFRs that are accessible by all MCS channels,
- a channel specific instruction register (IR),
- a channel specific program counter register (PC),
- a dedicated ARU interface for communication with other ARU connected modules,
- and an AEI Bus Master Interface for controlling other GTM sub modules.

Generally, the GPRs of an MCS channel x are only accessible by its corresponding MCS channel x. However, the MCS provides a configuration that allows an MCS channel x to access the GPRs of its successor MCS channel x+1. This feature can be used to enlarge the number of registers for a specific MCS channel x and/or to exchange data between neighboring channels.

For safety reasons, the register **MCS[i]_REG_PROT** can be used to define write protections for the neighboring registers of the individual MCS channels.

In order to enable synchronization between different MCS channels and/or the CPU, the MCS provides a common 24 bit wide trigger register that can be accessed as a shared SFR by all MCS channels located in the same module. Writing to **STRG** sets bits and writing to **CTRG** clears bits in the common trigger register. To enable triggering of MCS-channels by CPU, the CPU can set bits in the common trigger register by writing to **MCS[i]_STRG** and clear bits by writing to **MCS[i]_CTRG**.

Considering the architecture in the figure above and assuming that all available pipeline stages are implemented (the generic parameters URIP, UROP, UDP, and UAP are set to 1), the main actions of the different pipeline stages are as follows:

- Pipeline stage 0 performs a setup of address, input data, and control signals for the next RAM access of a specific MCS-channel.
- The actual RAM access of a specific MCS-channel is executed in pipeline stage 1 and 2, assuming an external connection of a synchronous RAM with a latency of one clock cycle.
- Pipeline stage 3 performs pre-decoding and dispatching of instructions and data resulting from the RAM.
- In pipeline stage 4 the instructions are decoded and data from the registers are loaded.
- After that, in pipeline stage 5 the instruction is executed meaning that arithmetic operations are applied.
- Finally, in pipeline stage 6 the calculated results are stored in the registers.

If any of the pipeline registers is not implemented, the adjacent pipeline stages are merged and thus processed within the same clock cycle.

The RAM priority decoder arbitrates RAM accesses that are requested by the CPU via AEI and by the active MCS-channel. If both, CPU and an MCS-channel request a memory access to the same memory module the MCS-channel is prioritized.

Since the internal registers of the MCS can be updated by different sources (MCS write access by various instructions, CPU write access via AEI slave, MCS write access by neighboring channel) a write conflict occurs if more than one source wants to write to the same register. In this case the result of the register is unpredictable. However, the software should setup its application in a way that such conflicts do not occur.

One exception is the common trigger register, which may be written by multiple sources (different MCS channels and CPU) in order to enable triggering of different MCS channels. Typically, the software should setup its application in a manner that different sources should not write the same bits in the trigger register.

15.3 Scheduling

The MCS provides a hardware related task scheduler, which globally controls the execution of the tasks in the different pipeline stages. The task scheduler implements four different scheduling modes, that can be selected by the **SCD_MODE** bit field in the **MCS[i]_CTRL_STAT** register. Depending on the selected scheduling mode, the task scheduler is selecting a dedicated MCS channel that will be executed in pipeline stage 0 in the next clock cycle. Additionally, MCS channels that are already present in the pipeline are shifted to its successor pipeline stage, with each clock cycle. This means, that the execution time of an MCS-channel in a specific pipeline stage is always one clock cycle.

Specification

The MCS task scheduler may also schedule an empty cycle to pipeline stage 0, in order to grant a time slice to the CPU for accessing the connected RAM.

It should be noted, if the task scheduler assigns an MCS channel to pipeline stage 0, but this channel does not access the RAM, the CPU can access the corresponding RAM, even if the scheduler did not reserve an empty clock cycle.

In the following, the available scheduling modes are described.

15.3.1 Round Robin Scheduling

The Round Robin Scheduling Mode implements the simplest scheduling algorithm. This algorithm schedules a predefined set of MCS channels in the range [0; **SCD_CH**] in ascending order. After the last channel **SCD_CH** has been assigned to the pipeline, an empty cycle is scheduled in order to enable RAM access for the CPU. The parameter **SCD_CH** can be controlled by the register **MCS[i]_CTRL_STAT**. If the value of **SCD_CH** is greater than T-1, the scheduler assumes a value of T-1 for bit field **SCD_CH**.

Figure 15.3.1.1 shows a timing example of the Round Robin Scheduling with T=8 MCS-channels (marked as C_0 to C_7) that are scheduled together with a CPU access to a pipeline with and NPS=7 stages. It is assumed that bit field **SCD_CH** is set to 7.

SCD_CH+2 clock cycles $C_7(z)$ CPU(u) $C_0(x+1)$ $C_1(y+1)$ $C_0(x)$ C₁(y) Stage 0: ... C₀(x) Stage 1: $C_1(y)$ C₇(z) CPU(u) $C_0(x+1)$ $C_1(y+1)$ Stage 2: C₀(x) C₁(y) CPU(u) $C_0(x+1)$ $C_1(y+1)$ C₇(z) ... $C_0(x)$ C₁(y) C₇(z) C₀(x+1) Stage 3: ... $C_0(x)$ C₁(y) $C_7(z)$ Stage 4: $C_0(x)$ C₁(y) C7(z) Stage 5: $C_0(x)$ $C_1(y)$ Stage 6:

15.3.1.1 Timing of Round Robin Scheduling

The identifier $C_i(x)$ denotes that MCS-channel i is currently executing the instruction or data located in the memory at position x in the corresponding pipeline stage. The figure shows, which MCS-channel is activated in specific pipeline stage at a specific point in time.

Moreover, the figure shows that the Round Robin scheduling is always repeated after **SCD_CH**+2 clock cycles, which means that the time duration of an instruction cycle is

SCD_CH+2 clock cycles. However, if the value **SCD_CH** + 2 is less than NPS, the duration of an instruction cycle is limited by the depth of the pipeline to NPS clock cycles. Thus the effective execution time of a single cycle instruction is always MIN(**SCD_CH**+2, NPS) clock cycles, ignoring the latency of the pipeline.

If NPS is greater than T+1, NPS-T-1 additional empty cycles are inserted at the end of a round trip cycle. In this case the round trip time for the scheduler is determined by NPS, and thus the time duration for an instruction cycle is always NPS clock cycles.

The Round Robin scheduling algorithm has the characteristic that it fairly distributes all time slices to all MCS-channels and the CPU. This means, that the program execution time of a specific task is independent from the activity of any neighboring task or the CPU RAM access, and thus a correct estimation of the actual program execution time is very easy. However, the round-robin scheduling may waste clock cycles by scheduling MCS-channels that are not ready to execute an instruction (e.g. MCS-channel is disabled by CPU). The following scheduling modes overcome this issue.

15.3.2 Accelerated Scheduling

In order to improve the computational performance, the accelerated scheduling mode provides two key features. Firstly, the scheduler only selects MCS-channels that are not suspended and thus can actually execute an instruction. Secondly, the scheduler applies instruction prefetching to minimize empty cycles in the pipeline. An MCSchannel is entering suspended state due to one of the reasons:

- An MCS-channel is executing a read or write request to an ARU connected sub module (instruction ARD, AWR, ARDI, AWRI, NARD, NARDI).
- An MCS-channel is executing a read or write request at its bus master interface (instruction BRD, BWR, BRDI, BWRI).
- An MCS-channel waits on a register match event (e.g. instruction WURM), in order to wait on a desired register value (e.g. trigger event from another MCS channel).
- An MCS-channel is disabled.

In the case of instruction prefetching, the scheduler will assign an MCS-channel C_p to pipeline stage 0, which is already present in another pipeline stage. This means, that the execution of the last instruction of C_p located in the memory MEM(PC/4) is not yet finished completely, whereas PC is the current value of the program counter of MCS-channel C_p. Thus, the newly scheduled MCS-channel C_p will prefetch a successor instruction MEM(PC/4+PFO) under the assumption that there will be no branch and no memory access in the program between the instructions MEM(PC/4) and MEM(PC/4+PFO). The prefetch offset value PFO is determined by counting the number of already scheduled MCS channels Cp in the pipeline. However, if the assumption fails, the pipeline will be flushed by replacing all MCS-channel C_p of the

pipeline with an empty cycle, as soon as the instruction decoder detects a branch or a memory access. All other MCS channels unequal to MCS channel C_p within are not affected by the flushing action. The flushing action is always synchronized to the last pipeline stage NPS-1.

Besides the flushing conditions mentioned above, there exist also other conditions that cause a flush of the pipeline for a specific MCS-channel. In the following all possible flushing events are summarized:

- An MCS-channel is enabled.
- An MCS-channel is entering a suspended state.
- An MCS-channel is taking a conditional or unconditional branch (instruction JMP, JBS, JBC, CALL, RET, JMPI, JBSI, JBCI, CALLI).
- An MCS-channel accessing memory for data transfer (instruction MRD, MWR, MRDI, MWRI, MRDIO, MWRIO, MWRL, MWRIL, PUSH, POP).
- An MCS-channel is executing a read or write request at its bus master interface (instruction BRD, BWR, BRDI, BWRI).
- An MCS-channel is modifying the trigger register (write access to **CTRG** or **STRG**) and the same channel is reading back this register (read access to **CTRG** or **STRG**) while the delay between both accesses is less than UAP+UDP+1 clock cycles.

In general, each MCS-channel can accept instruction prefetching. However, there are some cases in which an upcoming flushing of the pipeline can be easily detected by the MCS hardware due to evaluation of internal states. Therefore, it is defined that an MCS-channel accepts instruction prefetching only under the following conditions:

- An MCS-channel is currently not in the second cycle of a two-cycle control flow instruction (instruction CALL, RET).
- An MCS-channel is currently not in the second cycle of a three-cycle memory access instruction (instruction MWRL, MWRIL).

The accelerated scheduling mode guarantees, that the time duration of an instruction cycle varies between 1 and T+1 cycles. Hence, a single cycle instructions has an effective execution time between 1 to T+1 clock cycles, depending on the number of suspended MCS-channels and the actual instruction sequence. The worst case execution time occurs if all channels are active and the CPU also accesses the RAM. The best case occurs e.g. if only one MCS-channel is enabled and the executed program sequence has only linear code without branches and memory access.

The algorithm of the accelerated scheduling mode first, evaluates the state of all available MCS-channels as well as a CPU request to the RAMs and then it decides if a specific MCS-channel or an empty cycle is assigned to pipeline stage 0 in the next clock cycle. It should be noted that the accelerated scheduling mode treats RAM

access requests from the CPU in a similar manner as MCS-channels, which means that empty cycles for RAM requests are only inserted into the pipeline if there is an active RAM request from the CPU or no other task can be scheduled.

In order to fairly trade all available MCS-channels as well as CPU RAM requests and to guarantee a worst case execution time of T+1 clock cycles, an additional task prioritization scheme is applied used that dynamically prioritizes all MCS-channels and a CPU memory access depending on the history of the scheduler's decisions. The algorithm of the accelerated scheduler mode is executed every clock cycle and it works in the following manner:

- Try to find an MCS-channel C_r with highest priority that is not suspended and not already scheduled to the pipeline stages 0 to NPS-2. If C_r is found assign C_r to pipeline stage 0 and finish scheduling for current clock cycle.
- Otherwise, try to find an MCS-channel C_p with highest priority that is not suspended and accepts instruction prefetching. If C_p is found assign C_p to pipeline stage 0 and finish scheduling for current clock cycle.
- Otherwise, try to find an MCS-channel C_s with highest priority that is suspended and accepts instruction prefetching. If C_s is found assign C_s to pipeline stage 0 and finish scheduling for current clock cycle.
- Otherwise, assign an empty cycle to pipeline stage 0 and finish scheduling for current clock cycle.

The underlying task prioritization scheme tracks the history of the scheduled MCSchannels in a list consisting of T+1 items. The list is initialized with all MCS-channels followed by a reserved time slot for the CPU RAM access. The position of an MCSchannel within this list implicitly defines the priority, while the back of this list holds the MCS-channel with highest priority. Whenever the scheduling algorithm described above has found an MCS-channel C_r or C_p to be scheduled in the next clock cycle, it removes this item from the list and put it to the front of the list. In order to fairly prioritize all MCS-channels, the algorithm also removes the item at the back of the list to the second position in the list, after the inserted scheduled front item. Since the list always contains all possible MCS-channels and with each clock cycles each nonscheduled item is moved at least one position towards the end of list, it is obvious that each MCSchannel will have the highest priority not later than T+1 clock cycles.

Figure 15.3.2.1 shows a timing example of the accelerated scheduling with NPS=7 pipeline stages.

15.3.2.1 Timing of Accelerated Scheduling

BOSCH Revision 3.1.5.1

GTM-IF	5						Spe	cifica	tion		
Cycle:	0	1	2	3	4	5	6	7	8	9	10
Stage 0:	C ₀ (x)	C ₁ (y)	C ₀ (x+1)	C ₁ (y+1)	C ₀ (x+2)	C ₀ (x+3)	C ₀ (x+4)	C ₀ (x+5)	C ₀ (x+6)	C ₀ (x+4)	C ₀ (x+5)
Stage 1:		C ₀ (x)	C ₁ (y)	C ₀ (x+1)	C ₁ (y+1)	C ₀ (x+2)	C ₀ (x+3)	C ₀ (x+4)	C ₀ (x+5)	-	C ₀ (x+4)
Stage 2:			C ₀ (x)	C ₁ (y)	C ₀ (x+1)	C ₁ (y+1)	C ₀ (x+2)	C ₀ (x+3)	C ₀ (x+4)	-	-
Stage 3:				C ₀ (x)	C ₁ (y)	C ₀ (x+1)	C ₁ (y+1)	C ₀ (x+2)	C ₀ (x+3)	-	-
Stage 4:					C ₀ (x)	C ₁ (y)	C ₀ (x+1)	C ₁ (y+1)	C ₀ (x+2)	-	-
Stage 5:						C ₀ (x)	C ₁ (y)	C ₀ (x+1)	-	-	-
Stage 6:							C ₀ (x)	C ₁ (y)	C ₀ (x+1)	-	-

15.3.2.2 MCS Code example for Accelerated Scheduling

М	CS-Channel 0	МС	S-Channel 1
Memory Location	Instruction	Memory Location	Instruction
x+0	ADDL R0, 7	y+0	WURM STRG, R1, 0xFFFF
x+1 x+2	JBC STA, Z, x+4 MOVL R2, 5	y+1 v+2	ADDL R2, 5 ADD R3, R2
x+0 x+1	ADDL R0, 7	y+0 y+1	WURM STRG, R1, 0xFF

The example assumes that initially MCS-channels 0 and 1 are enabled and the program for each MCS-channel is located in the RAM as shown in Figure 15.3.2.2. Since both channels are ready to run, the scheduler fairly selects the channels in an alternating order, as it can be obtained in stage 0 at the clock cycles before cycle 5. Since MCS-channel 1 is entering suspended state (to wait on a trigger bit) at cycle 7 in stage 6 with the instruction of memory location y, the scheduler will only select MCSchannel 0 in the following by applying instruction prefetching. Moreover, entering the suspended state in channel 1 also flushes the remaining channels 1 out of the pipeline. But it should be noted, the scheduler applies instruction prefetching during the whole sequence, due to the fact that the number of enabled channels is always less than the available number of pipeline stages NPS.

The actual state of pipeline in cycle 9 and 10 depends on conditional branch instruction of memory location x + 3 (cycle 8 stage 6). If the branch is not taken, the linear code execution of MCS-channel 0 is continued. However, if the branch to memory location x+4 is taken, as shown in the Figure, the scheduler will fetch the instruction $C_0(x+4)$ in cycle 9 at stage 0 and flush the stages 1 to NPS-1. Note, the flushing of the pipeline only concerns the prefetched instructions of the MCS-channel that is currently executed in the last stage. If pipeline stage 1 of cycle 9 would belong to another channel than 0, only the stages greater than 2 would have been flushed.

15.3.3 Single Prioritization Scheduling

The Single Prioritization Scheduling mode is an extended variant of the Accelerated Scheduling mode, which additionally applies a task prioritization of a single MCSchannel. In this mode, the bit field **SCD_CH** of register **MCS[i]_CTRL_STAT** is used to identify a dedicated MCS-channel that is always preferred during scheduling. This means, that the scheduler will assign preferred MCS-channel **SCD_CH** to pipeline stage 0, as long as this channel is not suspended. If the preferred MCS-channel is entering its suspended state, the scheduling algorithm switches to the accelerated scheduling as previously described in section 15.3.2. Whenever the MCS-channel **SCD_CH** is resuming from its suspended state, the scheduler switches back and assign the channel **SCD_CH** to pipeline stage 0 until the next suspension event occurs. If the bit field **SCD_CH** contains the value T or higher, the task scheduler will always prioritize CPU access to the RAM. This means, whenever the task scheduler detects that the CPU wants to access an MCS-RAM, the scheduler will assign an empty cycle into pipeline stage 0. If the CPU does not access the RAM any more, it switches back to the accelerated mode, as described previously in section 15.3.2.

In consequence, the Single Prioritization Scheduling mode cannot guarantee a maximum time duration of an instruction cycle for the overall execution of all MCS-channels, since it strongly depends on the activity of the prioritized MCS-channel **SCD_CH**. However, the Single Prioritization Scheduling mode provides the fastest possible execution for MCS-channel **SCD_CH**. Moreover, during the time spawn, in which the prioritized MCS-channel **SCD_CH** is suspended, this mode guarantees a duration of 1 to T+1 clock cycles of an instruction cycle for all non-prioritized channels.

15.3.4 Multiple Prioritization Scheduling

The Multiple Prioritization Scheduling mode is an extended variant of the Accelerated Scheduling mode, which additionally applies a task prioritization for multiple MCS-channels. In this mode, the bit field **SCD_CH** of register **MCS[i]_CTRL_STAT** is used to identify a set of dedicated MCS-channels, which are always preferred during scheduling. The identifiers of the prioritized MCS-channels are in the range [0; **SCD_CH**] and the non-prioritized channels are in the range [**SCD_CH**+1; T-1]. The individual priority for the set of prioritized MCS-channels is applied in descending order, which means that MCS-channel 0 has the highest priority, followed MCS-channel 1, which has the second highest priority, and so on. The non-prioritized MCS-channels are in that all T MCS-channels are prioritized MCS-channels.

With each clock cycle, the Multiple Prioritization Scheduling mode will assign the nonsuspended MCS-channel with the highest priority from the set of prioritized MCSchannels to pipeline stage 0, as long as there are non-suspended prioritized MCSchannels available. If all prioritized MCS-channels are suspended, the scheduling

Specification

algorithm switches to the accelerated scheduling as previously described in section 15.3.2 and it schedules the non-prioritized channels. Whenever a prioritized MCS-channel is resuming from its suspended state, the scheduler switches back and applies the described prioritization scheme until the next suspension event of occurs.

In consequence, the Multiple Prioritization Scheduling mode cannot guarantee a maximum time duration of an instruction cycle for the overall execution of all MCS-channels, since it strongly depends on the activity of the prioritized MCS-channels. However, the Multiple Prioritization Scheduling mode provides the fastest possible execution for prioritized MCS-channels. Moreover, during the time spawn, in which all prioritized MCS-channels are suspended, this mode guarantees a duration of 1 to T+1 clock cycles of an instruction cycle for all non-prioritized channels.

15.4 Memory Organization

The MCS module supports a memory layout of up to 2^{RAW+USR} memory locations each RDW bit wide leading to a maximum byte wise address range from 0 to 2^{RAW+USR+2}-1.

If two RAM ports are used (USR = 1) the entire address space of the MCS is divided into two seamless memory pages.

Further, if the GTM provides a memory configuration sub module (MCFG), memory page 0 begins from (byte wise) address 0 and ranges to address MP0-4 and memory page 1 ranges from MP0 to MP1-4, while MP0 and MP1 are configuration parameters provided by MCFG. If USR is 1 but there is no MCFG module available, the actual parameters MP0 and MP1 can be found in Appendix B. The base address for accessing the memory via AEI can also be found in Appendix B.

The RAM priority decoder of the MCS will always handle a RAM access from an MCS channel with a higher priority compared to a RAM access from AEI.

However, if a set of active MCS channels are only accessing one common RAM port, the MCS will grant any AEI accesses to the other RAM port in parallel to the related RAM accesses of the running MCS channels, which means that AEI may get the full bandwidth to a dedicated RAM.

Basically, the actual access time to the RAMs via AEI depends on the actual scheduling mode and the activity of tasks. In the modes Round Robin Scheduling and Accelerated Scheduling the scheduler guarantees a maximum write access time of T + 4 clock cycles and a maximum read access time of T + 6 clock cycles. In the scheduling modes Single Prioritization Scheduling and Multiple Prioritization Scheduling, the scheduler cannot guarantee a maximum access time for AEI RAM access.

Specification

Depending on the silicon vendor configuration, the connected RAM pages are initialized with zeros in the case of an MCS module reset.

If an ECC Error occurs while an MCS-channel reads data from a memory module, the corresponding MCS-channel is disabled and the ERR bit in register STA is raised.

If the GTM sub module CCM provides several so called address range protectors (ARPs), some code and data sections of the MCS RAM can be write protected. If an MCS channels x writes to such a protected memory region, the MCS channel x is halted, the **ERR** bit in register **STA** is set and the bit field **ERR_SRC_ID** of register **MCS[i]_CTRL_STAT** is updated.

15.5 AEI Bus Master Interface

The MCS module provides an AEI bus master interface, which enables to communicate with externally connected modules. The data width of this interface is BDW bit and the address width is BAW bit leading to a maximum byte wise address ranging from 0 to 2^{BAW+2}-1. The bus master interface is shared among all available MCS channels meaning that each MCS channel may initiate a read or write access on the bus but only one channel can be served at a specific point in time.

However, the AEI bus master interface guarantees, that a bus access is always completed within two instruction cycles and bus access of different MCS channels do not modify the latency of each other. The only exceptions are bus accesses to RAM modules (e.g. accessing memory location in a DPLL RAM or FIFO RAM). AEI bus master accesses to RAM modules cannot be completed within a single clock cycle and thus additional wait cycles have to be inserted into the bus protocol leading to the fact that the MCS channel that is accessing the RAM is entering a suspended state. Moreover, if an MCS channel is accessing a RAM module, the latency of a bus access in another MCS channel can also be modified even if the neighboring channel is accessing only a configuration register.

The AEI bus master interface of an MCS module is connected to AEI slave interface GTM-IP in order to control the sub modules of the GTM within MCS. However, it is not possible to access the entire GTM by a single MCS module. The n-th MCS instance can only access the GTM sub modules that are located within the n-th cluster of the GTM. Details about the available clusters of the GTM can be found in section 2.1.

Additionally, the address map for accessing GTM with the AEI bus master interface of an MCS differs from the address map for an externally connected CPU that is using the GTM's AEI slave interface. The address map for accessing GTM with the AEI bus master interface of an MCS can be found in Appendix B.

Specification

Since the sub modules of the GTM can be accessed by the CPU and the AEI bus master of an MCS, the GTM-IP provides an additional arbitration scheme to manage parallel accesses from both master interfaces. If CPU and an MCS want to access a GTM sub module of the same cluster, the arbiter will grant the access to the MCS. However, if the CPU and all the MCS instances want to access GTM sub modules of different clusters, the accesses can be executed in parallel.

The AEI bus master interface can be controlled by the MCS instructions BRD, BRDI, BWR, and BWRI. These instructions are described in section 15.7.

15.6 ADC Interface

The clusters of the GTM can provide a dedicated interface for the connection of up to 32 external Analog-Digital-Converter (ADC) channels, which can be mapped arbitrarily to physical instances of single- or multi-channel ADCs. See Appendix B for details about the availability of ADC interfaces.

An ADC Interface is directly mapped into the address map of the AEI bus master interface of the current cluster's MCS meaning that the available AEI bus master instructions (BRD and BRDI as described in section 15.7) are used to control the connected ADCs.

Since the control of the connected ADCs is silicon vendor specific, the GTM specification does not provide a complete specification for controlling connected ADCs. However, to ensure software compatibility at least for the basic features of an ADC, the functionality described in the following are common to all silicon vendors.

15.6.1 Basic ADC Functions

The address map of the AEI bus master interface reserves two unique address items for each ADC channel. The address items can be referred by the labels **ADC_CH[y]_DATA** and **ADC_CH[y]_STA** for the channel y in the range from 0 to 31. The actual address for these labels can be found in Appendix B.

The MCS can read from address **ADC_CH[y]_DATA** in order to get the conversion result of the ADC that is connected to ADC channel y. The conversion result is represented as a signed 24 bit value and it is stored in the register A (A \in GREG) as referred by the corresponding MCS instruction BRD or BRDI. Additionally, each read access to **ADC_CH[y]_DATA** triggers the ADC that is connected to channel y. Any read access to **ADC_CH[y]_DATA** also provides 8 status bits that are stored in register **MHB**. The bit **MHB**[7] has always the mnemonic **ADC_ACK** and the bit **MHB**[6] has always the mnemonic **ADC_ACK** is set the result of the data conversion (register A) and the corresponding status bits (bits **MHB**[6:0]) are validated. If **ADC_NEW_DATA** is set the current conversion result is new and has never been

read by a previous bus read access. The meaning of the bits **MHB**[5:0] are vendor specific. Otherwise, if **ADC_ACK** is cleared the read data is invalid and the **MHB**[4:0] indicate the channel identifier (with **MHB**[4:0] \neq y) that is currently processed by the ADC. A write access to **ADC_CH[y]_DATA** has no functionality and is always ignored.

The MCS can read from address **ADC_CH[y]_STA** to get additional 31-bit wide vendor specific status information of ADC channel y. The lower 24 bits of the status information is stored in register A ($A \in GREG$) as referred by the corresponding MCS instruction BRD or BRDI. The upper 7 bit of the status information is stored in register **MHB**[6:0]. The bit **MHB**[7] has always the mnemonic **ADC_ACK**. If bit **ADC_ACK** is set the result of status information in register A and bits **MHB**[6:0] are validated. Otherwise, if **ADC_ACK** is cleared the status information is invalidated. A write access to **ADC_CH[y]_STA** has no functionality and is always ignored.

Any read or write access to a register **ADC_CH[y]_STA** or **ADC_CH[y]_DATA** updates the AEI status signal that is evaluated in the sub module CCM. The following status information is defined for the AEI status values:

- 00 : no error occurred
- 01 : optional information register not implemented (only register ADC_CH[y]_STA)
- 10 : illegal ADC access (e.g. ADC not enabled)
- 11 : unsupported address (ADC channel y not available)

Note: If the received status AEI is unequal to "00" **ADC_NEW_DATA** is always set and **ADC_ACK** is always cleared.

15.7 Instruction Set

This section describes the entire instruction set of the MCS sub module. First, a brief overview over all available instructions is given and a detailed description of each instruction can be found in sections 15.7.6 and the following sections.

In general, each instruction is RDW bit wide but the duration of each instruction varies between several instruction cycles. As already described in section 15.3, the number of required clock cycles for an instruction cycle can be fixed or variable, depending on the selected scheduling mode. In the case of the Round Robin Scheduling, the duration is fixed with T+1 clock cycles, in the case of the Accelerated Scheduling the duration is variable in the range between 1 and T+1 clock cycles, and in all other Scheduling modes the duration is also variable and may even be more than T+1 clock cycles, depending on the application.

Before the available instructions are described, some commonly used terms, abbreviations and expressions are introduced:

OREG: The operation register set OREG = {R0, R1, ..., R7} \cup { STA, ACB, CTRG, STRG, TBU_TS0, TBU_TS1, TBU_TS2, MHB} include all MCS accessible internal

channel specific GPRs {R0, R1, ..., R7} and the sub set {STA, ACB, CTRG, STRG, TBU_TS0, TBU_TS1, TDU_TS2, MHB} of SFRs.

XOREG: The extended operation register set XOREG = OREG \cup {RS0, RS1, ..., RS7} \cup {GMI0, GMI1, DSTA, DSTAX} extends the operation registers set OREG by the GPRs of the succeeding MCS channel {RS0, RS1, ..., RS7} and the SFRs {GMI0, GMI1, DSTA, DSTAX}.

WXREG: The extended wait instruction operation register set WXREG = OREG \cup {GMI0, GMI1, DSTA, DSTAX} extends the operation registers set OREG by the SFRs {GMI0, GMI1, DSTA, DSTAX}.

AREG: The ARU register set AREG = {R0, R1, R2, ..., R7, ZERO} includes the all registers that can be written by incoming ARU transfers (ARD, ARDI, NARD, and NARDI instructions). These registers include all eight general purpose registers. The dummy register ZERO may be used to discard an incoming 24 bit ARU word.

GREG: The general purpose register set GREG = {R0, R1, R2, ..., R7} includes the all channel specific GPRs without GPRs of neighboring channels.

BAREG: The base address register set BAREG = OREG \cup {RS0, RS1, ..., RS7} extends the register set OREG by the GPRs of neighboring channels.

Note: If the extended operation register set XOREG is disabled (bit **EN_XOREG** of register **MCS[i]_CTRL_STAT** is cleared) the sets **XOREG**, **WXREG**, and **BAREG** only contains the operation register set OREG.

Note: In the following, the register sets **OREG**, **XOREG**, **GREG**, **WXREG**, **BAREG** and **AREG** are referred by the instructions. Typically, an operation announces W data bits. Whenever, a register of a register set implements less than W bits, it is assumed that these register bits only define the LSBs of an operation. The missing MSBs are always read and written as zeros.

WLIT: The set WLIT = $\{0, 1, ..., 2^{W}-1\}$ is a W bit wide literal value used for encoding immediate operands.

ALIT: The set ALIT = {0,1, ..., 2^{RAW+USR}-1} is a RAW + USR bit wide literal value used for encoding memory addresses.

AOLIT: The set AOLIT = {-2^{RAW+USR-1}, ..., -1,0,1, ..., 2^{RAW+USR-1}-1} is a RAW + USR bit wide literal value used for encoding relative memory address offsets.

ARDLIT: The set ARDLIT = $\{0, 1, ..., 2^9-1\}$ is a 9 bit literal used for ARU read addresses. **AWRLIT**: The set AWRLIT = $\{0, 1, ..., 23\}$ is used as ARU write indexes, selecting one of the 24 ARU write address.

BALIT: The set BALIT = {0,1, ..., 2^{BAW}-1} is a BAW bit wide literal used for encoding bus master addresses.

SFTLIT: The set SFTLIT = {0,1, ..., W} is used as literal value for shift instructions.

BWSLIT: The set $BWSLIT = \{1, ..., W\}$ is used as literal value for multiplication instructions.

BITLIT: The set BITLIT = {0,1, ..., 15} is a 4 bit literal used for bit indexing.

XBITLIT: The set XBITLIT = {0,1, ..., W-1} is a literal used for bit indexing of register bits.

MSKLIT: The set MSKLIT = $\{0, 1, ..., 2^{15}-1\}$ is a 16 bit literal used for bit-masking.

BIT SELECTION: The expression VAR[i] represents the i-th bit of a variable VAR.

BIT RANGE SELECTION: The expression VAR[m:n] represents the bit slice of variable VAR that is ranging from bit n to bit m.

MEMORY ADDRESSING: The expression MEM(X) represents the RDW bit wide value at location $x (x \in ALIT)$ of the memory. The expression MEM(x)[m:n] represents the bit slice ranging from bit n to m of the RDW bit wide word at memory location x.

ARU ADDRESSING: In the case of ARU reading, the expression ARU(x) represents the 2*W+5 bit wide ARU word of ARU channel at read address x ($x \in$ ARDLIT). In the case of ARU writing, the expression ARU(x) represents a 2*W+5 bit wide ARU word that is written to an ARU channel indexed by the index x ($x \in$ AWRLIT). The index x selects a single ARU write channel from the pool of the MCS sub module's allocated ARU write channels. An MCS sub module has 24 dedicated ARU write channels, indexed by values 0 to 23. The expression ARU(x)[m:n] represents the bit slice ranging from bit n to m of the 2*W+5 bit wide ARU word.

BUS MASTER ADDRESSING: In the case of reading/writing from the bus master interface, the expression BUS(x) represents the BDW bit wide data word that is read/written at address x ($x \in BALIT$). The expression BUS(x)[m:n] represents the bit slice ranging from bit n to m of the BDW bit wide data word at the bus.

Table 15.7.1 summarize the entire instruction set of the MCS and Table 15.7.4 shows the encoding of the individual instructions.

15.7.1 Instruction Set Summary (part 1)

Specification

Revision 3.1.5.1

BOSCH

			instruction	
Class	Mnemonic	Operation	cycles	Synopsis
Data transfer	MOVL A. C	A ← C	1	Move Literal, A in OREG, C in WLIT
	MOV A, B	A ← B	1	Move, A in XOREG, B in XOREG
		A ← MEM(C)[W-1:0];		
	MRD A, C	$MHB \leftarrow MEM(C)[RDW-1:W]$	2 ¹⁾	Memory Read, A in OREG, C in ALIT
		$MEM(C)[W\text{-1:0}] \leftarrow A;$		
	MWR A, C	$MEM(C)[RDW-1:W] \leftarrow MHB$	2 ¹⁾	Memory Write, A in OREG, C in ALIT
		$A \leftarrow MEM(B[RAW+USR+1:2]+C)[W-1:0];$		Memory Read Indirect, A in OREG, B in OREG,
	MRDI A, B [, C]	$MHB \leftarrow MEM(B[RAW+USR+1:2]+C)[RDW-1:W]$	2 ¹⁾	C in AOLIT (default C=0)
		$MEM(B[RAW+USR+1:2]+C)[W-1:0] \leftarrow A;$		Memory Write Indirect, A in OREG, B in OREG,
	MWRI A, B [, C]	MEM(B[RAW+USR+1:2]+C)[RDW-1:W] ← MHB	2 ¹⁾	C in AOLIT (default C=0)
		$A \leftarrow MEM(B[RAW+USR+1:2] + R5[RAW+USR+1:2])[W-1:0];$		Memory Read Indirect with Offset,
I	MRDIO A, B	$MHB \leftarrow MEM(B[RAW + USR + 1:2] + R5[RAW + USR + 1:2])[RDW - 1:W]$	2 ¹⁾	A in XOREG, B in BAREG
	, , , , , , , , , , , , , , , , , , ,	MEM(B[RAW+USR+1:2] + R5[RAW+USR+1:2])[W-1:0] ← A;		Memory Write Indirect with Offset,
I	MWRIO A, B	$MEM(B[RAW+USR+1:2] + R5[RAW+USR+1:2])[RDW-1:W] \leftarrow MHB$	2 ¹⁾	A in XOREG, B in BAREG
		$A \leftarrow MEM(R7[RAW+USR+1:2]);$	-	
		$MHB \leftarrow MEM(R7[RAW+USR+1:2])[RDW-1:W]$		
	POP A	$R7 \leftarrow R7 - 4$	2 ¹⁾	Pop from stack, A in OREG
		$R7 \leftarrow R7 + 4$	-	
		$MEM(R7[RAW+USR+1:2])[W-1:0] \leftarrow A$		
	PUSH A	$MEM(R7[RAW+USR+1:2])[RDW-1:W] \leftarrow MHB$	2 ¹⁾	Push to stack, A in OREG
	MWRL A, C	MEM(C)[W-1:0] ← A	3 ²⁾	Memory Write Literal, A in OREG, C in ALIT
				Memory Write Indirect Literal,
	MWRIL A, B	$MEM(B[RAW+USR+1:2])[W-1:0] \leftarrow A$	3 ²⁾	A in OREG, B in OREG
		A ← ARU(C)[W-1:0]		
		$B \leftarrow ARU(C)[2*W-1:W]$		Blocking ARU Read,
ARU Transfer	ARD A, B,C	$ACB \leftarrow ARU(C)[5+2*W:2*W]$	>= 1	A in AREG, B in AREG, C in ARDLIT
		$ARU(C)[W-1:0] \leftarrow A$		
		$ARU(C)[2*W:W] \leftarrow B$		Blocking ARU Write,
	AWR A, B, C	$ARU(C)[5+2*W:2*W] \leftarrow ACB$	>= 1	A in OREG, B in OREG, C in AWRLIT
I		A ← ARU(R6[8:0])[W-1:0]		
		$B \leftarrow ARU(R6[8:0])[2^*W-1:W]$		Blocking ARU Read Indirect,
	ARDI A, B	$ACB \leftarrow ARU(R6[8:0])[5+2*W:2*W]$	>= 1	A in AREG, B in AREG
		$ARU(R6[4:0])[W-1:0] \leftarrow A$		
		$ARU(R6[4:0])[2*W-1:W] \leftarrow B$		Blocking ARU Write Indirect,
l	AWRI A, B	$ARU(R6[4:0])[5+2*W:2*W] \leftarrow ACB$	>= 1	A in OREG, B in OREG
		A ← ARU(C[8:0])[W-1:0] B ← ARU(C[8:0])[2*W-1:W]		Non-Blocking ARU Read,
	NARD A, B, C	$B \leftarrow ARU(C[8:0])[2^{-W}-1:W]$ ACB $\leftarrow ARU(C[8:0])[5+2^{*}W:2^{*}W]$	>= 1 ⁷⁾	A in AREG, B in AREG
		$A \leftarrow ARU(R6[8:0])[W-1:0]$	~- 1	
		$B \leftarrow ARU(R6[8:0])[2*W-1:W]$		Non-Blocking ARU Read Indirect,
	NARDI A, B	$ACB \leftarrow ARU(R6[8:0])[5+2*W:2*W]$	>= 1 ⁷⁾	A in AREG, B in AREG
		$A \leftarrow BUS(C)[W-1:0]$		Bus Master Read.
Bus Master	BRD A, C	$MHB \leftarrow BUS(C)[BDW-1:W]$	>= 1 ⁸⁾	A in GREG, C in BALIT
		BUS(C)[W-1:0] ← A		Bus Master Write,
	BWR A, C	$BUS(C)[BDW-1:W] \leftarrow MHB$	>= 1 ⁸⁾	A in GREG, B C in BALIT
ĺ		A ← BUS(B[BAW+1:2])[W-1:0]		Bus Master Read Indirect,
L	BRDI A, B	$MHB \leftarrow BUS(B[BAW+1:2])[BDW-1:W]$	>= 1 ⁸⁾	A in GREG, B in GREG
		BUS(B[BAW+1:2])[W-1:0] ← A		Bus Master Write Indirect,
	BWRI A, B	$BUS(B[BAW+1:2])[BDW-1:W] \leftarrow MHB$	>= 1 ⁸⁾	A in GREG, B in GREG

15.7.2 Instruction Set Summary (part 2)

Specification

Revision 3.1.5.1

			instruction	
Class	Mnemonic	Operation	cycles	Synopsis
Arith. / Logic	ADDL A, C	$A \leftarrow A + C$	1	Add Literal, A in OREG, C in WLIT
	ADD A, B	$A \leftarrow A + B$	1	Add, A in XOREG, B in XOREG
	ADDC A, B	$A \leftarrow A + B + CY$	1	Add with carry, A in XOREG, B in XOREG
	SUBL A, C	$A \leftarrow A - C$	1	Subtract Literal, A in OREG, C in WLIT
	SUB A, B	$A \leftarrow A - B$	1	Subtract, A in XOREG, B in XOREG
	SUBC A, B	$A \leftarrow A - B - CY$	1	Subtract with carry, A in XOREG, B in XOREG
	NEG A, B	$A \leftarrow -B$	1	Negate, A in XOREG, B in XOREG
	ANDL A, C	$A \leftarrow A AND C$	1	AND Litral, A in OREG, C in WLIT
	AND A, B	$A \leftarrow A AND B$	1	AND, A in XOREG, B in XOREG
	ORL A, C	$A \leftarrow A \text{ OR } C$	1	OR Literal, A in OREG, C in WLIT
	OR A, B	$A \leftarrow A \text{ OR } B$	1	OR, A in XOREG, B in XOREG
	XORL A, C	$A \leftarrow A XOR C$	1	XOR Literal, A in OREG, C in WLIT
	XOR A, B	$A \leftarrow A XOR B$	1	XOR, A in XOREG, B in XOREG
	SETB A, B	A[B[4:0]] ← 1	1	Set Bit, A in XOREG, B in XOREG
	CLRB A, B	A[B[4:0]] ← 0	1	Clear Bit, A in XOREG, B in XOREG
	XCHB A, B	$A[B[4:0]] \leftrightarrow CY$	1	Exchange Bit with CY, A in XOREG, B in XOREG
	SHR A, C	$A \leftarrow A \gg C$	1	Shift Right, A in XOREG, C in SFTLIT
	SHL A, C	$A \leftarrow A << C$	1	Shift Left, A in XOREG, C in SFTLIT
	ASRU A, B	$A \leftarrow A >> B$	1	Shift Right, A in XOREG, B in XOREG
	ASRS A, B	$A \leftarrow A >> B$	1	Shift Right, A in XOREG, B in XOREG
	ASL A, B	$A \leftarrow A \prec B$	1	Shift Left, A in XOREG, B in XOREG
				Multiply Unsigned, A in XOREG,
	MULU A, B[, C]	[[R4,] A] ← A[(C-1):0] * B[(C-1):0]	1	B in XOREG, C in BWSLIT (default C=W)
				Multiply Signed, A in XOREG,
	MULS A, B[, C]	[[R4,] A] ← A[(C-1):0] * B[(C-1):0]	1	B in XOREG , C in BWSLIT (default C=W)
		R4 ? A[(C-1):0] - B[(C-1):0] * [A[(C-1):0] / B[(C-1):0]];		Divide Unsigned, A in XOREG,
	DIVU A, B[, C]	A ? [A[(C-1):0] / B[(C-1):0]]	C ⁹⁾	B in XOREG, C in BWSLIT (default C=W)
	DIVO A, D[, O]		0	
		R4 ? A[(C-1):0] - B[(C-1):0] * [A[(C-1):0] / B[(C-1):0]];	10)	Divide Signed, A in XOREG,
	DIVS A, B[, C]	A ? [A[(C-1):0] / B[(C-1):0]]	C+4 ¹⁰⁾	B in XOREG, C in BWSLIT (default C=W)
	MINU A, B	$A \leftarrow MIN(A, B)$	1	Minimum Unsigned, A in XOREG, B in XOREG
	MINS A, B	$A \leftarrow MIN(A, B)$	1	Minimum Signed, A in XOREG, B in XOREG
	MAXU A, B	$A \leftarrow MAX(A, B)$	1	Maximum Unsigned, A in XOREG, B in XOREG
	MAXS A, B	$A \leftarrow MAX(A, B)$	1	Maximum Signed, A in XOREG, B in XOREG
		$A < C \Leftrightarrow CY$ is set		Arithmetic Test Unsigned Literal,
Test	ATUL A, C	$A = C \Leftrightarrow Z \text{ is set}$	1	A in OREG, C in WLIT
		$A < B \Leftrightarrow CY$ is set		Arithmetic Test Unsigned,
	ATU A, B	$A = C \Leftrightarrow Z \text{ is set}$	1	A in XOREG, B in XOREG
		$A < C \Leftrightarrow CY$ is set		Arithmetic Test Signed Literal,
	ATSL A, C	$A = C \Leftrightarrow Z \text{ is set}$	1	A in OREG, C in WLIT
		$A < B \Leftrightarrow CY$ is set		Arithmetic Test Signed,
	ATS A, B	$A = C \Leftrightarrow Z$ is set	1	A in XOREG, B in XOREG
	BTL A, C	A AND C	1	Bit Test Literal, A in OREG, C in WLIT
	BT A, B	A AND B	1	Bit Test, A in XOREG, B in XOREG

15.7.3 Instruction Set Summary (part 3)

Confidential

Specification

Revision 3.1.5.1

BOSCH

			instruction	
Class	Mnemonic	Operation	cycles	Synopsis
Control Flow	JMP C	$PC \leftarrow C << 2$	1 ³⁾	Uncondiational Jump, C in ALIT
				Jump if Bit Set, A in OREG,
	JBS A, B, C	$PC \leftarrow C \ll 2$ if A[B] is set	1 ⁴⁾	B in BITLIT, C in ALIT
				Jump if Bit Cleared, A in OREG,
	JBC A, B, C	$PC \leftarrow C \ll 2$ if A[B] is clear	1 ⁴⁾	B in BITLIT, C in ALIT
		R7 ← R7 + 4		
		$MEM(R7[RAW+USR+1:2])[RAW+USR+1:0] \leftarrow PC+4$		
	CALL C	$PC \leftarrow C << 2$	2 ⁵⁾	Call Subroutine, C in ALIT
		$PC \leftarrow MEM(R7[RAW+USR+1:2])[RAW+USR+1:0]$		
	RET	R7 ← R7 - 4	2 ⁵⁾	Return from Subroutine
	JMPI	$PC \leftarrow R6[RAW+USR+1:2] << 2$	1 ³⁾	Uncondiational Jump Indirect
	JBSI A, B	$PC \leftarrow R6[RAW+USR+1:2] << 2 \text{ if } A[B] \text{ is set}$	1 ⁴⁾	Jump if Bit Set Indirect, A in XOREG, B in XBITLIT
	JBCI A, B	$PC \leftarrow R6[RAW+USR+1:2] << 2$ if $A[B]$ is clear	1 ⁴⁾	Jump if Bit Clear Indirect, A in OREG, B in XBITLIT
		R7 ← R7 + 4		
		$MEM(R7[RAW+USR+1:2])[RAW+USR+1:0] \leftarrow PC+4$	-	
	CALLI	$PC \leftarrow R6[RAW+USR+1:2] << 2$	2 ⁵⁾	Call Subroutine Indirect
				Wait Until Register Match,
Others	WURM A, B, C	wait until A = (B AND ($(0xFF << 16) + C)$)	>= 1 ⁶⁾	A in OREG, B in OREG, C in MSKLIT
				Wait Until Register Match,
	WURMX A, B	wait until A = (B AND R6)	>= 1 ⁶⁾	A in OREG, B in WXREG
				Wait Until Register Change,
	WURCX A, B	wait until A ? (B AND R6)	>= 1 ⁶⁾	A in OREG, B in WXREG
				Wait Until Cyclic Event,
	WUCE A, B	wait until cyclic event comparison matches	>= 1 ⁶⁾	A in OREG, B in OREG
	NOP		1	No Operation

Footnotes:

1) Not faster than 1+NPS clock cycles due to pipeline flushing.

2) Not faster than 1+2*NPS clock cycles due to pipeline flushing.

3) Not faster than NPS clock cycles due to pipeline flushing.

4) If the jump is executed, it is not faster than NPS clock cycles due to pipeline flushing.

5) Not faster than 2*NPS clock cycles due to pipeline flushing.

6) If the MCS is configured in Single Prioritization or Multiple Prioritization Scheduling Mode

the worst case latency for reactivating a prioritized MCS-channel is 2+NPS clock cycles.

7) Always faster than one ARU round trip cycle.

8) Suspends current MCS-channel if addressed slave inserts at least one wait cycle otherwise 1 instruction cycle

9) Not faster than C+NPS-1 clock cycles due to pipeline flushing.10) Not faster than C+3+NPS clock cycles due to pipeline flushing.

15.7.4 Instruction Codes (part 1)

Specification

Menemonic	Instruction Code
MOVL	0001aaaacccccccccccccccccccccc
MOV	1010aaaabbbb0000-a-b
MRD	1010aaaa0001-ccccccccccc
MWR	1010aaaa0010-ccccccccccc
MRDI	1010aaaabbbb0011-ccccccccccc
MWRI	1010aaaabbbb0100-ccccccccccc
POP	1010aaaa0101
PUSH	1010aaaa0110
MWRL	1010aaaa0111-ccccccccccc
MWRIL	1010aaaabbbb1000
BRD	1010-aaa1001cccccccccccc
BWR	1010-aaa1010cccccccccccc
BRDI	1010-aaa-bbb1011
BWRI	1010-aaa-bbb1100
MRDIO	1010aaaabbbb1101-a-b
MWRIO	1010aaaabbbb1110-a-b
XCHB	1010aaaabbbb1111-a-b
ARD	1011aaaabbbb0000cccccccc
AWR	1011aaaabbbb0001ccccc
NARD	1011aaaabbbb0010cccccccc
NARDI	1011aaaabbbb0011
ARDI	1011aaaabbbb0100
AWRI	1011aaaabbbb0101
SETB	1011aaaabbbb0110-a-b
CLRB	1011aaaabbbb0111-a-b
ADDL	0010aaaacccccccccccccccccccccc
ADD	1100aaaabbbb0000-a-b
SUBL	0011aaaaccccccccccccccccccccccc
SUB	1100aaaabbbb0001-a-b
NEG	1100aaaabbbb0010-a-b
ANDL	0100aaaaccccccccccccccccccccccc
AND	1100aaaabbbb0011-a-b
ORL	0101aaaacccccccccccccccccccccc
OR	1100aaaabbbb0100-a-b
XORL	0110aaaacccccccccccccccccccccc
XOR	1100aaaabbbb0101-a-b
SHR	1100aaaa0110-accccc
SHL	1100aaaa0111-accccc

15.7.5 Instruction Codes (part 2)

GTM-	IP
------	----

Specification

Menemonic	Instruction Code
MULU	1100aaaabbbb1000-a-bccccc
MULS	1100aaaabbbb1001-a-bccccc
DIVU	1100aaaabbbb1010-a-bccccc
DIVS	1100aaaabbbb1011-a-bccccc
MINU	1100aaaabbbb1100-a-b
MINS	1100aaaabbbb1101-a-b
MAXU	1100aaaabbbb1110-a-b
MAXS	1100aaaabbbb1111-a-b
ASL	1101aaaabbbb0011-a-b
ASRU	1101aaaabbbb0100-a-b
ASRS	1101aaaabbbb0101-a-b
ADDC	1101aaaabbbb0110-a-b
SUBC	1101aaaabbbb0111-a-b
ATUL	0111aaaaccccccccccccccccccccccc
ATU	1101aaaabbbb0000-a-b
ATSL	1000aaaacccccccccccccccccccccc
ATS	1101aaaabbbb0001-a-b
BTL	1001aaaacccccccccccccccccccccc
BT	1101aaaabbbb0010-a-b
JMP	11100000-cccccccccc
JBS	1110aaaabbbb0001-ccccccccccc
JBC	1110aaaabbbb0010-ccccccccccc
CALL	11100011-cccccccccc
RET	11100100
JMPI	11100101
JBSI	1110aaaabbbb0110-a-b
JBCI	1110aaaabbbb0111-a-b
CALLI	11101000
WURM	1111aaaabbbb0000cccccccccccccc
WURMX	1111aaaabbbb0001b
WURCX	1111aaaabbbb0010b
WUCE	1111aaaabbbb0011
NOP	0000

The individual instructions are decoded by evaluating the bits '0' and '1' at its expected positions, as mentioned in the table above. If the instruction decoder detects an invalid combination of these bits, the corresponding MCS-channel is disabled and the ERR bit in the register STA is set. Bit positions marked as '-' are not relevant for the instruction. The bit position 'a', 'b', and 'c' are reserved for binary encoding of the instruction arguments A, B, and C.

Moreover, each instruction can set the **ERR** bit of register **STA** and stop the program execution, if a register write protection of an associated MCS channel is activated by the register **MCS[i]_REG_PROT**. This behavior is not explicitly mentioned in the instruction descriptions below. If an error occurs due to a write access to a protected register it is ensured that the protected register is not overwritten. However, it is not ensured that other operations (e.g. updating of the PC) of the bad instruction are exeuted.

Specification

15.7.6 MOVL Instruction

Syntax: MOVL A, C Operation: $A \leftarrow C$ Status: Z Duration: 1 instruction cycle Description: Transfer literal value C (C \in WLIT) to register A (A \in OREG). The zero bit Z of status register STA is set, if the transferred value is zero, otherwise the zero bit is cleared.

The program counter PC is incremented by the value 4.

15.7.7 MOV Instruction

Syntax: MOV A, B Operation: A ← B Status: Z Duration: 1 instruction cycle

Description: Transfer register B (B \in XOREG) to register A (A \in XOREG). The zero bit Z of status register STA is set, if the transferred value is zero, otherwise the zero bit is cleared.

The program counter PC is incremented by the value 4.

15.7.8 MRD Instruction

Syntax: MRD A, C Operation: $A \leftarrow MEM(C)[W-1:0];$

 $\mathsf{MHB} \leftarrow \mathsf{MEM}(\mathsf{C})[\mathsf{RDW}\text{-}1:\mathsf{W}]$

Status: Z

Duration: 2 instruction cycles but not faster than 1+NPS clock cycles due to pipeline flushing.

Description: Transfer the lower W bits of memory content at location C (C \in ALIT) to register A (A \in OREG).

The upper RDW-W bits of the memory content at location C are transferred to the MHB register.

The zero bit Z of status register STA is set, if the lower W bits of the transferred value are zero, otherwise the zero bit is cleared.

Specification

If the MHB register is selected as destination register A (A \in OREG), the bits 0 to RDW-W-1 of the referred memory location are transferred to MHB.

The program counter PC is incremented by the value 4.

15.7.9 MWR Instruction

Syntax: MWR A, C **Operation**: MEM(C)[W-1:0] \leftarrow A;

 $MEM(C)[RDW-1:W] \leftarrow MHB$

Status: -

Duration: 2 instruction cycles but not faster than 1+NPS clock cycles due to pipeline flushing.

Description: Transfer W bit value of register A (A \in OREG) together with the MHB register to the memory at location C (C \in ALIT).

The W bit value of register A is stored in the LSBs (bit 0 to W-1) of the memory location. The MHB register is stored in bits W to RDW-W-1 of the referred memory location. The program counter PC is incremented by the value 4.

15.7.10 MWRL Instruction

Syntax: MWRL A, C

Operation: MEM(C)[W-1:0] \leftarrow A

Status: -

Duration: 3 instruction cycles but not faster than 1+2*NPS clock cycles due to pipeline flushing.

Description: Transfer W bit value of register A (A \in OREG) to memory at location C (C \in ALIT).

The W bit value of register A is stored in the LSBs (bit 0 to W-1) of the memory location and the bits W to RDW-W are left unchanged.

The program counter PC is incremented by the value 4. It should be noted that this operation is not an atomic instruction.

15.7.11 MRDI Instruction

Syntax: MRDI A, B [, C] Operation: $A \leftarrow MEM(B[RAW+USR+1:2] + C)[W-1:0]$

Robert Bosch GmbH

$\mathsf{MHB} \leftarrow \mathsf{MEM}(\mathsf{B}[\mathsf{RAW} + \mathsf{USR} + 1:2] + \mathsf{C})[\mathsf{RDW} - 1:\mathsf{W}]$

Status: Z

Duration: 2 instruction cycles but not faster than 1+NPS clock cycles due to pipeline flushing.

Description: Transfer the bits 0 to W-1 of a memory location to register A (A \in OREG) using indirect addressing.

The upper RDW-W bits of this memory location are transferred to MHB register.

The memory location where to read from depends on register B (B \in OREG) and literal C (C \in AOLIT) and it is defined as B[RAW+USR+1:2] + C.

If the optional operand C is not available in the assembler syntax, the MCS assembler generates code with a default value of 0 for operand C.

The zero bit Z of status register STA is set, if the transferred bits 0 to W-1 are zero, otherwise the zero bit is cleared.

If the MHB register is selected as destination register A (A \in OREG), the bits 0 to RDW-W-1 of the referred memory location are transferred to MHB.

The program counter PC is incremented by the value 4.

15.7.12 MRDIO Instruction

Syntax: MRDIO A, B

Operation: $A \leftarrow MEM(B[RAW+USR+1:2] + R5[RAW+USR+1:2])[W-1:0]$

 $\mathsf{MHB} \leftarrow \mathsf{MEM}(\mathsf{B}[\mathsf{RAW}+\mathsf{USR}+1:2] + \mathsf{R5}[\mathsf{RAW}+\mathsf{USR}+1:2])[\mathsf{RDW}-1:W]$

Status: Z

Duration: 2 instruction cycles but not faster than 1+NPS clock cycles due to pipeline flushing.

Description: Transfer the bits 0 to W-1 of a memory location to register A (A \in XOREG) using indirect addressing with offset calculation.

The upper RDW-W bits of this memory location are transferred to MHB register.

The memory location where to read from depends on register B (B \in BAREG) and register R5 and it is defined as B[RAW+USR+1:2] + R5[RAW+USR+1:2].

The zero bit Z of status register STA is set, if the transferred bits 0 to W-1 are zero, otherwise the zero bit is cleared.

If the MHB register is selected as destination register A, the bits 0 to RDW-W-1 of the referred memory location are transferred to MHB.

The program counter PC is incremented by the value 4.

15.7.13 MWRI Instruction

Syntax: MWRI A, B [, C]

Operation: MEM(B[RAW+USR+1:2] + C)[W-1:0] \leftarrow A; MEM(B[RAW+USR+1:2] + C)[RDW-1:W] \leftarrow MHB

Status: -

Duration: 2 instruction cycles but not faster than 1+NPS clock cycles due to pipeline flushing.

Description: Transfer value of register A (A \in OREG) to the LSBs 0 to W-1 of a memory location using indirect addressing.

The MHB register is moved to the bits W to RDW-1 at the same memory location. If the optional operand C is not available in the assembler syntax, the MCS assembler generates code with a default value of 0 for operand C.

The memory location where to write to depends on register B (B \in OREG) and literal C (C \in AOLIT) and it is defined as B[RAW+USR+1:2] + C.

The program counter PC is incremented by the value 4.

15.7.14 MWRIO Instruction

Syntax: MWRIO A, B

Operation: MEM(B[RAW+USR+1:2] + R5[RAW+USR+1:2])[W-1:0] \leftarrow A; MEM(B[RAW+USR+1:2] + R5[RAW+USR+1:2])[RDW-1:W] \leftarrow MHB

Status: -

Duration: 2 instruction cycles but not faster than 1+NPS clock cycles due to pipeline flushing.

Description: Transfer value of register A (A \in XOREG) to the LSBs 0 to W-1 of a memory location using indirect addressing with offset calculation.

The MHB register is moved to the bits W to RDW-1 at the same memory location. The memory location where to write to depends on register B (B \in BAREG) and register R5 and it is defined as B[RAW+USR+1:2] + R5[RAW+USR+1:2].

The program counter PC is incremented by the value 4.

15.7.15 MWRIL Instruction

Syntax: MWRIL A, B

```
Operation: MEM(B[RAW+USR+1:0])[W-1:0] \leftarrow A;
```

Status: -

Duration: 3 instruction cycles but not faster than 1+2*NPS clock cycles due to pipeline flushing.

Description: Transfer W bit value of A (A \in OREG) to memory using indirect addressing.

The memory location where to write to is defined by the bits 2 to RAW+1 of register B (B \in OREG).

The W bit value is stored in the LSBs (bit 0 to W-1) of the memory location and the bits W to RDW-1 are left unchanged.

The program counter PC is incremented by the value 4. It should be noted that this operation is not an atomic instruction.

15.7.16 POP Instruction

```
Syntax: POP A
Operation: A \leftarrow MEM(R7[RAW+USR+1:2])[W-1:0];
MHB \leftarrow MEM(R7[RAW+USR+1:2])[RDW-1:W];
R7 \leftarrow R7 - 4;
SP_CNT \leftarrow SP_CNT - 1
```

Status: Z, EN

Duration: 2 instruction cycles but not faster than 1+NPS clock cycles due to pipeline flushing.

Description: Transfer the LSBs (bit 0 to W-1) from the top of stack to register A (A \in OREG), followed by decrementing the stack pointer register R7 with the value 4.

The upper bits W to RDW-1 from the top of the stack are transferred to register MHB. If the MHB register is selected as destination register A (A \in OREG), the bits 0 to RDW-W-1 from the top of the stack are transferred to MHB.

The memory location for the top of the stack is identified by the bits 2 to RAW+1 of the stack pointer register R7.

The zero bit Z of status register STA is set, if the lower W bit of the transferred value is zero, otherwise the zero bit is cleared.

The program counter PC is incremented by the value 4.

The **SP_CNT** bit field inside the **MCS[i]_CH[x]_CTRL** register is decremented. If an underflow on the **SP_CNT** bit field occurs, the *STK_ERR[i]_IRQ* is raised. If an underflow on the **SP_CNT** bit field occurs and the bit **HLT_SP_OFL** of register **MCS[i]_CTRL** is set, the current MCS-channel is disabled by clearing the **EN** bit of **STA**.

15.7.17 PUSH Instruction

Syntax: PUSH A

Operation: $R7 \leftarrow R7 + 4$;

 $\begin{array}{l} \mathsf{MEM}(\mathsf{R7}[\mathsf{RAW}+\mathsf{USR}+1:2])[\mathsf{W}-1:0] \leftarrow \mathsf{A};\\ \mathsf{MEM}(\mathsf{R7}[\mathsf{RAW}+\mathsf{USR}+1:2])[\mathsf{RDW}-1:\mathsf{W}] \leftarrow \mathsf{MHB}\\ \mathsf{SP} \ \mathsf{CNT} \leftarrow \mathsf{SP} \ \mathsf{CNT}+1; \end{array}$

Status: EN

Duration: 2 instruction cycles but not faster than 1+NPS clock cycles due to pipeline flushing.

Description: Increment the stack pointer register R7 with the value 4, followed by transferring a W bit value of operand A (A \in OREG) together with a MHB register to the new top of the stack. The W bit value of A is stored in the bits 0 to W-1 of the memory location.

The content of the MHB register is stored in the bit W to RDW-1 of the memory location. The memory location for the top of the stack is referred by the bits 2 to RAW+1 of the stack pointer register.

The program counter PC is incremented by the value 4.

The **SP_CNT** bit field inside the **MCS[i]_CH[x]_CTRL** register is incremented.

If an overflow on the **SP_CNT** bit field occurs, the *STK_ERR[i]_IRQ* is raised.

If an overflow on the **SP_CNT** bit field occurs and the bit **HLT_SP_OFL** of register **MCS[i]_CTRL** is set, the current MCS-channel is disabled by clearing the **EN** bit of **STA**.

If an overflow on the **SP_CNT** bit field occurs and the bit **HLT_SP_OFL** of register **MCS[i]_CTRL** is set, the memory write operation for the A and MHB is discarded.

15.7.18 ARD Instruction

Syntax: ARD A, B, C **Operation**: $A \leftarrow ARU(C)[W-1:0];$

Specification

 $B \leftarrow ARU(C)[2*W-1:W];$ $ACB \leftarrow ARU(C)[4+2*W:2*W]$

Status: CAT, SAT

Duration: Suspends current MCS-channel until ARU transfer finished.

Description: Perform a blocking read access to the ARU and transfer both W bit values received at the ARU port to the registers A and B (A \in AREG, B \in AREG), whereas A holds the lower W bit ARU word and B holds the upper W bit ARU word.

If A and B refer to the same register, only the upper W bit ARU word is stored and the lower W bit ARU word is discarded.

If any transferred W bit value from the ARU should not be stored in a register, the dummy register ZERO \in AREG can be selected in A or B to discard the corresponding ARU data. The binary encoding of the address for the dummy register ZERO can be chosen by an arbitrary value within the range 8 to 15.

The received ARU control bits are stored in the register ACB.

The literal C (C \in ARDLIT) define the ARU address where to read from.

At the beginning of the instruction execution the CAT bit in register STA is always cleared.

After the execution of the instruction the SAT flag of the register STA is updated in order to show if the transfer was successful (SAT = 1) or if the transfer failed (SAT = 0) due to a cancellation by the CPU.

The program counter PC is incremented by the value 4.

15.7.19 ARDI Instruction

Syntax: ARDI A, B

Operation: A ← ARU(R6[8:0])[W-1:0]; B ← ARU(R6[8:0])[2*W-1:W]; ACB ← ARU(R6[8:0])[4+2*W:2*W]

Status: CAT, SAT

Duration: Suspends current MCS-channel until ARU transfer finished.

Description: Perform a blocking read access to the ARU and transfer both W bit values received at the ARU port to the registers A and B (A \in AREG, B \in AREG), whereas A holds the lower W bit ARU word and B holds the upper W bit ARU word.

If A and B refer to the same register, only the upper W bit ARU word is stored and the lower W bit ARU word is discarded.

If any transferred W bit value from the ARU should not be stored in a register, the dummy register $ZERO \in AREG$ can be selected in A or B to discard the corresponding

ARU data. The binary encoding of the address for the dummy register ZERO can be chosen by an arbitrary value within the range 8 to 15.

The received ARU control bits are stored in the register ACB.

The read address is obtained from the bits 0 to 8 of the channels register R6.

At the beginning of the instruction execution the CAT bit in register STA is always cleared.

After the execution of the instruction the SAT flag of the register STA is updated in order to show if the transfer was successful (SAT = 1) or if the transfer failed (SAT = 0) due to a cancellation by the CPU.

The program counter PC is incremented by the value 4.

15.7.20 AWR Instruction

Syntax: AWR A, B, C Operation: ARU(C)[W-1:0] \leftarrow A; ARU(C)[2*W-1:W] \leftarrow B; ARU(C)[4+2*W:2*W] \leftarrow ACB;

Status: CAT, SAT

Duration: Suspends current MCS-channel until ARU transfer finished.

Description: Perform a blocking write access to the ARU and transfer two W bit values to the ARU port using the registers A and B (A \in OREG, B \in OREG), whereas A holds the lower W bit ARU word and B holds the upper W bit ARU word.

The ARU control bits are taken from the register ACB.

The literal C (C \in AWRLIT) defines an index into the pool of ARU write addresses that are used for writing data. This index is mapped to an ARU write address as shown in column "MCS write index" of table "ARU Write Addresses" in Appendix B.

Each MCS sub module has a pool of several write addresses that can be shared between all MCS-channels arbitrarily.

At the beginning of the instruction execution the CAT bit of the register STA is always cleared.

After the execution of the instruction the SAT flag of the register STA is updated in order to show if the transfer was successful (SAT = 1) or if the transfer failed (SAT = 0) due to a cancellation by the CPU.

The program counter PC is incremented by the value 4.

15.7.21 AWRI Instruction

Specification

Syntax: AWRI A, B Operation: ARU(R6[4:0])[W-1:0] ← A; ARU(R6[4:0])[2*W-1:W] ← B; ARU(R6[4:0])[4+2*W:2*W] ← ACB;

Status: CAT, SAT

Duration: Suspends current MCS-channel until ARU transfer finished.

Description: Perform a blocking write access to the ARU and transfer two W bit values to the ARU port using the registers A and B (A \in OREG, B \in OREG), whereas A holds the lower W bit ARU word and B holds the upper W bit ARU word.

The ARU control bits are taken from the register ACB.

The bits 0 to 4 of the register R6 define an index into the pool of ARU write addresses that are used for writing data. This index is mapped to an ARU write address as shown in column "MCS write index" of table "ARU Write Addresses" in Appendix B.

Each MCS sub module has a pool of several write addresses that can be shared between all MCS-channels arbitrarily.

At the beginning of the instruction execution the CAT bit of the register STA is always cleared.

After the execution of the instruction the SAT flag of the register STA is updated in order to show if the transfer was successful (SAT = 1) or if the transfer failed (SAT = 0) due to a cancellation by the CPU.

The program counter PC is incremented by the value 4.

15.7.22 NARD Instruction

Syntax: NARD A, B, C

Operation: $A \leftarrow ARU(C)[W-1:0];$

 $B \leftarrow ARU(C)[2*W:W];$

 $ACB \leftarrow ARU(C)[4+2*W:2*W]$

Status: SAT

Duration: Suspends current MCS-channel until the ARU is selecting the MCS-channel.

Description: Perform a non-blocking read access to the ARU trying to transfer both W bit values received at the ARU port to the registers A and B (A \in AREG, B \in AREG), whereas A holds the lower W bit ARU word, B holds the upper W bit ARU word, and the ACB register holds the received ARU control bits. The literal C (C \in ARDLIT) define the ARU address where to read from.

Non-blocking ARU read acces means that the instruction is suspending the MCS channel until the ARU scheduler is selecting the requesting MCS channel. If the transfer finished successfully, the bit SAT of the register STA is set and the transferred

Specification

values are stored in the registers A, B, and ACB. If the transfer failed due to missing data at the requested source, the bit SAT of the register STA is cleared and registers A, B, and ACB are not changed.

If A and B refer to the same register, only the upper W bit ARU word is stored and the lower W bit ARU word is discard.

If any transferred W bit value from the ARU should not stored in a register, the dummy register ZERO \in AREG can be selected in A or B to discard the corresponding ARU data. The binary encoding of the address for the dummy register ZERO can be chosen by an arbitrary value within the range 8 to 15.

The program counter PC is incremented by the value 4.

15.7.23 NARDI Instruction

Syntax: NARDI A, B Operation: A ← ARU(R6[8:0])[W-1:0]; B ← ARU(R6[8:0])[2*W-1:W]; ACB ← ARU(R6[8:0])[4+2*W:2*W]

Status: SAT

Duration: Suspends current MCS-channel until the ARU is selecting the MCS-channel.

Description: Perform a non-blocking read access to the ARU trying to transfer both W bit values received at the ARU port to the registers A and B (A \in AREG, B \in AREG), whereas A holds the lower W bit ARU word, B holds the upper W bit ARU word, and the ACB register holds the received ARU control bits. The read address is obtained from the bits 0 to 8 of the channels register R6.

Non-blocking ARU read acces means that the instruction is suspending the MCS channel until the ARU scheduler is selecting the requesting MCS channel. If the transfer finished successfully, the bit SAT of the register STA is set and the transferred values are stored in the registers A, B, and ACB. If the transfer failed due to missing data at the requested source, the bit SAT of the register STA is cleared and registers A, B, and ACB are not changed.

If A and B refer to the same register, only the upper W bit ARU word is stored and the lower 24 bit ARU word is discard.

If any transferred W bit value from the ARU should not stored in a register, the dummy register ZERO \in AREG can be selected in A or B to discard the corresponding ARU data. The binary encoding of the address for the dummy register ZERO can be chosen by an arbitrary value within the range 8 to 15.

The program counter PC is incremented by the value 4.

15.7.24 BRD Instruction

Syntax: BRD A, C Operation: A ← BUS(C)[W-1:0]; MHB ← BUS(C)[BDW-1:W]

Status: -

Duration: Suspends current MCS-channel if addressed slave inserts at least one wait cycle (e.g. accessing a RAM module) otherwise 1 instruction cycle.

Description: Initiate a read access at the bus master interface using the address C (C \in BALIT) and transfer the lower W bits of the received data to register A (A \in GREG).

The upper BDW-W bits of the received data are transferred to the MHB register.

If the delay between the a BRD instruction and its successor instruction is one or two system clock cycles (e.g. in accelerated scheduling mode) and the successor instruction is reading data resulting from the BRD instruction, a data hazard in the pipeline occurs resulting in a pipeline flush. This means, if very fast program execution is required (e.g. only one task is activated in accelerated scheduling mode) a program sequence like BRD R1, 0x0288; ADD R3, R1; (9 clock cycles) can be accelerated by reformulating the sequence as BRD R1, 0x0288; NOP; NOP; ADD R3, R1; (4 clock cycles).

Since the MHB register is always transferred via AEI bus master it also figures out another data dependency, which can cause a data hazard resulting in a pipline flush. Therefore a sequence like BRD R1, 0x0288; BWR R3, 0x304 (9 clock cycles) could also be optimized by the sequence BRD R1, 0x0288; NOP; NOP; BWR R3, 0x304(4 clock cycles).

The program counter PC is incremented by the value 4.

15.7.25 BWR Instruction

Syntax: BWR A, C Operation: BUS(C)[W-1:0] ← A; BUS(C)[BDW-1:W] ← MHB

Status: -

Duration: Suspends current MCS-channel if addressed slave inserts at least one wait cycle (e.g. accessing a RAM module) otherwise 1 instruction cycle.

Description: Initiate a write access at the bus master interface using the address C (C \in BALIT) and transfer the content of register A (A \in GREG) to the bits 0 to W-1 of the bus.

The content of the MHB register is transferred to the bits W to BDW-W-1 of the bus. The program counter PC is incremented by the value 4.

15.7.26 BRDI Instruction

Syntax: BRDI A, B Operation: A ← BUS(B[BAW+1:2])[W-1:0]; MHB ← BUS(B[BAW+1:2])[BDW-1:W]

Status: -

Duration: Suspends current MCS-channel if addressed slave inserts at least one wait cycle (e.g. accessing a RAM module) otherwise 1 instruction cycle.

Description: Initiate a read access at the bus master interface using indirect addressing and transfer the lower W bits of the received data to register A (A \in GREG).

The upper BDW-W bits of the received data are transferred to the MHB register.

The address for the transfer is identified by the bits 2 to BAW+1 of register B (B \in GREG).

If the delay between the a BRDI instruction and its successor instruction is one or two system clock cycles (e.g. in accelerated scheduling mode) and the successor instruction is reading data resulting from the BRDI instruction, a data hazard in the pipeline occurs resulting in a pipeline flush. This means, if very fast program execution is required (e.g. only one task is activated in accelerated scheduling mode) a program sequence like BRDI R1, R6; ADD R3, R1; (9 clock cycles) can be accelerated by reformulating the sequence as BRDI R1, R6; NOP; NOP; ADD R3, R1; (4 clock cycles).

Since the MHB register is always transferred via AEI bus master it also figures out another data dependency, which can cause a data hazard resulting in a pipline flush. Therefore a sequence like BRDI R1, R2; BWRI R3, R4 (9 clock cycles) could also be optimized by the sequence BRDI R1, R2; NOP; NOP; BWRI R3, R4 (4 clock cycles).

The program counter PC is incremented by the value 4.

15.7.27 BWRI Instruction

Syntax: BWRI A, B Operation: BUS(B[BAW+1:2])[W-1:0] ← A; BUS(B[BAW+1:2])[BDW-1:W] ← MHB

Status: -

Duration: Suspends current MCS-channel if addressed slave inserts at least one wait cycle (e.g. accessing a RAM module) otherwise 1 instruction cycle.

Specification

Description: Initiate a write access at the bus master interface using the indirect addressing and transfer the content of register A (A \in GREG) to the bits 0 to W-1 of the bus.

The content of the MHB register is transferred to the bits W to BDW-W-1 of the bus. The address for the transfer is identified by the bits 2 to BAW+1 of register B (B \in GREG).

The program counter PC is incremented by the value 4.

15.7.28 ADDL Instruction

Syntax: ADDL A, C Operation: $A \leftarrow A + C$ Status: Z, CY, N, V Duration: 1 instruction cycle

Description: Perform addition operation of a register A (A \in OREG) with a W bit literal value C (C \in WLIT) and store the result in register A.

The zero bit Z of status register STA is set, if the calculated value is zero, otherwise the zero bit is cleared.

The carry bit CY of status register STA is set, if an unsigned overflow/underflow occurred during addition, otherwise the bit is cleared. An unsigned overflow has occurred when the result of the operation cannot be represented in the interval [0; 2^{W} -1], assuming that both operands A and C are unsigned values within the interval [0; 2^{W} -1].

The overflow bit V of status register STA is set, if a signed overflow/underflow occurred during addition, otherwise the bit is cleared. A signed overflow/underflow has occurred when the result of the operation cannot be represented in the interval $[-2^{W-1}; 2^{W-1}-1]$, assuming that both operands A and C are signed values within the interval $[-2^{W-1}; 2^{W-1}-1]$.

The negative bit N of status register STA equals the MSB of the operation result, in order to determine if a calculated signed result is negative (N=1) or positive (N=0), assuming that no overflow/underflow occurred.

The program counter PC is incremented by the value 4.

15.7.29 ADD Instruction

Syntax: ADD A, B **Operation**: $A \leftarrow A + B$

Revision 3.1.5.1

GTM-IP

Specification

Status: Z, CY, N, V **Duration**: 1 instruction cycle **Description**: Perform addition

Description: Perform addition operation of a register A (A \in XOREG) with an operand B (B \in XOREG). The result is stored in the register A.

The zero bit Z of status register STA is set, if the calculated value is zero, otherwise the zero bit is cleared.

The carry bit CY of status register STA is set, if an unsigned overflow occurred during addition, otherwise the bit is cleared. An unsigned overflow has occurred when the result of the operation cannot be represented in the interval [0; 2^{W} -1], assuming that both operands A and B are unsigned values within the interval [0; 2^{W} -1].

The overflow bit V of status register STA is set, if a signed overflow/underflow occurred during addition, otherwise the bit is cleared. A signed overflow/underflow has occurred when the result of the operation cannot be represented in the interval $[-2^{W-1}; 2^{W-1}-1]$, assuming that both operands A and B are signed values within the interval $[-2^{W-1}; 2^{W-1}-1]$.

The negative bit N of status register STA equals the MSB of the operation result, in order to determine if a calculated signed result is negative (N=1) or positive (N=0), assuming that no overflow/underflow occurred.

The program counter PC is incremented by the value 4.

15.7.30 ADDC Instruction

Syntax: ADDC A, B Operation: $A \leftarrow A + B + CY$ Status: Z, CY, N, V Duration: 1 instruction cycle Description: Perform addition operation of a register A (A \in XOREG) with an operand B (B \in XOREG) and the carry flag CY. The result is stored in the register A.

The zero bit Z of status register STA is set, if the calculated value is zero, otherwise the zero bit is cleared.

The carry bit CY of status register STA is set, if an unsigned overflow occurred during addition, otherwise the bit is cleared. An unsigned overflow has occurred when the result of the operation cannot be represented in the interval [0; 2^{W} -1], assuming that both operands A and B are unsigned values within the interval [0; 2^{W} -1].

The overflow bit V of status register STA is set, if a signed overflow/underflow occurred during addition, otherwise the bit is cleared. A signed overflow/underflow has occurred when the result of the operation cannot be represented in the interval $[-2^{W-1}; 2^{W-1}-1]$,

Specification

assuming that both operands A and B are signed values within the interval [-2^{W-1} ; 2^{W-1}].

The negative bit N of status register STA equals the MSB of the operation result, in order to determine if a calculated signed result is negative (N=1) or positive (N=0), assuming that no overflow/underflow occurred.

The program counter PC is incremented by the value 4.

15.7.31 SUBL Instruction

Syntax: SUBL A, C Operation: $A \leftarrow A - C$ Status: Z, CY, N, V Duration: 1 instruction cycle Description: Perform subtraction operation of a register A (A \in OREG) with a W bit literal value C (C \in WLIT). The result is stored in register A.

The zero bit Z of status register STA is set, if the calculated value is zero, otherwise the zero bit is cleared.

The carry bit CY of status register STA is set, if an unsigned underflow occurred during subtraction, otherwise the bit is cleared. An unsigned underflow has occurred when the result of the operation cannot be represented in the interval [0; 2^{W} -1], assuming that both operands A and C are unsigned values within the interval [0; 2^{W} -1].

The overflow bit V of status register STA is set, if a signed overflow/underflow occurred during subtraction, otherwise the bit is cleared. A signed overflow/underflow has occurred when the result of the operation cannot be represented in the interval [-2^{W-1} ; 2^{W-1} -1], assuming that both operands A and C are signed values within the interval [-2^{W-1} ; 2^{W-1} -1].

The negative bit N of status register STA equals the MSB of the operation result, in order to determine if a calculated signed result is negative (N=1) or positive (N=0), assuming that no overflow/underflow occurred.

The program counter PC is incremented by the value 4.

15.7.32 SUB Instruction

Syntax: SUB A, B Operation: $A \leftarrow A - B$ Status: Z, CY, N, V

Duration: 1 instruction cycle

Description: Perform subtraction operation of a register A (A \in XOREG) with an operand B (B \in XOREG). The result is stored in register A.

The zero bit Z of status register STA is set, if the calculated value is zero, otherwise the zero bit is cleared.

The carry bit CY of status register STA is set, if an unsigned underflow occurred during subtraction, otherwise the bit is cleared. An unsigned underflow has occurred when the result of the operation cannot be represented in the interval [0; 2^{W} -1], assuming that both operands A and B are unsigned values within the interval [0; 2^{W} -1].

The overflow bit V of status register STA is set, if a signed overflow/underflow occurred during subtraction, otherwise the bit is cleared. A signed overflow/underflow has occurred when the result of the operation cannot be represented in the interval [-2^{W-1} ; 2^{W-1} -1], assuming that both operands A and B are signed values within the interval [-2^{W-1} ; 2^{W-1} -1].

The negative bit N of status register STA equals the MSB of the operation result, in order to determine if a calculated signed result is negative (N=1) or positive (N=0), assuming that no overflow/underflow occurred.

The program counter PC is incremented by the value 4.

15.7.33 SUBC Instruction

Syntax: SUBC A, B

Operation: $A \leftarrow A - B - CY$

Status: Z, CY, N, V

Duration: 1 instruction cycle **Description**: Perform subtraction operation of a

Description: Perform subtraction operation of a register A (A \in XOREG) with an operand B (B \in XOREG) and the carry flag CY. The result is stored in register A.

The zero bit Z of status register STA is set, if the calculated value is zero, otherwise the zero bit is cleared.

The carry bit CY of status register STA is set, if an unsigned underflow occurred during subtraction, otherwise the bit is cleared. An unsigned underflow has occurred when the result of the operation cannot be represented in the interval [0; 2^{W} -1], assuming that both operands A and B are unsigned values within the interval [0; 2^{W} -1].

The overflow bit V of status register STA is set, if a signed overflow/underflow occurred during subtraction, otherwise the bit is cleared. A signed overflow/underflow has occurred when the result of the operation cannot be represented in the interval [-2^{W-1} ; 2^{W-1} -1], assuming that both operands A and B are signed values within the interval [-2^{W-1} ; 2^{W-1} -1].

The negative bit N of status register STA equals the MSB of the operation result, in order to determine if a calculated signed result is negative (N=1) or positive (N=0), assuming that no overflow/underflow occurred.

The program counter PC is incremented by the value 4.

15.7.34 NEG Instruction

Syntax: NEG A, B Operation: $A \leftarrow B$ Status: Z, N, V Duration: 1 instruction cycle Description: Perform negation operation (2's Complement) with an operand B (B \in XOREG) and store the result in a register A (A \in XOREG).

The zero bit Z of status register STA is set, if the calculated value is zero, otherwise the zero bit is cleared.

The overflow bit V of status register STA is set, if a signed overflow/underflow occurred during subtraction, otherwise the bit is cleared. A signed overflow/underflow has occurred when the result of the operation cannot be represented in the interval [-2^{W-1} ; 2^{W-1} -1], assuming that both operands A and B are signed values within the interval [-2^{W-1} ; 2^{W-1} -1].

The negative bit N of status register STA equals the MSB of the operation result, in order to determine if a calculated signed result is negative (N=1) or positive (N=0), assuming that no overflow/underflow occurred.

The program counter PC is incremented by the value 4.

15.7.35 ANDL Instruction

Syntax: ANDL A, C Operation: $A \leftarrow A$ AND C Status: Z Duration: 1 instruction cycle Description: Perform bitwise AND conjunction of a register A ($A \in OREG$) with a W bit literal value C ($C \in WLIT$) and store the result in register A.

The zero bit Z of status register STA is set, if the calculated value is zero, otherwise the zero bit is cleared.

The program counter PC is incremented by the value 4.

15.7.36 AND Instruction

Syntax: AND A, B Operation: A \leftarrow A AND B Status: Z Duration: 1 instruction cycle Description: Perform bitwise AND conjunction of a register A (A \in XOREG) with an operand B (B \in XOREG) and store the result in register A.

The zero bit Z of status register STA is set, if the calculated value is zero, otherwise the zero bit is cleared.

The program counter PC is incremented by the value 4.

15.7.37 ORL Instruction

Syntax: ORL A, C Operation: A \leftarrow A OR C Status: Z Duration: 1 instruction cycle Description: Perform bitwise OR conjunction of a register A (A \in OREG) with a W bit literal value C (C \in WLIT) and store the result in register A.

The zero bit Z of status register STA is set, if the calculated value is zero, otherwise the zero bit is cleared.

The program counter PC is incremented by the value 4.

15.7.38 OR Instruction

Syntax: OR A, B Operation: $A \leftarrow A \text{ OR B}$ Status: Z Duration: 1 instruction cycle Description: Perform bitwise OR conjunction of a register A (A \in XOREG) with an operand B (B \in XOREG) and store the result in register A.

The zero bit Z of status register STA is set, if the calculated value is zero, otherwise the zero bit is cleared.

The program counter PC is incremented by the value 4.

15.7.39 XORL Instruction

Syntax: XORL A, C Operation: A \leftarrow A XOR C Status: Z Duration: 1 instruction cycle Description: Perform bitwise XOR conjunction of a register A (A \in OREG) with a W bit literal value C (C \in WLIT) and store the result in register A.

The zero bit Z of status register STA is set, if the calculated value is zero, otherwise the zero bit is cleared.

The program counter PC is incremented by the value 4.

15.7.40 XOR Instruction

Syntax: XOR A, B Operation: $A \leftarrow A XOR B$ Status: Z Duration: 1 instruction cycle Description: Perform bitwise XOR conjunction of a register A (A \in XOREG) with an operand B (B \in XOREG) and store the result in register A.

The zero bit Z of status register STA is set, if the calculated value is zero, otherwise the zero bit is cleared.

The program counter PC is incremented by the value 4.

15.7.41 SHR Instruction

Syntax: SHR A, C Operation: $A \leftarrow A >> C$ Status: Z, CY Duration: 1 instruction cycle Description: Perform right shift operation C (C \in SFTLIT) times of register A (A \in XOREG). The MSBs that are shifted into A are cleared.

The zero bit Z of status register STA is set, if the calculated value is zero, otherwise the zero bit is cleared.

The carry bit CY of status register STA is updated to the last LSB that is shifted out of the register. If the shift value C is 0 the carry bit CY is cleared.

The program counter PC is incremented by the value 4.

15.7.42 SHL Instruction

Syntax: SHL A, C Operation: $A \leftarrow A << C$ Status: Z, CY Duration: 1 instruction cycle Description: Perform left shift operation C (C \in SFTLIT) times of register A (A \in XOREG). The LSBs that are shifted into A are cleared.

The zero bit Z of status register STA is set, if the calculated value is zero, otherwise the zero bit is cleared.

The carry bit CY of status register STA is updated to the previous MSB that is shifted out of the register. If the register A contains less than W bits or if C is 0 the carry bit CY is always cleared.

The program counter PC is incremented by the value 4.

15.7.43 ASRU Instruction

Syntax: ASRU A, B Operation: $A \leftarrow A >> B$ Status: Z Duration: 1 instruction cycle

Description: Perform arithmetic unsigned right shift operation, which means that the unsigned operand of register A ($A \in XOREG$) is right shifted B times ($B \in XOREG$). Operand B is also an unsigned type. The MSBs that are shifted into A are cleared.

The zero bit Z of status register STA is set, if the calculated value is zero, otherwise the zero bit is cleared.

The program counter PC is incremented by the value 4.

Specification

15.7.44 ASRS Instruction

Syntax: ASRS A, B Operation: $A \leftarrow A >> B$ Status: Z Duration: 1 instruction cycle

Description: Perform arithmetic signed right shift operation, which means that the signed operand of register A (A \in XOREG) is right shifted B times (B \in XOREG). Operand B is an unsigned type. The operation also performs a sign extension, which means that value of the MSBs that are shifted into A are determined by the MSB of the original operand A.

The zero bit Z of status register STA is set, if the calculated value is zero, otherwise the zero bit is cleared.

The program counter PC is incremented by the value 4.

15.7.45 ASL Instruction

Syntax: ASL A, B Operation: $A \leftarrow A << B$ Status: Z, CY, V Duration: 1 instruction cycle

Description: Perform arithmetic left shift operation for signed and unsigned numbers, which means that the operand of register A (A \in XOREG) is left shifted B times (B \in XOREG). Operand B is always an unsigned type.

The carry bit CY of status register STA is set, if an unsigned overflow occurred during shifting, otherwise the bit is cleared. An unsigned overflow has occurred if the calculated result $A^{*2^{B}}$ cannot be represented in the interval [0; 2^W-1], assuming that both operands A and B are unsigned values within the interval [0; 2^W-1].

The overflow bit V of status register STA is set, if a signed overflow/underflow occurred during shifting, otherwise the bit is cleared. A signed overflow/underflow has occurred when the calculated result A^{2B} cannot be represented in the interval [-2^{W-1} ; 2^{W-1} -1], assuming that signed operand A is within the interval [-2^{W-1} ; 2^{W-1} -1] and the unsigned operand B is within the interval [0; 2^{W-1} -1].

The zero bit Z of status register STA is set, if the calculated value is zero, otherwise the zero bit is cleared.

The program counter PC is incremented by the value 4.

Specification

15.7.46 MULU Instruction

Syntax: MULU A, B[, C] Operation: [[R4,] A] \leftarrow A[(C-1):0] * B[(C-1):0] Status: Z Duration: 1 instruction cycle

Description: Perform an unsigned multiplication operation of an operand A (A \in XOREG) with an operand B (B \in XOREG). The multiplication is only performed with the bits 0 to C-1 (C \in BWSLIT) of both operands A and B and the bits C to W-1 are ignored. If C is less than or equal to W/2, the product of the multiplication is stored in register A and register R4 is left unchanged. If C is greater than W/2, the bits 0 to W-1 are stored in A and the bits W to 2*C-1 are stored in R4. The results stored in the registers are always zero extended to W bits.

If the optional operand C is not specified in the assembler code, the MCS assembler generates code with a default value of W for operand C.

The zero bit Z of status register STA is set, if the calculated product is zero, otherwise the zero bit is cleared.

If the delay between the a MULU instruction and its successor instruction is one system clock cycles (e.g. in accelerated scheduling mode) and the successor instruction is either a WURM, WURMX, WURCX, WUCE, BRDI, BWR, or BWRI instruction that is accessing the multiplication result as argument a data hazard in the pipeline occurs resulting in a pipeline flush.

This means, if very fast program execution is required (e.g. only one task is activated in accelerated scheduling mode) a program sequence like MULU R1, R2; BWRI R1, R3; (9 clock cycles) can be accelerated by reformulating the sequence as MULU R1, R2; NOP; BWRI R1, R3; (3 clock cycles).

The program counter PC is incremented by the value 4.

15.7.47 MULS Instruction

Syntax: MULS A, B[, C] Operation: [[R4,] A] \leftarrow A[(C-1):0] * B[(C-1):0] Status: Z, N Duration: 1 instruction cycle

Description: Perform a signed multiplication operation of an operand A ($A \in XOREG$) with an operand B ($B \in XOREG$). The multiplication is only performed with the bits 0 to C-1 ($C \in BWSLIT$) of both operands A and B, in which bit C-1 is used as sign bit (-2^(C-1)) and the bits C to W-1 are ignored. If C is less than or equal to W/2, the product of the multiplication is stored in register A and register R4 is left unchanged. If C is

greater than W/2, the bits 0 to W-1 are stored in A and the bits W to 2*C-1 are stored in R4. The results stored in the registers are always sign extended to W bits.

If the optional operand C is not specified in the assembler code, the MCS assembler generates code with a default value of W for operand C.

The zero bit Z of status register STA is set, if the calculated product is zero, otherwise the zero bit is cleared.

The negative bit N of status register STA equals the MSB of the operation result, in order to determine if a calculated signed result is negative (N=1) or positive (N=0).

If the delay between the a MULS instruction and its successor instruction is one system clock cycles (e.g. in accelerated scheduling mode) and the successor instruction is either a WURM, WURMX, WURCX, WUCE, BRDI, BWR, or BWRI instruction that is accessing the multiplication result as argument a data hazard in the pipeline occurs resulting in a pipeline flush.

This means, if very fast program execution is required (e.g. only one task is activated in accelerated scheduling mode) a program sequence like MULS R1, R2; BWRI R1, R3; (9 clock cycles) can be accelerated by reformulating the sequence as MULS R1, R2; NOP; BWRI R1, R3; (3 clock cycles).

The program counter PC is incremented by the value 4.

15.7.48 DIVU Instruction

Syntax: DIVU A, B[, C] Operation: R4 ← A[(C-1):0] - B[(C-1):0] * [A[(C-1):0] / B[(C-1):0]]; A ← [A[(C-1):0] / B[(C-1):0]] Status: CY, Z, ERR

Duration: C instruction cycles but not faster than C+NPS-1 clock cycles due to pipeline flushing.

Description: Perform an unsigned division operation of operand A (A \in XOREG \{R4, B}) divided by operand B (B \in XOREG \ {R4, A}). The division is only performed with the bits 0 to C-1 (C \in BWSLIT) of the operands and the remaining bits C to W-1 are ignored. This means that the dynamic range of A and B is defined in the interval [0; 2^C-1]. The integral part of the quotient is stored in the register A and the remainder of the division is stored in register R4. The resulting quotient A and remainder R4 are always zero extended to W bits.

If the optional operand C is not specified in the assembler code, the MCS assembler generates code with a default value of W for operand C.

If the bits 0 to C-1 of operand B are zero, the MCS channel is disabled and the ERR bit in the status register STA is set.

The zero bit Z of status register STA is set, if the calculated quotient in A is zero, otherwise the zero bit is cleared.

The carry bit CY of status register STA is set, if the calculated remainder in R4 is not zero, otherwise the zero bit is cleared.

The program counter PC is incremented by the value 4.

15.7.49 DIVS Instruction

Syntax: DIVS A, B[, C] Operation: R4 ← A[(C-1):0] - B[(C-1):0] * \[A[(C-1):0] / B[(C-1):0] \]; A ← \[A[(C-1):0] / B[(C-1):0] \]

Status: CY, Z, N, V, ERR

Duration: C + 4 instruction cycles but not faster than C+3+NPS clock cycles due to pipeline flushing.

Description: Perform a signed division operation of operand A (A \in XOREG \{R4, B}) divided by operand B (B \in XOREG \ {R4, A}). The division is only performed with the bits 0 to C-1 (C \in BWSLIT) of both operands, in which bit C-1 is used as sign bit (-2^{C-1}) and the bits C to W-1 are ignored. This means that the dynamic range of A[(C-1):0] and B[(C-1):0] is defined in the interval [-2^{C-1}; 2^{C-1}-1]. The integral part of the quotient is stored in the register A and the remainder of the division is stored in register R4. The resulting quotient A and remainder R4 are always sign extended to W bits. The integral part of the quotient is always truncated towards 0. The sign of the remainder is always the same sign as the dividend A[(C-1):0]. The absolute value of the remainder is always less than the divisor B[(C-1):0].

If the optional operand C is not specified in the assembler code, the MCS assembler generates code with a default value of W for operand C.

If the bits 0 to C-1 of operand B are zero, the MCS channel is disabled and the ERR bit in the status register STA is set.

The zero bit Z of status register STA is set, if the calculated quotient in A is zero, otherwise the zero bit is cleared.

The carry bit CY of status register STA is set, if the calculated remainder in R4 is not zero, otherwise the zero bit is cleared.

The overflow bit V of status register STA is set, if the calculated quotient in A cannot be represented in the interval $[-2^{W-1}; 2^{W-1}-1]$, otherwise the overflow bit is cleared.

The negative bit N of status register STA equals the MSB of the quotient, in order to determine if a calculated signed result is negative (N=1) or positive (N=0).

The program counter PC is incremented by the value 4.

15.7.50 MINU Instruction

Syntax: MINU A, B Operation: $A \leftarrow MIN(A, B)$ Status: Z

Duration: 1 instruction cycle

Description: Determine the minimum of an unsigned operand A (A \in XOREG) and an unsigned operand B (B \in XOREG). If A is less than or equal to B, A is left unchanged. Otherwise, if A is greater than B, the operand B is moved to A.

The zero bit Z of status register STA is set, if the calculated result of A is zero, otherwise the zero bit is cleared.

15.7.51 MINS Instruction

Syntax: MINS A, B Operation: $A \leftarrow MIN(A, B)$ Status: Z Duration: 1 instruction cycle Description: Determine the minimum of a signed operand A (A \in XOREG) and a signed operand B (B \in XOREG). If A is less than or equal to B, A is left unchanged. Otherwise, if A is greater than B, the operand B is moved to A.

The zero bit Z of status register STA is set, if the calculated result of A is zero, otherwise the zero bit is cleared.

15.7.52 MAXU Instruction

Syntax: MAXU A, B Operation: $A \leftarrow MAX(A, B)$ Status: Z

Duration: 1 instruction cycle

Description: Determine the maximum of an unsigned operand A (A \in XOREG) and an unsigned operand B (B \in XOREG). If A is greater than or equal to B, A is left unchanged. Otherwise, if A is less than B, the operand B is moved to A.

The zero bit Z of status register STA is set, if the calculated result of A is zero, otherwise the zero bit is cleared.

15.7.53 MAXS Instruction

Syntax: MAXS A, B Operation: $A \leftarrow MAX(A, B)$ Status: Z Duration: 1 instruction cycle

Description: Determine the maximum of a signed operand A ($A \in XOREG$) and a signed operand B ($B \in XOREG$). If A is greater than or equal to B, A is left unchanged. Otherwise, if A is less than B, the operand B is moved to A.

The zero bit Z of status register STA is set, if the calculated result of A is zero, otherwise the zero bit is cleared.

15.7.54 ATUL Instruction

Syntax: ATUL A, C Operation: A - C Status: Z, CY Duration: 1 instruction cycle Description: Arithmetic test with an unsigned operand A (A \in OREG) and an unsigned W bit literal value C (C \in WLIT).

The carry bit CY of status register STA is set if unsigned operand A is less than unsigned literal C.

Otherwise, the carry bit CY of status register STA is cleared if unsigned operand A is greater than or equal to unsigned literal C.

The zero bit Z of status register STA is set, if A equals to C. Otherwise, the zero bit Z of status register STA is cleared, if A is unequal to C. The program counter PC is incremented by the value 4.

15.7.55 ATU Instruction

Syntax: ATU A, B Operation: A - B Status: Z, CY Duration: 1 instruction cycle

Description: Arithmetic Test with an unsigned operand A (A \in XOREG) and an unsigned operand B (B \in XOREG).

The carry bit CY of status register STA is set if unsigned operand A is less than unsigned operand B.

Otherwise, the carry bit CY of status register STA is cleared if unsigned operand A is greater than or equal to unsigned operand B.

The zero bit Z of status register STA is set, if A equals to B.

Otherwise, the zero bit Z of status register STA is cleared, if A is unequal to B. The program counter PC is incremented by the value 4.

15.7.56 ATSL Instruction

Syntax: ATSL A, C Operation: A - C Status: Z, CY Duration: 1 instruction cycle

Description: Arithmetic Test with a signed operand A (A \in OREG) and a signed W bit literal value C (C \in WLIT).

The carry bit CY of status register STA is set if signed operand A is less than signed literal C.

Otherwise, the carry bit CY of status register STA is cleared if signed operand A is greater than or equal to signed literal C.

The zero bit Z of status register STA is set, if A equals to C.

Otherwise, the zero bit Z of status register STA is cleared, if A is unequal to C. The program counter PC is incremented by the value 4.

15.7.57 ATS Instruction

Syntax: ATS A, B

Operation: A - B

Status: Z, CY

Duration: 1 instruction cycle

Description: Arithmetic Test with a signed operand A (A \in XOREG) and a signed operand B (B \in XOREG).

The carry bit CY of status register STA is set if signed operand A is less than signed operand B.

Otherwise, the carry bit CY of status register STA is cleared if signed operand A is greater than or equal to signed operand B.

The zero bit Z of status register STA is set, if A equals to B. Otherwise, the zero bit Z of status register STA is cleared, if A is unequal to B.

The program counter PC is incremented by the value 4.

15.7.58 BTL Instruction

Syntax: BTL A, C Operation: A AND C Status: Z Duration: 1 instruction cycle Description: Bit test of an operand A (A \in OREG) with a W bit literal bit mask C (C \in WLIT). The bit test is performed by applying a bitwise logical AND operation with operand A and the bit mask C without storing the result.

The zero bit Z of status register STA is set, if the calculated value is zero, otherwise the zero bit is cleared.

The program counter PC is incremented by the value 4.

15.7.59 BT Instruction

Syntax: BT A, B Operation: A AND B Status: Z Duration: 1 instruction cycle Description: Bit test of an operand A (A \in XOREG) with an operand B (B \in XOREG), whereas usually one of the operands is a register holding a bit mask.

The bit test is performed by applying a bitwise logical AND operation with register A and register B without storing the result.

The zero bit Z of status register STA is set, if the calculated value is zero, otherwise the zero bit is cleared.

The program counter PC is incremented by the value 4.

15.7.60 SETB Instruction

Syntax: SETB A, B Operation: A[B[4:0]] ↔ Status: Z Duration: 1 instruction cycle

Specification

Description: Set the B[4:0]-th bit ($B \in XOREG$) of an operand A ($A \in XOREG$) to true. Only the bits 0 to 4 of operand B are used as bit index of operand A and the other bits of B are ignored. If the value B[4:0] is greater than or equal to W, the operation of SETB does not modify operand A but the status flag Z is updated.

The zero bit Z of status register STA is set if the modified value of A is zero, otherwise the bit Z is cleared. The Z bit is set e.g. if the B[4:0]-th bit of A is not writable, its value is zero and all other bits of A are cleared.

The program counter PC is incremented by the value 4.

15.7.61 CLRB Instruction

Syntax: CLRB A, B Operation: A[B[4:0]] Status: Z Duration: 1 instruction cycle

Description: Clear the B[4:0]-th bit ($B \in XOREG$) of an operand A ($A \in XOREG$). Only the bits 0 to 4 of operand B are used as bit index of operand A and the other bits of B are ignored. If the value B[4:0] is greater than or equal to W, the operation of CLRB does not modify operand A but the status flag Z is updated.

The zero bit Z of status register STA is set if the modified value of A is zero, otherwise the zero bit is cleared.

The program counter PC is incremented by the value 4.

15.7.62 XCHB Instruction

Syntax: XCHB A, B Operation: A[B[4:0]] ↔Y Status: Z, CY Duration: 1 instruction cycle

Description: Exchange the B[4:0]-th bit ($B \in XOREG$) of an operand A ($A \in XOREG$) with the CY bit in the status register. Only the bits 0 to 4 of operand B are used as bit index of operand A and the other bits of B are ignored. If the value B[4:0] is greater than or equal to W, the operation of XCHB does not modify operand A but the status flag Z is updated and the bit CY is cleared.

The zero bit Z of status register STA is set if the modified value of A is zero, otherwise the zero bit is cleared.

The program counter PC is incremented by the value 4.

Specification

15.7.63 JMP Instruction

Syntax: JMP C Operation: PC \leftarrow C << 2 Status: -Duration: 1 instruction cycle but not faster than NPS clock cycles due to pipeline flushing.

Description: Execute unconditional jump to the memory location C (C \in ALIT).

The program counter PC is loaded with literal C.

15.7.64 JBS Instruction

Syntax: JBS A, B, C Operation: $PC \leftarrow C << 2$ if A[B] is set $PC \leftarrow PC + 4$ if A[B] is clear

Status: -

Duration: 1 instruction cycle but if the jump is executed, it is not faster than NPS clock cycles due to pipeline flushing.

Description: Execute conditional jump to the memory location C (C \in ALIT).

The program counter PC is loaded with literal C if the bit at position B (B \in BITLIT) of operand A (A \in OREG) is set.

Otherwise, if the bit is cleared the program counter PC is incremented by the value 4.

15.7.65 JBC Instruction

Syntax: JBC A, B, COperation: $PC \leftarrow C << 2$ if A[B] is clear $PC \leftarrow PC + 4$ if A[B] is set

Status: -

Duration: 1 instruction cycle but if the jump is executed it is not faster than NPS clock cycles due to pipeline flushing.

Specification

Description: Execute conditional jump to the memory location C ($C \in ALIT$).

The program counter PC is loaded with literal C if the bit at position B (B \in BITLIT) of operand A (A \in OREG) is cleared.

Otherwise, if the bit is set the program counter PC is incremented by the value 4.

15.7.66 CALL Instruction

Syntax: CALL C Operation: R7 \leftarrow R7 + 4; MEM(R7[RAW+USR+1:2])[RAW+USR+1:0] \leftarrow PC + 4; PC \leftarrow C << 2;

 $SP_CNT \leftarrow SP_CNT + 1$

Status: EN

Duration: 2 instruction cycles but not faster than 2*NPS clock cycles due to pipeline flushing.

Description: Call subprogram at memory location C ($C \in ALIT$).

The stack pointer register R7 is incremented by the value 4.

The memory location for the top of the stack is identified by the bits 2 to RAW+1 of the stack pointer register.

After the stack pointer is incremented, the incremented value of the PC is transferred to the top of the stack.

The program counter PC is loaded with literal C. The **SP_CNT** bit field inside the **MCS[i]_CH[x]_CTRL** register is incremented. If an overflow on the **SP_CNT** bit field occurs, the *STK_ERR[i]_IRQ* is raised. If an overflow on the **SP_CNT** bit field occurs and the bit **HLT_SP_OFL** of register **MCS[i]_CTRL_STAT** is set, the channel current MCS-channel is disabled by clearing the **EN** bit of **STA**.

If an overflow on the **SP_CNT** bit field occurs and the bit **HLT_SP_OFL** of register **MCS[i]_CTRL_STAT** is set, the memory write operation of the incremented PC is discarding.

15.7.67 RET Instruction

Syntax: RET
Operation: PC ← MEM(R7[RAW+USR+1:2])[RAW+USR+1:2] << 2;

Robert Bosch GmbH

Specification

 $R7 \leftarrow R7 - 4;$ SP CNT \leftarrow SP CNT - 1

Status: EN

Duration: 2 instruction cycles but not faster than 2*NPS clock cycles due to pipeline flushing.

Description: Return from subprogram.

The program counter PC is loaded with current value on the top of the stack. Finally, the stack pointer register R7 is decremented by the value 4. The memory location for the top of the stack is identified by the bits 2 to RAW+1 of the stack pointer register.

The **SP_CNT** bit field inside the **MCS[i]_CH[x]_CTRL** register is decremented. If an underflow on the **SP_CNT** bit field occurs, the *STK_ERR[i]_IRQ* is raised. If an underflow on the **SP_CNT** bit field occurs and the bit **HLT_SP_OFL** of register **MCS[i]_CTRL** is set, the channel current MCS-channel is disabled by clearing the **EN** bit of **STA**.

15.7.68 JMPI Instruction

Syntax: JMPI

Operation: $PC \leftarrow R6[RAW+USR+1:2] << 2$

Status: -

Duration: 1 instruction cycle but not faster than NPS clock cycles due to pipeline flushing.

Description: Execute indirect unconditional jump to the memory location provided in register R6. The destination address is only defined by the bits 2 to RAW+USR+1 of R6 and the other bits are ignored.

The program counter PC is loaded with (R6[RAW+USR+1:2] << 2).

15.7.69 JBSI Instruction

Syntax: JBSI A, B Operation: $PC \leftarrow R6[RAW+USR+1:2] << 2$ if A[B] is set $PC \leftarrow PC + 4$ if A[B] is clear

Status: -

Duration: 1 instruction cycle but if the jump is executed it is not faster than NPS clock cycles due to pipeline flushing.

Specification

Description: Execute indirect conditional jump to the memory location provided in register R6. The destination address is only defined by the bits 2 to RAW+USR+1 of R6 and the other bits are ignored.

The program counter PC is loaded with (R6[RAW+USR+1:2] << 2) only if the bit at position B (B \in XBITLIT) of operand A (A \in XOREG) is set.

Otherwise, if the bit is cleared the program counter PC is incremented by the value 4.

15.7.70 JBCI Instruction

Syntax: JBCI A, BOperation: $PC \leftarrow R6[RAW+USR+1:2] << 2$ if A[B] is clear $PC \leftarrow PC + 4$ if A[B] is set

Status: -

Duration: 1 instruction cycle but if the jump is executed it is not faster than NPS clock cycles due to pipeline flushing.

Description: Execute indirect conditional jump to the memory location provided in register R6. The destination address is only defined by the bits 2 to RAW+USR+1 of R6 and the other bits are ignored.

The program counter PC is loaded with (R6[RAW+USR+1:2] << 2) only if the bit at position B (B \in XBITLIT) of operand A (A \in XOREG) is cleared.

Otherwise, if the bit is set the program counter PC is incremented by the value 4.

15.7.71 CALLI Instruction

Syntax: CALLI Operation: R7 \leftarrow R7 + 4; MEM(R7[RAW+USR+1:2])[RAW+USR+1:0] \leftarrow PC + 4; PC \leftarrow R6[RAW+USR+1:2] << 2;

 $SP_CNT \leftarrow SP_CNT + 1$

Status: EN

Duration: 2 instruction cycles but not faster than 2*NPS clock cycles due to pipeline flushing.

Specification

Description: Call subprogram indirectly, where the register R6 is identifying the target memory location. The destination address is only defined by the bits 2 to RAW+USR+1 of R6 and the other bits are ignored.

The stack pointer register R7 is incremented by the value 4. The memory location for the top of the stack is identified by the bits 2 to RAW+1 of the stack pointer register.

After the stack pointer is incremented, the incremented value of the PC is transferred to the top of the stack.

The program counter PC is loaded with (R6[RAW+USR+1:2] << 2), The **SP_CNT** bit field inside the **MCS[i]_CH[x]_CTRL** register is incremented. If an overflow on the **SP_CNT** bit field occurs, the *STK_ERR[i]_IRQ* is raised. If an overflow on the **SP_CNT** bit field occurs and the bit **HLT_SP_OFL** of register **MCS[i]_CTRL_STAT** is set, the channel current MCS-channel is disabled by clearing the **EN** bit of **STA**.

If an overflow on the **SP_CNT** bit field occurs and the bit **HLT_SP_OFL** of register **MCS[i]_CTRL_STAT** is set, the memory write operation of the incremented PC is discarding.

15.7.72 WURM Instruction

Syntax: WURM A, B, C

Operation: Wait until register match.

Status: CWT

Duration: Suspends current MCS-channel. If the MCS is configured in Single Prioritization or Multiple Prioritization Scheduling Mode, the worst case latency for reactivating a prioritized MCS-channel is 2+NPS clock cycles. This is the delay between the match event of the corresponding WURM instruction and the beginning of the following MCS instruction.

Description: Suspend current MCS-channel until the following register match condition occurs:

A = (B AND MASK),

whereas $A \in OREG$, $B \in OREG$, AND is a bitwise AND operation with bitmask MASK. The bits 16 to 23 of MASK are set to true and the bits 0 to 15 are copied from the instructions literal $C \in MSKLIT$. If the match condition evaluates to true, the suspended MCS channel is resumed and the program counter PC is incremented by the value 4 meaning that the MCS channel continues its program. However, if the match condition is true at the beginning of the instruction execution, the instruction does not suspend the channel and the program counter PC is incremented by the value 4.

Specification

At the beginning of the instruction execution the CWT bit in the register STA is always cleared. After the execution of the instruction the CWT bit is updated in order to show if the instruction finished successfully (CWT = 0) or it was canceled by the CPU (CWT = 1).

This instruction can be used to wait for one or more trigger events generated by other MCS-channels or the CPU. In this case register B is the trigger register **STRG**, A is a general purpose register holding the bits with the trigger condition to wait for and C is the bitmask that enables trigger bits of interest. The trigger bits can be set by other MCS channels with a write access (e.g. using a MOVL instruction) to the **STRG** register or the CPU with a write access to the **MCS[i]_STRG** register. The trigger bits are not cleared automatically by hardware after resuming an MCS-channel, but they have to be cleared explicitly with a write access to the register **CTRG** by the MCS-channel or with a write access to the register **MCS[i]_CTRG** by the CPU. Please note that more than one channel can wait for the same trigger bit to continue.

The instruction can also be used to wait on a specific time/angle event provided by the TBU. In this case register B is the interesting TBU register TBU_TS0 or TBU_TS1, register A is a general purpose register holding the value to wait for and bitmask C should be set to 0xFFFF.

15.7.73 WURMX Instruction

Syntax: WURMX A, B

Operation: Wait until extended register match.

Status: CWT

Duration: Suspends current MCS-channel. If the MCS is configured in Single Prioritization or Multiple Prioritization Scheduling Mode, the worst case latency for reactivating a prioritized MCS-channel is 2+NPS clock cycles. This is the delay between the match event of the corresponding WURMX instruction and the beginning of the following MCS instruction.

Description: Suspend current MCS-channel until the following register match condition occurs:

A = B AND R6,

whereas $A \in OREG$, $B \in WXREG$, and AND is a bitwise AND operation. If the match condition evaluates to true, the suspended MCS channel is resumed and the program counter PC is incremented by the value 4 meaning that the MCS channel continues its program. However, if the match condition is true at the beginning of the instruction execution, the instruction does not suspend the channel and the program counter PC is incremented by the value 4.

At the beginning of the instruction execution the CWT bit in the register STA is always cleared. After the execution of the instruction the CWT bit is updated in order to show if the instruction finished successfully (CWT = 0) or it was canceled by the CPU (CWT = 1).

15.7.74 WURCX Instruction

Syntax: WURCX A, B

Operation: Wait until extended register change.

Status: CWT

Duration: Suspends current MCS-channel. If the MCS is configured in Single Prioritization or Multiple Prioritization Scheduling Mode, the worst case latency for reactivating a prioritized MCS-channel is 2+NPS clock cycles. This is the delay between the match event of the corresponding WURCX instruction and the beginning of the following MCS instruction.

Description: Suspend current MCS-channel until the following register change condition occurs:

A ≠ B AND R6,

whereas $A \in OREG$, $B \in WXREG$, and AND is a bitwise AND operation. If the change condition evaluates to true, the suspended MCS channel is resumed and the program counter PC is incremented by the value 4 meaning that the MCS channel continues its program. However, if the change condition is true at the beginning of the instruction execution, the instruction does not suspend the channel and the program counter PC is incremented by the value 4.

At the beginning of the instruction execution the CWT bit in the register STA is always cleared. After the execution of the instruction the CWT bit is updated in order to show if the instruction finished successfully (CWT = 0) or it was canceled by the CPU (CWT = 1).

The WURCX instruction can be used for observation of volatile registers (e.g. register DSTAX) in order to react on status signal changes.

15.7.75 WUCE Instruction

Syntax: WUCE A, B

Operation: Wait until cyclic event.

Status: CWT

Duration: Suspends current MCS-channel. If the MCS is configured in Single Prioritization or Multiple Prioritization Scheduling Mode, the worst case latency for

Specification

reactivating a prioritized MCS-channel is 2+NPS clock cycles. This is the delay between the match event of the corresponding WUCE instruction and the beginning of the following MCS instruction.

Description: Suspend current MCS-channel until a cyclic event compare matches. The meaning of a cyclic event is described in section 2.4.2. The WUCE instruction can be used to synchronize an MCS program to a cyclic event generated by a TBU channel. If the event is in the future, the MCS channel suspends until the event occurs. If the event is in the past, the WUCE instruction is finished immediatly.

The cyclic event compare is used to detect time base overflows and to guarantee, that a compare match event can be set up for the future even when the time base will first overflow and then reach the compare value. Please note, that for a correct behavior of this cyclic event compare, the compare value must not be specified larger/smaller than half of the range of the total time base value (0x7FFFF).

The actual implementation of the WUCE implementation simply performs the subtraction B - A with each clock cycle and it suspends the MCS channel as long as bit W-1 of the subtraction result is set. If the subtration result is cleared the MCS channel is resumed immediatly.

In order to setup a WUCE instruction correctly, the counting direction of the TBU channel has to be considered. If the TBU channel is counting forward (incrementing), the operand A (A \in OREG) must refer the compare value and operand B (B \in OREG) must refer the desired TBU counter register (e.g. TBU_TS0). On the other hand, if the TBU channel is counting backward (decrementing), the operand A refers the desired TBU counter register and operand B referes the compare value.

If the comparison condition evaluates to true, the suspended MCS channel is resumed and the program counter PC is incremented by the value 4 meaning that the MCS channel continues its program. However, if the condition is true at the beginning of the instruction execution, the instruction does not suspend the channel and the program counter PC is incremented by the value 4.

At the beginning of the instruction execution the CWT bit in the register STA is always cleared. After the execution of the instruction the CWT bit is updated in order to show if the instruction finished successfully (CWT = 0) or it was canceled by the CPU (CWT = 1).

15.7.76 NOP Instruction

Syntax: NOP Operation: -Status: -Duration: 1 instruction cycle Description: No operation is performed. The program counter PC is incremented by the value 4.

15.8MCS Internal Register Overview

15.8.1 MCS Internal Register Overview

Register Name	Description	Details in	
		Section	
R[y] (y: 07)	General Purpose Register y	15.9.1	
RS[y] (y: 07)	Mirror of succeeding channels register R[y]	15.9.2	
STA	Status Register	15.9.3	
ACB	ARU Control Bit Register	15.9.4	
CTRG	Clear Trigger Bits Register	15.9.5	
STRG	Set Trigger Bits Register	15.9.6	
TBU_TS0	TBU Timestamp TS0 Register	15.9.7	
TBU_TS1	TBU Timestamp TS1 Register	15.9.8	
TBU TS2	TBU Timestamp TS2 Register	15.9.9	
MHB	Memory High Byte Register	15.9.10	
GMI0	GTM Module Interrupt 0 Register	15.9.11	
GMI1	GTM Module Interrupt 1 Register	15.9.12	
DSTA	DPLL Status Register	15.9.13	
DSTAX	DPLL Extended Status Register	15.9.14	

15.9MCS Internal Register Description

This section describes the MCS internal registers that can be directly addressed with the MCS instruction set. Many of the registers can also be addressed by the CPU but

with another Register Label (for details see section 15.11). Some of the internal registers are also shared between neighboring MCS channels.

15.9.1 Register R[y] (y:0...7)

Address Offset:	0x0+y Initial Value: 0x000000
	31 30 30 29 27 27 26 25 25 25 25 25 23 23 23 23 23 23 21 10 11 11 11 11 11 11 11 12 13 13 13 13 16 11 11 16 11 16 17 27 26 27 27 27 26 26 26 26 26 26 26 26 26 26 26 27 26 26 26 26 27 26 26 26 26 26 26 26 26 26 26 26 26 26
Bit	n/a DATA
Mode	RW
Initial Value	0000x0 00 ⁻

Bit 23:0 **DATA**: data field of general purpose register. Bit 31:24 n/a

Note: Register **R4** is also used as destination register of upper multiplication result from instructions MULU and MULS.

Note: Register **R5** is also used as offset register for the instructions MRDIO and MWRIO.

Note: Register **R6** is also used as a mask register for the instruction WURMX and WURCX.

Note: Register **R6** is also used as address destination register for the instructions JMPI, JBSI, JBCI, and CALLI.

Note: Register **R6** used also as index/address register for indirect ARU addressing instructions.

Note: Register **R7** is also used as stack pointer register, if stack operations are used in the MCS micro program.

15.9.2 Register RS[y] (y:0...7)

Specification

Address Offset:	0x10+y		Initial Value:	0x000000
	31 30 29 28 27 26 25 25 25	23 22 20 20 19 18 17 17	15 14 13 13 12 11 10 9 9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Bit	ъ∕а		DATA	
Mode			RW	
Initial Value			000 ⁻ 00	

Bit 23:0 **DATA**: data field of general purpose register.

Bit 31:24 n/a

Note: The register **RS[y]** (with $y = 0 \dots 7$) mirrors the internal general purpose register **R[y]** of the succeeding MCS channel. The successor of MCS channel T-1 is MCS channel 0.

Note: The registers **RS[y]** can only be accessed if bit **EN_XOREG** of register **MCS[i]_CTRL_STAT** is set.

Address Offset:	0x8	0x8									Initial Value:							0x000000												
	31 30	29 29	28	27	20	24	23	22	21 21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	9	5	4	3	2	1	0
Bit			n/a			-			Reserved				SP_CNT				Reserved			SAT	CWT	CAT	Z	٨	Z	сү	MCA	ERR	IRQ	EN
Mode									щ				Ж				щ			R	R	R	R	R	щ	Я	RAw	RW	RW	RW
Initial Value									0×00				000				00×00			0	0	0	0	0	0	0	0	0	0	0
Bit 0 Bit 1	0 =	= D = E	isa nał	ble ble	cu cu	irre rre	ent nt	N	ACS ACS ICS	3-c	ha	Inr	nel.										I	I	1	1	1	I	I I]

15.9.3 Register STA

G	ТΜ	-IP

Note: An MCS-channel triggers an IRQ by writing value 1 to bit IRQ. Writing a value 0 to this bit does not cancel the IRQ, and thus has no effect.

Note: This bit mirrors bit 0 of the register **MCS[i]_CH[x]_IRQ_NOTIFY**.

- **Note**: The IRQ bit can only be cleared by CPU, by writing a 1 to the corresponding **MCS[i]_CH[x]_IRQ_NOTIFY** register (see section 15.11.6).
- **Note:** An MCS-channel can read the IRQ bit in order to determine the current state of the IRQ handling. The MCS-channel reads a value 1 if an IRQ was released but not cleared by CPU. If an MCS-channel reads a value 0 no IRQ was released or it has been cleared by CPU.
- **Note**: If NPS > 5 and an MCS program triggers the IRQ (e.g. by MOVL STA, 0x2) the actual interrupt event is delayed by NPS-5 clock cycles, which means that an immediate read of the interrupt notify flag (e.g. by MOV R2, STA) may signalize the state of the IRQ bit before the trigger.

Bit 2 **ERR**: Set Error Signal.

0 = No Error occurred.

1 = Error occurred.

Note: The **ERR** bit of an MCS-channel reflects an Error status that may be caused by one of the following conditions:

• MCS-channel sets the **ERR** bit by software (e.g. with instruction ORL STA, 0x4)

• ECC RAM Error occurred while accessing the connected RAM (also disables the MCS-channel by clearing bit **EN** and the first error occurred updates bit field **ERR_SRC_ID** of register **MCS[i]_CTRL_STAT**)

• Decoding an instruction with an invalid opcode (also disables the MCS-channel by clearing bit **EN** and the first error occurred updates bit field **ERR_SRC_ID** of register **MCS[i]_CTRL_STAT**)

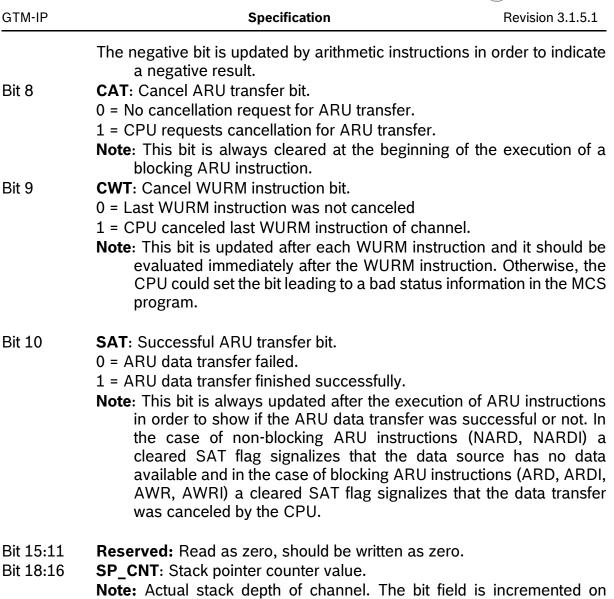
• A memory address range overflow occurred (also disables the MCS-channel by clearing bit **EN** and the first error occurred updates bit field **ERR_SRC_ID** of register **MCS[i]_CTRL_STAT**)

• Division by zero resulting from a **DIVU** or **DIVS** instruction (also disables the MCS-channel by clearing bit **EN** and the first error occurred updates bit field **ERR_SRC_ID** of register **MCS[i]_CTRL_STAT**).

• MCS channel wants to write to a GPR that is write protected by register **MCS[i]_REG_PROT** (also disables the MCS-channel by clearing bit **EN** and the first error occurred updates bit field **ERR_SRC_ID** of register **MCS[i]_CTRL_STAT**).

• MCS channel wants to write to a protected memory range defined by an address range protector (ARP) of the sub module CCM (also disables the MCS-channel by clearing bit **EN** and the first error

Specification


occurred updates bit field ERR SRC ID of register MCS[i] CTRL STAT).

 MCS channel performs an invalid AEI bus master access while the bit field HLT AEIM ERR of register MCS[i] CTRL STAT is set (also disables the MCS-channel by clearing bit **EN** and the first error field **ERR SRC ID** occurred updates bit of register MCS[i] CTRL STAT)

- **Note:** If the ERR bit is set due to a memory address range overflow any read or write access to the RAM is blocked.
- **Note:** If the GTM includes a MON sub module, the ERR signal is always captured by this module.
- **Note:** An MCS-channel can set the error bit by writing value 1 to bit ERR. Writing a value 0 to this bit does not cancel the error signal, and thus has no effect. In Addition, writing a value 1 to ERR always triggers the ERR interrupt, independently from the current state of the error signal.
- **Note:** The ERR bit can only be cleared by CPU, by writing a 1 to the MCS[i] ERR register (see section 15.11.18).
- **Note:** An MCS-channel can read the ERR bit in order to determine the current state of the error signal. The MCS-channel reads a value 1 if an ERR occurred previously, but not cleared by CPU. If an MCSchannel reads a value 0 no error was set or it has been cleared by CPU.

Bit 3	 MCA: MON Activity signaling for MCS channel. 0 = No activity signaled to sub module MON. 1 = Activity singled to sub module MON. Note: When this bit is set the corresponding channel in the MON sub module register MON_ACTIVITY is set (see 22.8.2. This bit is automatically cleared after writing it by the MCS channel program.
Bit 4	CY : Carry bit. The carry bit is updated by several arithmetic and logic instructions. In arithmetic operations, the carry bit indicates an unsigned under/overflow.
Bit 5	Z: Zero bit.The zero bit is updated by several arithmetic, logic and data transfer instructions to indicate a result of zero.
Bit 6	V: Overflow bit. The overflow bit is updated by arithmetic instructions in order to indicate a signed under/overflow.
Bit 7	N: Negative bit.

GTM-IP

- **Note:** Actual stack depth of channel. The bit field is incremented on behalf of a CALL or PUSH instruction and decremented on behalf of a RET or POP instruction. The MCS channel STK_ERR_IRQ is raised, when an overflow or underflow is detected on this bit field.
- Bit 23:19 **Reserved:** Read as zero, should be written as zero.

Bit 31:24 n/a

Note: Writing to bits of the register STA with instructions that do implicitly a readmodify-write operation (e.g. "ANDL STA 0xFFFFE" or "OR STA R0") is dangerous, since writing back the possibly modified content of the read access (which reflects status information) may cause undesirable results. A secure way for writing to bits of the register STA is to use instructions that do not read the content of STA (e.g. "MOVL STA 0x0, MOV STA R1, CLRB STA R0, or SETB STA R1").

15.9.4 Register ACB

Specification

Address Offset:	0x9		Initial Value:	0x000000					
	31 30 29 28 28 27 26 25 24	23 22 21 20 19 18 17 16	15 14 13 13 12 11 11 9 8	7 5 3 3 3 1 1 1					
Bit	ц/а		Reserved	ACB4 ACB3 ACB2 ACB1 ACB0					
Mode		R WR WR							
Initial Value			0000×0	0000					
Bit 0 Bit 1		updated by each A each ARU write acc		nd its value is sent ne ARU word.					
		is updated by each ARU read access and its value is sent y each ARU write access on bit 49 of the ARU word.							
Bit 2				nd its value is sent ne ARU word.					
Bit 3				nd its value is sent ne ARU word.					
Bit 4				nd its value is sent ne ARU word.					
Bit 23:5 Bit 31:24	Reserved: Read n/a	as zero, should be	e written as zero.						

15.9.5 Register CTRG

Specification

Revision 3.1.5.1

Address Offset:	0xA										iti	al	Va	alu	ie:	;		0x000000									
	31 30 29 28 28 27 26 25 25	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	6	5	4	с	2	1	0		
Bit	ц/а	TRG23	TRG22	TRG21	TRG20	TRG19	TRG18	TRG17	TRG16	TRG15	TRG14	TRG13	TRG12	TRG11	TRG10	TRG9	TRG8	TRG7	TRG6	TRG5	TRG4	TRG3	TRG2	TRG1	TRGO		
Mode		RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW		
Initial Value		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Bit 0	TRG0: trigger bit READ access: state of current state of input s WRITE access: 0 = do nothing 1 = clear trigger	t tr igr	igg nal	T	IM	[i]														UT	=	1					
Bit 1	<pre>TRG1: trigger bit 1. READ access: state of current trigger bit TRG1 if EN_TIM_FOUT = 0 state of input signal TIM[i]_CH1_F_OUT if EN_TIM_FOUT = 1 WRITE access: 0 = do nothing 1 = clear trigger bit TRG1</pre>																										
Bit 2	TRG2: trigger bit READ access: state of current state of input s WRITE access: 0 = do nothing 1 = clear trigge	t tr igr	nal	T	IM	[i]								_						UI	「 =	1					
Bit 3	TRG3: trigger bit READ access: state of current state of input s WRITE access: 0 = do nothing 1 = clear trigge	t tr igr	rigg nal	T	IM	[i]								_						UT	¯ =	: 1					
Bit 4	TRG4: trigger bit READ access:	4.																									

GTM-IP	Specification	Revision 3.1.5.2
	<pre>state of current trigger bit TRG4 if EN_TIM_FOUT = state of input signal TIM[i]_CH4_F_OUT if EN_TIM_ WRITE access: 0 = do nothing 1 = clear trigger bit TRG4</pre>	
Bit 5	<pre>TRG5: trigger bit 5. READ access: state of current trigger bit TRG5 if EN_TIM_FOUT = state of input signal TIM[i]_CH5_F_OUT if EN_TIM_ WRITE access: 0 = do nothing 1 = clear trigger bit TRG5</pre>	
Bit 6	<pre>TRG6: trigger bit 6. READ access: state of current trigger bit TRG6 if EN_TIM_FOUT = state of input signal TIM[i]_CH6_F_OUT if EN_TIM_ WRITE access: 0 = do nothing 1 = clear trigger bit TRG6</pre>	
Bit 7	<pre>TRG7: trigger bit 7. READ access: state of current trigger bit TRG7 if EN_TIM_FOUT = state of input signal TIM[i]_CH7_F_OUT if EN_TIM_ WRITE access: 0 = do nothing 1 = clear trigger bit TRG7</pre>	
Bit 8	<pre>TRG8: trigger bit 8. READ access: state of current trigger bit TRG8 if EN_TIM_FOUT = state of input signal TIM[i+1]_CH0_F_OUT if EN_TI WRITE access: 0 = do nothing 1 = clear trigger bit TRG8</pre>	
Bit 9	<pre>TRG9: trigger bit 9. READ access: state of current trigger bit TRG9 if EN_TIM_FOUT = state of input signal TIM[i+1]_CH1_F_OUT if EN_TI WRITE access: 0 = do nothing 1 = clear trigger bit TRG9</pre>	

Bit 10 **TRG10:** trigger bit 10.

GTM-IP	Specification	Revision 3.1.5
	READ access: state of current trigger bit TRG10 if EN_TIM_FO state of input signal TIM[i+1]_CH2_F_OUT if EN WRITE access: 0 = do nothing 1 = clear trigger bit TRG10	
Bit 11	<pre>TRG11: trigger bit 11. READ access: state of current trigger bit TRG11 if EN_TIM_FO state of input signal TIM[i+1]_CH3_F_OUT if EN WRITE access: 0 = do nothing 1 = clear trigger bit TRG11</pre>	
Bit 12	<pre>TRG12: trigger bit 12. READ access: state of current trigger bit TRG12 if EN_TIM_FO state of input signal TIM[i+1]_CH4_F_OUT if EN WRITE access: 0 = do nothing 1 = clear trigger bit TRG12</pre>	
Bit 13	<pre>TRG13: trigger bit 13. READ access: state of current trigger bit TRG13 if EN_TIM_FO state of input signal TIM[i+1]_CH5_F_OUT if EN WRITE access: 0 = do nothing 1 = clear trigger bit TRG13</pre>	
Bit 14	<pre>TRG14: trigger bit 14. READ access: state of current trigger bit TRG14 if EN_TIM_FO state of input signal TIM[i+1]_CH6_F_OUT if EN WRITE access: 0 = do nothing 1 = clear trigger bit TRG14</pre>	
Bit 15	<pre>TRG15: trigger bit 15. READ access: state of current trigger bit TRG15 if EN_TIM_FO state of input signal TIM[i+1]_CH7_F_OUT if EN WRITE access: 0 = do nothing 1 = clear trigger bit TRG15</pre>	

Confidential

GTM-IP	Specification	Revision 3.1.5.1
Bit 16	TRG16: trigger bit 16.	
	0 = READ: trigger bit is cleared / WRITE : do nothing	
	1 = READ: trigger bit is set / WRITE : clear trigger bit	
Bit 17	TRG17: trigger bit 17.	
	0 = READ: trigger bit is cleared / WRITE : do nothing	
	1 = READ: trigger bit is set / WRITE : clear trigger bit	
Bit 18	TRG18: trigger bit 18.	
	0 = READ: trigger bit is cleared / WRITE : do nothing	
	1 = READ: trigger bit is set / WRITE : clear trigger bit	
Bit 19	TRG19: trigger bit 19.	
	0 = READ: trigger bit is cleared / WRITE : do nothing	
	1 = READ: trigger bit is set / WRITE : clear trigger bit	
Bit 20	TRG20: trigger bit 20.	
	0 = READ: trigger bit is cleared / WRITE : do nothing	
	1 = READ: trigger bit is set / WRITE : clear trigger bit	
Bit 21	TRG21: trigger bit 21.	
	0 = READ: trigger bit is cleared / WRITE : do nothing	
	1 = READ: trigger bit is set / WRITE : clear trigger bit	
Bit 22	TRG22: trigger bit 22.	
	0 = READ: trigger bit is cleared / WRITE : do nothing	
	1 = READ: trigger bit is set / WRITE : clear trigger bit	
Bit 23	TRG23: trigger bit 23.	
	0 = READ: trigger bit is cleared / WRITE : do nothing	
	1 = READ: trigger bit is set / WRITE : clear trigger bit	
	Note: The trigger bits TRGx are accessible by all MC	
	as the CPU. Setting a trigger bit can be perform	
	register, in the case of an MCS-channel or the case of the CBU. Clearing a	
	register in the case of the CPU. Clearing a performed with the CTRG register, in the case of	
	or the MCS[i]_CTRG register in the case of the	
	can be used for signalizing specific events to M	
	CPU. An MCS-channel suspended with a WURM	
	resumed by setting the appropriate trigger bit.	
	Nete Desides estives the twister white with a sister CTI	

Note: Besides setting the trigger bits with register STRG/MCS[i]_STRG, the k-th trigger bit TRGk (with k < 16) can also be set by the external capture event that is enabled by the k-th bit of register CCM[i]_EXT_CAP_EN. If bit k bit is disabled, the k-th trigger bit TRGk can only be set by MCS or CPU.

Bit 31:24 n/a

Note: The result of a read access to this register differs in dependency of the bit field **EN_TIM_FOUT** of register **MCS[i]_CTRL_STAT**.

Specification

15.9.6 Register STRG

Address Offset:	0xB											Initial Value:							0x000000								
	31 30 29 28 28 27 26 25 25 24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	з	2	1	0		
Bit	п/а	TRG23	TRG22	TRG21	TRG20	TRG19	TRG18	TRG17	TRG16	TRG15	TRG14	TRG13	TRG12	TRG11	TRG10	TRG9	TRG8	TRG7	TRG6	TRG5	TRG4	TRG3	TRG2	TRG1	TRG0		
Mode		RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW		
Initial Value		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Bit 0 Bit 1	TRG0: trigger bit 0 = READ: trigger 1 = READ: trigger TRG1: trigger bit	rb rb 1.	it i	s s	set	:/	W	Ŕľ	ΤE	:	se	t tı	ig	ge	r b	oit	0										
Bit 2	1 = READ: trigger TRG2: trigger bit 0 = READ: trigger	D = READ: trigger bit is cleared / WRITE : do nothing L = READ: trigger bit is set / WRITE : set trigger bit FRG2: trigger bit 2. D = READ: trigger bit is cleared / WRITE : do nothing																									
Bit 3	TRG3: trigger bit 0 = READ: trigger	 1 = READ: trigger bit is set / WRITE : set trigger bit TRG3: trigger bit 3. 0 = READ: trigger bit is cleared / WRITE : do nothing 1 = READ: trigger bit is set / WRITE : set trigger bit 																									
Bit 4	TRG4: trigger bit 0 = READ: trigger 1 = READ: trigger	4. r b	oit i	s c	le	ar	ed	/'	WI	RI'	ΤE	: (do	n	oth	nin	g										
Bit 5	TRG5: trigger bit 0 = READ: trigger 1 = READ: trigger	5. r b	it i	s c	le	ar	ed	//	WI	RI'	ΤE	: (do	no	oth	nin	g										
Bit 6	TRG6: trigger bit 0 = READ: trigger 1 = READ: trigger	r b															g										
Bit 7	TRG7: trigger bit 0 = READ: trigger 1 = READ: trigger	r b															g										
Bit 8	TRG8: trigger bit 0 = READ: trigger	 1 = READ: trigger bit is set / WRITE : set trigger bit TRG8: trigger bit 8. 0 = READ: trigger bit is cleared / WRITE : do nothing 1 = READ: trigger bit is set / WRITE : set trigger bit 																									
Bit 9	 TRG9: trigger bit 9. 0 = READ: trigger bit is cleared / WRITE : do nothing 1 = READ: trigger bit is set / WRITE : set trigger bit 																										
Bit 10	TRG10: trigger bi 0 = READ: trigger	it 1	L O .										-	-			g										

GTM-IP	Specification	Revision 3.1.5.1
	1 = READ: trigger bit is set / WRITE : set trigger bit	
Bit 11	TRG11: trigger bit 11.	
	0 = READ: trigger bit is cleared / WRITE : do nothing	
	1 = READ: trigger bit is set / WRITE : set trigger bit	
Bit 12	TRG12: trigger bit 12.	
	0 = READ: trigger bit is cleared / WRITE : do nothing	
	1 = READ: trigger bit is set / WRITE : set trigger bit	
Bit 13	TRG13: trigger bit 13.	
	0 = READ: trigger bit is cleared / WRITE : do nothing	
	1 = READ: trigger bit is set / WRITE : set trigger bit	
Bit 14	TRG14: trigger bit 14.	
	0 = READ: trigger bit is cleared / WRITE : do nothing	
D:4 1 C	1 = READ: trigger bit is set / WRITE : set trigger bit	
Bit 15	TRG15: trigger bit 15.	
	0 = READ: trigger bit is cleared / WRITE : do nothing	
Di+ 16	1 = READ: trigger bit is set / WRITE : set trigger bit	
Bit 16	TRG16: trigger bit 16.	
	0 = READ: trigger bit is cleared / WRITE : do nothing 1 = READ: trigger bit is set / WRITE : set trigger bit	
Bit 17	TRG17: trigger bit 17.	
	0 = READ: trigger bit is cleared / WRITE : do nothing	
	1 = READ: trigger bit is set / WRITE : set trigger bit	
Bit 18	TRG18: trigger bit 18.	
DITIO	0 = READ: trigger bit is cleared / WRITE : do nothing	
	1 = READ: trigger bit is set / WRITE : set trigger bit	
Bit 19	TRG19: trigger bit 19.	
	0 = READ: trigger bit is cleared / WRITE : do nothing	
	1 = READ: trigger bit is set / WRITE : set trigger bit	
Bit 20	TRG20: trigger bit 20.	
	0 = READ: trigger bit is cleared / WRITE : do nothing	
	1 = READ: trigger bit is set / WRITE : set trigger bit	
Bit 21	TRG21: trigger bit 21.	
	0 = READ: trigger bit is cleared / WRITE : do nothing	
	1 = READ: trigger bit is set / WRITE : set trigger bit	
Bit 22	TRG22: trigger bit 22.	
	0 = READ: trigger bit is cleared / WRITE : do nothing	
	1 = READ: trigger bit is set / WRITE : set trigger bit	
Bit 23	TRG23: trigger bit 23.	
	0 = READ: trigger bit is cleared / WRITE : do nothing	
	1 = READ: trigger bit is set / WRITE : set trigger bit	
	Note: The trigger bits TRGx are accessible by all MCS	
	as the CPU. Setting a trigger bit can be performe	
	register, in the case of an MCS-channel or th register in the case of the CPU. Clearing a tr	
	performed with the CTRG register, in the case of	
	or the MCS[i]_CTRG register in the case of the (
	can be used for signalizing specific events to MCS	

Specification

CPU. An MCS-channel suspended with a WURM instruction can be resumed by setting the appropriate trigger bit.

Note: Besides setting the trigger bits with register STRG/MCS[i]_STRG, the k-th trigger bit TRGk (with k < 16) can also be set by the external capture event that is enabled by the k-th bit of register CCM[i]_EXT_CAP_EN. If bit k bit is disabled, the k-th trigger bit TRGk can only be set by MCS or CPU.

Bit 31:24 n/a

15.9.7 Register TBU_TS0

Address Offset:	0xC Initial Value: 0x000000
	31 30 30 29 27 27 26 26 25 25 25 25 23 23 23 23 23 23 23 23 23 23 21 21 21 21 21 21 21 22 22 21 23 23 23 23 23 23 23 23 26 26 26 26 26 26 26 26 26 26 26 26 26
Bit	ц/а TS
Mode	۲. ۲
Initial Value	000000 000000
Bit 23:0	TS: Current TBU time stamp 0.

Bit 31:24 n/a

15.9.8 Register TBU_TS1

Address Offset:	0xD Initial Value: 0x000000
	31 33 30 30 29 27 28 26 26 25 25 25 25 25 25 23 23 23 23 21 15 11 11 11 11 11 11 11 22 23 23 23 23 23 23 23 23 26 26 26 26 26 26 26 26 26 26 26 26 26
Bit	It/a TS
Mode	α
Initial Value	00000
Bit 23:0	TS: Current TBU time stamp 1.

Robert Bosch GmbH

Specification

Bit 31:24 n/a

15.9.9 Register TBU_TS2

Address Offset:	0xE Initial Value: 0x000000
	31 33 30 29 28 28 26 27 26 26 27 22 22 23 23 23 23 23 23 23 23 23 23 23
Bit	TTS
Mode	α
Initial Value	000000 000000
Bit 23:0 Bit 31:24	TS : Current TBU time stamp 2. n/a

15.9.10 Register MHB

Address Offset:	0xF Initial Value: 0x000000
	31 30 23 23 23 26 26 26 26 26 27 26 27 27 27 23 23 24 21 19 11 11 11 11 11 11 11 11 11 11 11 11
Bit	n/a Reserved DATA
Mode	۳ <u>چ</u>
Initial Value	00000X00
Bit 7:0 Bit 23:8	DATA : High Byte of a memory transfer. Reserved: Read as zero, should be written as zero.

Bit 31:24 n/a

15.9.11 Register GMI0

Specification

Revision 3.1.5.1

Address Offset:	0x18								Initial Value: 0x000000															
	31 30 29 28 28 27 26 25 25	23	22	21	20	19	18	17	15 15	14	13	12	11	10	6	8	7	9	5	4	e	2	1	0
Bit	п/а	ATOM_CH7_IRQ	ATOM_CH6_IRQ	ATOM_CH5_IRQ		ATOM_CH3_IRQ	ATOM_CH2_IRQ	ATOM_CH1_IRQ	TOM CH14 IRQ	TOM CH12 IRQ	TOM_CH10_IRQ	TOM_CH8_IRQ	TOM_CH6_IRQ	TOM_CH4_IRQ	TOM_CH2_IRQ	TOM_CH0_IRQ	TIM_CH7_IRQ	TIM_CH6_IRQ	TIM_CH5_IRQ	TIM_CH4_IRQ	TIM_CH3_IRQ	TIM_CH2_IRQ	TIM_CH1_IRQ	TIM CHO IRQ
Mode		RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCW N	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw
Initial Value		0	0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit 0	TIM_CH0_IRQ: TIM[i]_CH0 IRQ. READ access: IRQ signal <i>TIM[i]_CH0_IRQ</i> . WRITE access: 0 = do nothing 1 = issue hw_clear on the connected IRQs.																							
Bit 1	TIM_CH_IRQ: TI READ access: IRQ signal WRITE access: 0 = do nothi 1 = issue hy	T/A ng	∕ /[i]	<u></u> _C	CH.	1_1	'R	Q.	nne	ecto	ed	IR	Q	5.										
Bit 2	TIM_CH2_IRQ: 1 READ access: IRQ signal WRITE access: 0 = do nothi 1 = issue hy	T/A ng	∕ /[i]	_ I_C	CH	2_1	'R	Q.	nne	ecto	ed	IR	Q	5.										
Bit 3	TIM_CH3_IRQ: 1 READ access: IRQ signal 1 WRITE access: 0 = do nothi 1 = issue hy	T/A ng	∕ /[i]	_ I_C	CH	3_1	'R	Q.	nne	ecto	ed	IR	Q	5.										
Bit 4	TIM_CH4_IRQ: 1 READ access:	ĪN	1[i] _.	_C	:H4	1 I F	22	Q.																

GTM-IP	Specification	Revision 3.1.5.1
	IRQ signal <i>TIM[i]_CH4_IRQ</i> . WRITE access: 0 = do nothing 1 = issue hw_clear on the connected IRQs.	
Bit 5	TIM_CH5_IRQ : TIM[i]_CH5 IRQ. READ access: IRQ signal <i>TIM[i]_CH5_IRQ</i> . WRITE access: 0 = do nothing 1 = issue hw_clear on the connected IRQs.	
Bit 6	TIM_CH6_IRQ : TIM[i]_CH6 IRQ. READ access: IRQ signal <i>TIM[i]_CH6_IRQ</i> . WRITE access: 0 = do nothing 1 = issue hw_clear on the connected IRQs.	
Bit 7	TIM_CH7_IRQ : TIM[i]_CH7 IRQ. READ access: IRQ signal <i>TIM[i]_CH7_IRQ</i> . WRITE access: 0 = do nothing 1 = issue hw_clear on the connected IRQs.	
Bit 8	<pre>TOM_CH0_IRQ: TOM[i]_CH0 or TOM[i]_CH1 IRQ. READ access: Logical OR conjunction of IRQ signals TOM TOM[i]_CH1_IRQ. WRITE access: 0 = do nothing 1 = issue hw_clear on the connected IRQs.</pre>	[i]_CH0_IRQ and
Bit 9	<pre>TOM_CH2_IRQ: TOM[i]_CH2 or TOM[i]_CH3 IRQ. READ access: Logical OR conjunction of IRQ signals TOM TOM[i]_CH3_IRQ. WRITE access: 0 = do nothing 1 = issue hw_clear on the connected IRQs.</pre>	[i]_CH2_IRQ and

Confidential

Bit 10	<pre>TOM_CH4_IRQ: TOM[i]_CH4 or TOM[i]_CH5 IRQ. READ access: Logical OR conjunction of IRQ signals TOM[i]_CH4_IRQ and TOM[i]_CH5_IRQ. WRITE access: 0 = do nothing 1 = issue hw_clear on the connected IRQs.</pre>
Bit 11	<pre>TOM_CH6_IRQ: TOM[i]_CH6 or TOM[i]_CH7 IRQ. READ access: Logical OR conjunction of IRQ signals TOM[i]_CH6_IRQ and TOM[i]_CH7_IRQ. WRITE access: 0 = do nothing 1 = issue hw_clear on the connected IRQs.</pre>
Bit 12	<pre>TOM_CH8_IRQ: TOM[i]_CH8 or TOM[i]_CH9 IRQ. READ access: Logical OR conjunction of IRQ signals TOM[i]_CH8_IRQ and TOM[i]_CH9_IRQ. WRITE access: 0 = do nothing 1 = issue hw_clear on the connected IRQs.</pre>
Bit 13	<pre>TOM_CH10_IRQ: TOM[i]_CH10 or TOM[i]_CH11 IRQ. READ access: Logical OR conjunction of IRQ signals TOM[i]_CH10_IRQ and TOM[i]_CH11_IRQ. WRITE access: 0 = do nothing 1 = issue hw_clear on the connected IRQs.</pre>
Bit 14	<pre>TOM_CH12_IRQ: TOM[i]_CH12 or TOM[i]_CH13 IRQ. READ access: Logical OR conjunction of IRQ signals TOM[i]_CH12_IRQ and TOM[i]_CH13_IRQ. WRITE access: 0 = do nothing 1 = issue hw_clear on the connected IRQs.</pre>

Specification

Bit 15 TOM_CH14_IRQ: TOM[i]_CH14 or TOM[i]_CH15 IRQ.

GTM-IP	Specification	Revision 3.1.5.1
	READ access: Logical OR conjunction of IRQ signals <i>T0</i> <i>T0M[i]_CH15_IRQ</i> . WRITE access: 0 = do nothing 1 = issue hw_clear on the connected IRQs.	<i>M[i]_CH14_IRQ</i> and
Bit 16	ATOM_CH0_IRQ: ATOM[i]_CH0 IRQ. READ access: IRQ signal <i>ATOM[i]_CH0_IRQ</i> . WRITE access: 0 = do nothing 1 = issue hw_clear on the connected IRQs.	
Bit 17	ATOM_CH1_IRQ: ATOM[i]_CH1 IRQ. READ access: IRQ signal <i>ATOM[i]_CH1_IRQ</i> . WRITE access: 0 = do nothing 1 = issue hw_clear on the connected IRQs.	
Bit 18	ATOM_CH2_IRQ: ATOM[i]_CH2 IRQ. READ access: IRQ signal <i>ATOM[i]_CH2_IRQ</i> . WRITE access: 0 = do nothing 1 = issue hw_clear on the connected IRQs.	
Bit 19	ATOM_CH3_IRQ: ATOM[i]_CH3 IRQ. READ access: IRQ signal <i>ATOM[i]_CH3_IRQ</i> . WRITE access: 0 = do nothing 1 = issue hw_clear on the connected IRQs.	
Bit 20	ATOM_CH4_IRQ: ATOM[i]_CH4 IRQ. READ access: IRQ signal <i>ATOM[i]_CH4_IRQ</i> . WRITE access: 0 = do nothing 1 = issue hw_clear on the connected IRQs.	

Confidential

GTM-IP	Specification	Revision
Bit 21	ATOM_CH5_IRQ: ATOM[i]_CH5 IRQ. READ access: IRQ signal ATOM[i]_CH5_IRQ. WRITE access: 0 = do nothing 1 = issue hw_clear on the connected IRQs.	
Bit 22	ATOM_CH6_IRQ: ATOM[i]_CH6 IRQ. READ access: IRQ signal ATOM[i]_CH6_IRQ. WRITE access: 0 = do nothing 1 = issue hw_clear on the connected IRQs.	
Bit 23	ATOM_CH7_IRQ: ATOM[i]_CH7 IRQ. READ access: IRQ signal <i>ATOM[i]_CH7_IRQ</i> . WRITE access: 0 = do nothing 1 = issue hw_clear on the connected IRQs.	

Bit 31:24 n/a

Register GMI1 15.9.12

Address Offset:	0x19											Initial Value: 0x000000												
	31 30 29 28 27 26 25 25	23 27	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	9	5	4	3	2	1	0
Bit	n/a	MCS0_CH7_IRQ MCS0_CH6_IRQ	CH5	MCS0_CH4_IRQ	MCS0_CH3_IRQ	MCS0_CH2_IRQ	MCS0_CH1_IRQ	MCS0_CH0_IRQ	TTA_IP1_CH7_IR	TTA_IP1_CH6_IR	TTA_IP1_CH5_IR	TTA_IP1_CH4_IR	TTA_IP1_CH3_IR	TTA_IP1_CH2_IR	TTA_IP1_CH1_IR	TTA_IP1_CH0_IR			MCS_IP1_CH5_IR	MCS_IP1_CH4_IR	MCS_IP1_CH3_IR	MCS_IP1_CH2_IR	MCS_IP1_CH1_IR	MCS_IP1_CH0_IR
Mode		RCW	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw
Initial Value		0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit 0	MCS_IP1_CH0_ READ access: IRQ signal WRITE access:						_			IR	Q.													

GTM-IP	Specification	Revision 3.1.5.1
	0 = do nothing 1 = issue hw_clear on the connected IRQs.	
Bit 1	MCS_IP1_CH1_IRQ: MCS[i+1]_CH1 IRQ. READ access: IRQ signal <i>MCS[i+1]_CH1_IRQ</i> . WRITE access: 0 = do nothing 1 = issue hw_clear on the connected IRQs.	
Bit 2	MCS_IP1_CH2_IRQ: MCS[i+1]_CH2 IRQ. READ access: IRQ signal <i>MCS[i+1]_CH2_IRQ</i> . WRITE access: 0 = do nothing 1 = issue hw_clear on the connected IRQs.	
Bit 3	MCS_IP1_CH3_IRQ: MCS[i+1]_CH3 IRQ. READ access: IRQ signal <i>MCS[i+1]_CH3_IRQ</i> . WRITE access: 0 = do nothing 1 = issue hw_clear on the connected IRQs.	
Bit 4	MCS_IP1_CH4_IRQ: MCS[i+1]_CH4 IRQ. READ access: IRQ signal <i>MCS[i+1]_CH4_IRQ</i> . WRITE access: 0 = do nothing 1 = issue hw_clear on the connected IRQs.	
Bit 5	MCS_IP1_CH5_IRQ: MCS[i+1]_CH5 IRQ. READ access: IRQ signal <i>MCS[i+1]_CH5_IRQ</i> . WRITE access: 0 = do nothing 1 = issue hw_clear on the connected IRQs.	
Bit 6	MCS_IP1_CH6_IRQ : MCS[i+1]_CH6 IRQ. READ access: IRQ signal <i>MCS[i+1]_CH6_IRQ</i> .	

GTM-IP	Specification	Revision 3.1.5.1
	WRITE access: 0 = do nothing 1 = issue hw_clear on the connected	IRQs.
Bit 7	MCS_IP1_CH7_IRQ: MCS[i+1]_CH7 IRQ. READ access: IRQ signal <i>MCS[i+1]_CH7_IRQ</i> . WRITE access: 0 = do nothing 1 = issue hw_clear on the connected	IRQs.
Bit 8	TTA_IP1_CH0_IRQ: Neighboring TIM, TOREAD access:Logical OR conjunction of IRQTOM[i+1]_CH0_IRQ,ATOM[i+1]_CH0_IRQ.WRITE access:0 = do nothing1 = issue hw_clear on the connected	signals TIM[i+1]_CH0_IRQ, i+1]_CH1_IRQ, and
Bit 9	TTA_IP1_CH1_IRQ: Neighboring TIM, TOREAD access:Logical OR conjunction of IRQTOM[i+1]_CH2_IRQ,ATOM[i+1]_CH1_IRQ.WRITE access:0 = do nothing1 = issue hw_clear on the connected	signals TIM[i+1]_CH1_IRQ, i+1]_CH3_IRQ, and
Bit 10	TTA_IP1_CH2_IRQ: Neighboring TIM, TOREAD access:Logical OR conjunction of IRQTOM[i+1]_CH4_IRQ,TOM[i+1]_CH2_IRQ.WRITE access:0 = do nothing1 = issue hw_clear on the connected	signals TIM[i+1]_CH2_IRQ, i+1]_CH5_IRQ, and
Rit 11	TTA IP1 CH3 IRO: Neighboring TIM TO	

CH3_IRQ, and
CH4_IRQ, and
CH5_IRQ, and
CH6_IRQ, and
CH7_IRQ, and

Bit 16	MCS0_CH0_IRQ: MCS0_CH0 IRQs. READ access: IRQ signal <i>MCS0_CH0_IRQ</i> . WRITE access: 0 = do nothing 1 = issue hw_clear on the connected IRQs.
Bit 17	MCS0_CH1_IRQ: MCS0_CH1 IRQs. READ access: IRQ signal <i>MCS0_CH1_IRQ</i> . WRITE access: 0 = do nothing 1 = issue hw_clear on the connected IRQs.
Bit 18	MCS0_CH2_IRQ: MCS0_CH2 IRQs. READ access: IRQ signal <i>MCS0_CH2_IRQ</i> . WRITE access: 0 = do nothing 1 = issue hw_clear on the connected IRQs.
Bit 19	MCS0_CH3_IRQ: MCS0_CH3 IRQs. READ access: IRQ signal <i>MCS0_CH3_IRQ</i> . WRITE access: 0 = do nothing 1 = issue hw_clear on the connected IRQs.
Bit 20	MCS0_CH4_IRQ: MCS0_CH4 IRQs. READ access: IRQ signal <i>MCS0_CH4_IRQ</i> . WRITE access: 0 = do nothing 1 = issue hw_clear on the connected IRQs.
Bit 21	MCS0_CH5_IRQ: MCS0_CH5 IRQs. READ access: IRQ signal <i>MCS0_CH5_IRQ</i> . WRITE access: 0 = do nothing 1 = issue hw_clear on the connected IRQs.

Specification

Specification

Bit 22 MCS0_CH6_IRQ: MCS0_CH6 IRQs. READ access: IRQ signal MCS0_CH6_IRQ. WRITE access: 0 = do nothing 1 = issue hw_clear on the connected IRQs.

Bit 23 MCS0_CH7_IRQ: MCS0_CH7 IRQs. READ access: IRQ signal MCS0_CH7_IRQ. WRITE access: 0 = do nothing 1 = issue hw_clear on the connected IRQs.

Bit 31:24 n/a

15.9.13 Register DSTA

Address Offset:	0	x1	Α														In	iti	al	Va	alı	le	2		02	x0	00	00)0		
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	3	2	1
Bit				<i>c/u</i>	١ya					Reserved		CDTI	SISI	SASI	TISI	TASI				CTA C	0.4.0							CTA T			
Mode										Ж		RCw	RCw	RCw	RCw	RCw				٥	C							٥	Ľ		
Initial Value								-		0×0		0	0	0	0	0				c	>							Ċ	>		

Bit 7:0 **STA_T**: Status Trigger FSM.

Actual status of DPLL Trigger FSM. The description of the FSM states can be found in section 18.12.103.

Bit 15:8 **STA_S**: Status State FSM. Actual status of DPLL State FSM. The description of the FSM states can be found in section 18.12.103.

Bit 16 **TASI**: Trigger Active Slope Interrupt.

READ access:

GTM-IP	Specification	Revision 3.1.5.1
	IRQ signal TASI of DPLL. WRITE access: 0 = do nothing 1 = issue hw_clear on the connected IRQs.	
Bit 17	TISI: Trigger Inactive Slope Interrupt.	
	READ access: IRQ signal TISI of DPLL. WRITE access: 0 = do nothing 1 = issue hw_clear on the connected IRQs.	
Bit 18	SASI: State Active Slope Interrupt.	
	READ access: IRQ signal SASI of DPLL. WRITE access: 0 = do nothing 1 = issue hw_clear on the connected IRQs.	
Bit 19	SISI: State Inactive Slope Interrupt.	
	READ access: IRQ signal SISI of DPLL. WRITE access: 0 = do nothing 1 = issue hw_clear on the connected IRQs.	
Bit 20	CDTI : Calculation of trigger duration interrupt.	
	READ access: IRQ signal CDTI of DPLL. WRITE access: 0 = do nothing 1 = issue hw_clear on the connected IRQs.	
Bit 23:21 Bit 31:24	Reserved: Read as zero, should be written as zero. n/a Note: This register is only implemented in MCS instar instances, a read access always returns 0 and always ignored.	

Confidential

15.9.14 Register DSTAX

Address Offset:	0x1B							Initial Value: 0x000000		
	31 30 29 28 27 26 25 25 25	23 22 21	20	19	18	17	16	$\begin{array}{c} 15\\ 15\\ 14\\ 11\\ 11\\ 11\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12$		
Bit	ц/а	Reserved	CDTI	SISI	SASI	TISI	TASI	Reserved INC_CNT2_FLAG INC_CNT1_FLAG STA_FLAG_S STA_FLAG_T		
Mode		Я	RCw	RCw	RCw	RCw	RCw	R R CW R CW		
Initial Value		0×0	0	0	0	0	0			
Bit 0	STA_FLAG_T: D	PLL st	atı	IS	tri	gg	er	flag.		
	DPLL status trigger flag as described in bit field definition STA_FLAG_T of register DPLL_STA_FLAG (section 18.12.109).									
Bit 1	STA_FLAG_S: DPLL status state flag. DPLL status state flag as described in bit field definition STA_FLAG_S of register DPLL_STA_FLAG (section 18.12.109).									
Bit 2	INC_CNT1_FLAG	G: DPL	L	IN	С_	C	NT	Г1 Flag.		
	DPLL status state flag as described in bit field definition INC_CNT1_FLAG of register DPLL_STA_FLAG (section 18.12.109).									
Bit 3	INC_CNT2_FLAG: DPLL INC_CNT2 Flag. DPLL status state flag as described in bit field definition INC_CNT2_FLAG of register DPLL_STA_FLAG (section 18.12.109).									
Bit 15:4 Bit 16	Reserved: Read TASI: Trigger Act									
	READ access: IRQ signal 1 WRITE access: 0 = do nothi		D	PL	.L.					

Confidential

GTM-IP	Specification	Revision 3.1.5.1
	1 = issue hw_clear on the connected IRQs.	
Bit 17	TISI: Trigger Inactive Slope Interrupt.	
	READ access: IRQ signal TISI of DPLL. WRITE access: 0 = do nothing 1 = issue hw_clear on the connected IRQs.	
Bit 18	SASI: State Active Slope Interrupt.	
	READ access: IRQ signal SASI of DPLL. WRITE access: 0 = do nothing 1 = issue hw clear on the connected IRQs.	
Bit 19	SISI: State Inactive Slope Interrupt.	
	READ access: IRQ signal SISI of DPLL. WRITE access: 0 = do nothing	
	1 = issue hw_clear on the connected IRQs.	
Bit 20	CDTI : Calculation of trigger duration interrupt.	
	READ access: IRQ signal CDTI of DPLL. WRITE access: 0 = do nothing 1 = issue hw_clear on the connected IRQs.	
Bit 23:21 Bit 31:24	 Reserved: Read as zero, should be written as zero. n/a Note: This register is only implemented in MCS instar instances, a read access always returns 0 and always ignored. 	

15.10MCS Configuration Register Overview

The MCS Configuration registers of the MCS module are accessible by the AEI bus interface. Some of these registers simply mirror MCS Internal registers to the AEI. Details can be found in the table below and in the individual register descriptions.

15.10.1 MCS Configuration Register Overview

Register Name	Description	Details in Section
MCS[i]_CH[x]_CTRL	MCSi channel x control register	15.11.1
MCS[i]_CH[x]_ACB	MCSi channel x ARU control Bit register	15.11.4
MCS[i]_CH[x]_MHB	MCSi channel x memory high byte register	15.11.5
MCS[i]_CH[x]_PC	MCSi channel x program counter register	15.11.2
MCS[i]_CH[x]_R[y] (y:07)	MCSi channel x general purpose register y	15.11.3
MCS[i]_CH[x]_IRQ_NOTIFY	MCSi channel x interrupt notification register	15.11.6
MCS[i]_CH[x]_IRQ_EN	MCSi channel x interrupt enable register	15.11.7
MCS[i]_CH[x]_IRQ_FORCINT	MCSi channel x force interrupt register	15.11.8
MCS[i]_CH[x]_IRQ_MODE	MCSi channel x IRQ mode configuration register	15.11.9
MCS[i]_CH[x]_EIRQ_EN	MCSi channel x error interrupt enable register	15.11.10
MCS[i]_CTRL_STAT	MCSi control and status register	15.11.11
MCS[i]_REG_PROT	MCSi write protection register	15.11.12
MCS[i]_CTRG	MCSi clear trigger control register	15.11.13
MCS[i]_STRG	MCSi set trigger control register	15.11.14
MCS[i]_RESET	MCSi reset register	15.11.15
MCS[i]_ERR	MCSi error register	15.11.18
MCS[i]_CAT	MCSi cancel ARU transfer instruction	15.11.16
MCS[i]_CWT	MCSi cancel WURM instruction	15.11.17

15.11MCS Configuration Register Description

Register MCS[i]_CH[x]_CTRL 15.11.1

Address Offset:	see Appendix B	Initial Value:	0x0000000	
	31 31 30 30 29 28 28 28 26 25 25 25 25 25 26 27 27 27 27 27 27 27 27 27 27 27 27 27	18 17 16	15 14 13 13 12 11 10	9 1 2 3 4 5 6 7 8 8 0 1 J
Bit	Reserved	SP_CNT	Reserved	CWT CAT N V V CY Reserved ERR ERR ERR
Mode	۳	Ľ	ж ж	жъж ж.
Initial Value	000000000000000000000000000000000000000	000	00×00	• • • • • • • • • • •
Bit 0	EN: Enable MCS-channel	•		

EN: Enable MCS-channel

- 0 = Disable current MCS-channel.
- 1 = Enable current MCS-channel.
- Note: Enabling or disabling of an MCS-channel is synchronized to the ending of an instruction and thus it may take several clock cycles, e.g. active memory transfers or pending WURM transfers have to be finished before disabling the MCS-channel. The internal state of a channel can be obtained by reading the bit EN.
- Note: To disable an MCS channel reliably the EN bit should be cleared followed by setting the CAT and CWT bit in order to cancel any pending WURM or ARU instructions.

	Note: The EN bit is write protected during RAM reset phase.
Bit 1	IRQ: Interrupt state.
	0 = No interrupt pending in MCS-channel x.
	1 = Interrupt is pending in MCS-channel x.
	Note: This bit is read only and it mirrors the internal IRQ state.
Bit 2	ERR: Error state.
	0 = No error signal pending in MCS-channel x.
	1 = Error signal is pending in MCS-channel x.
	Note: This bit is read only and it mirrors the internal error state.
Bit 3	Reserved: Read as zero, should be written as zero.
Bit 4	CY: Carry bit state.
	Note: This bit is read only and it mirrors the internal carry flag CY.
Bit 5	Z: Zero bit state.
	Note: This bit is read only and it mirrors the internal zero flag Z.
Bit 6	V: Overflow bit state.
	Note: This bit is read only and it mirrors the internal carry flag V.
Bit 7	N: Negative bit state.

GTM-IP	Specification	Revision 3.1.5.1
	Note: This bit is read only and it mirrors the internal z	zero flag N.
Bit 8	CAT: Cancel ARU transfer state.	
	Note : This bit is read only and it mirrors the internal or status flag CAT.	ancel ARU transfer
Bit 9	CWT : Cancel WURM instruction state.	
	Note: This bit is read only and it mirrors the inter instruction status flag CWT.	rnal cancel WURM
Bit 10	SAT: Successful ARU transfer bit.	
	0 = ARU data transfer failed.	
	1 = ARU data transfer finished successfully.	
	Note: This bit is read only and it mirrors the internative transfer status flag SAT.	al state of the ARU
Bit 15:11	Reserved: Read as zero, should be written as zero.	
Bit 18:16	SP_CNT: Stack pointer counter value.	
	Actual stack depth of channel. The bit field is increme CALL or PUSH instruction and decremented on POP instruction. The MCS channel STK_ERR_ an overflow or underflow is detected on this bit f	behalf of a RET or IRQ is raised, when

Bit 31:19 **Reserved:** Read as zero, should be written as zero.

15.11.2 Register MCS[i]_CH[x]_PC

Address Offset:	see Appendix B	Initial Value: 0x00000000 + 4*x						
	31 30 29 27 27 26 26 25 25 24 25 23 23 23 23 21 21 19 117 16	15 14 13 13 12 10 9 9 8 8 8 8 8 8 7 7 6 6 5 5 3 3 3 2 2 0 0						
Bit	Reserved	U L						
Mode	œ	ਣ ਟ						
Initial Value	00000000	0x00000 +4*X						

Bit 15:0 **PC**: Current Program Counter.

Note: The program counter is only writable if the corresponding MCSchannel is disabled. The bits 0 and 1 are always written as zeros.

Note: The actual width of the program counter depends on the MCS configuration. The actual width is RAW+USR+2 bits meaning that only the bits 0 to RAW+USR+1 are available and the other bits (RAW+USR+2 to 31) are reserved.

Bit 31:16 **Reserved:** Read as zero, should be written as zero.

15.11.3 Register MCS[i]_CH[x]_R[y] (y:0...7)

Address Offset:	see Appendix B		Initial Value:	0x0000000			
	31 30 29 28 27 26 25 25	23 22 20 20 19 18 17 17	15 14 13 13 12 11 10 9 8	7 5 4 4 3 3 3 1 1 0			
Bit	Reserved		DATA				
Mode	٣		ж Х				
Initial Value	00×00		000000				

Bit 23:0 DATA: Data of general purpose register R[y].
 Note: This register is the same as described in 15.9.1.
 Note: For the register MCS[i]_CH[x]_R6 15.9.1 an additional write protection during an active ARDI or NARDI instruction is applied.

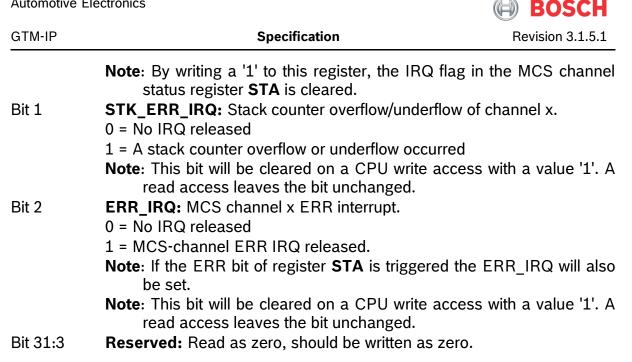
15.11.4 Register MCS[i]_CH[x]_ACB

see Appendix B Initial Value: 0x0000000					
31 33 30 29 28 27 28 27 27 27 27 27 27 27 27 27 26 27 28 11 12 3 3 11 11 <					
Reserved ACB4 ACB1 ACB0					
Bit 0 ACB0: ARU Control bit 0. Note: This bit is read only and it mirrors the internal state. Bit 1 ACB1: ARU Control bit 1. Note: This bit is read only and it mirrors the internal state.					
Note: This bit is read only and it mirrors the internal state. ACB2: ARU Control bit 2. Note: This bit is read only and it mirrors the internal state. ACB3: ARU Control bit 3.					

Bit 31:24 **Reserved:** Read as zero, should be written as zero.

GTM-IP	Specification	Revision 3.1	
D '' 4	Note: This bit is read only and it mirrors the internal state	е.	
Bit 4	ACB4: ARU Control bit 4. Note: This bit is read only and it mirrors the internal state	2	
Bit 31:5	Reserved: Read as zero, should be written as zero.	Ξ.	

15.11.5 Register MCS[i]_CH[x]_MHB


Address Offset:	see Appendix B Initial Val	ue: 0x0000000
	31 33 30 29 28 27 26 27 26 27 22 23 23 23 23 23 21 23 21 23 23 23 23 23 23 23 23 23 23 23 23 23	11 10 9 9 8 8 8 8 8 8 8 8 8 8 8 8 3 3 3 3 3 3
Bit	Reserved	DATA
Mode	œ	٣
Initial Value	00000 00	0000
Bit 7:0	DATA: Data of memory high bit register MHB.	

Bit 31:8 **Reserved:** Read as zero, should be written as zero.

15.11.6 Register MCS[i]_CH[x]_IRQ_NOTIFY

Address Offset:	see Appendix B Initial Value: 0x0000_00	0000							
	31 30 29 28 28 27 28 27 26 24 24 23 21 23 23 23 13 11 11 11 11 11 11 11 11 12 12 12 20 11 21 23 23 23 23 23 23 23 23 23 23 23 23 23	2	т 0						
Bit	Reserved								
Mode	۴								
Initial Value	00000 000000								
Bit 0	MCS_IRQ: Interrupt request by MCS-channel x. 0 = No IRQ released 1 = IRQ released by MCS-channel Note: This bit will be cleared on a CPU write access with a value	e '1	'. A						

read access leaves the bit unchanged.

15.11.7 Register MCS[i]_CH[x]_IRQ_EN

Address Offset:	see Appendix B Initial Value: 0x000000	00						
	31 33 30 29 29 27 27 26 25 25 25 23 25 21 23 23 23 21 19 11 11 11 11 11 11 11 12 11 20 12 20 23 23 23 23 23 24 27 26 27 26 27 26 26 26 26 26 27 26 27 26 26 27 26 27 26 27 26 27 26 26 26 27 26 26 26 27 26 26 27 26 26 26 26 27 26 26 26 26 26 26 26 26 27 26 26 26 27 26 26 27 26 26 27 27 26 26 27 27 26 27 27 26 27 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27	2	1 0					
Bit	Reserved	ERR_IRQ_EN	STK_ERR_IRQ_E MCS_IRQ_EN					
Mode	۳							
Initial Value	00000 0000000	0	0 0					
Bit 0	MCS_IRQ_EN: MCS channel x MCS_IRQ interrupt enable 0 = Disable interrupt 1 = Enable interrupt							
Bit 1	STK_ERR_IRQ_EN: MCS channel x STK_ERR_IRQ interrupt enable 0 = Disable interrupt 1 = Enable interrupt							
Bit 2	ERR_IRQ_EN: MCS channel x ERR_IRQ interrupt enable 0 = Disable interrupt 1 = Enable interrupt							
Bit 31:3	Reserved: Read as zero, should be written as zero.							

Specification

15.11.8 Register MCS[i]_CH[x]_IRQ_FORCINT

Address Offset:	see Appendix B Initial Value: 0x000000	Initial Value: 0x0000000				
	31 32 33 34 35 36 37 38 39 30 31 31 32 33 34 35 36 37	2 1 0				
Bit	Reserved	TRG_ERR_IRQ TRG_STK_ERR_I TRG_MCS_IRQ				
Mode	٣	RAw RAw RAw				
Initial Value	00000 00000	000				
Bit 0 Bit 1	TRG_MCS_IRQ: Trigger IRQ bit in MCS_CH_[x]_IRQ_NOTIFY is by software 0 = No interrupt triggering 1 = Assert corresponding field in MCS[i]_CH[x]_IRQ_NOTIFY reserve Note: This bit is cleared automatically after write. Note: This bit is write protected by bit RF_PROT of register GTM TRG_STK_ERR_IRQ: Trigger IRQ bit in MCS_CH_[x]_IRQ_NoTIFY reserve by software 0 = No interrupt triggering 1 = Assert corresponding field in MCS[i]_CH[x]_IRQ_NOTIFY reserve to the software 0 = No interrupt triggering 1 = Assert corresponding field in MCS[i]_CH[x]_IRQ_NOTIFY reserve to the software Note: This bit is cleared automatically after write. Note: This bit is cleared automatically after write. Note: This bit is write protected by bit RF_PROT of register GTM	gister _CTRL IOTIFY gister				
Bit 2 Bit 31:3	<pre>TRG_ERR_IRQ: Trigger IRQ bit in MCS_CH_[x]_IRQ_NOTIFY is by software 0 = No interrupt triggering 1 = Assert corresponding field in MCS[i]_CH[x]_IRQ_NOTIFY re Note: This bit is cleared automatically after write. Note: This bit is write protected by bit RF_PROT of register GTM Reserved: Read as zero, should be written as zero.</pre>	gister				

15.11.9 Register MCS[i]_CH[x]_IRQ_MODE

Specification

Revision 3.1.5.1

Address Offset:	see Appendix B	Initial Value:	0x0000_000	X
	31 30 29 27 28 26 26 26 25 26 23 23 23 23 23 21 21 19 11 11 11	15 14 13 13 12 11 11 8	7 6 5 4 3 3	1 0
Bit	Reserved			IRQ_MODE
Mode	۵.			RW
Initial Value	0000 ×0			ХХ
Bit 1:0	IRQ_MODE: IRQ mode selection 0b00 = Level mode 0b01 = Pulse mode 0b10 = Pulse-Notify mode 0b11 = Single-Pulse mode Note: The interrupt modes are deso	cribed in section 2.	5.	
Bit 31:2	Reserved			

Note: Read as zero, should be written as zero

15.11.10 Register MCS[i]_CH[x]_EIRQ_EN

Address Offset:	see Appendix B Initial Value: 0x0000_00	Initial Value: 0x0000_0000						
	31 331 331 332 333 333 334 335 23 24 25 25 25 26 27 27 28 29 21 15 15 16 15 16 11 12 13 3	2	1 0					
Bit	Reserved	ERR_EIRQ_EN	STK_ERR_EIRQ_ MCS_EIRQ_EN0					
Mode	œ							
Initial Value	00000 000000							
Bit 0 Bit 1	<pre>MCS_EIRQ_EN: MCS channel x MCS_EIRQ error interrupt enab 0 = Disable error interrupt 1 = Enable error interrupt STK_ERR_EIRQ_EN: MCS channel x STK_ERR_IRQ error ir enable 0 = Disable error interrupt 1 = Enable error interrupt</pre>		rupt					
Bit 2	ERR_EIRQ_EN: MCS channel x ERR_EIRQ error interrupt enabl	le						

Specification

0 = Disable error interrupt

1 = Enable error interrupt

Bit 31:3 **Reserved:** Read as zero, should be written as zero.

15.11.11 Register MCS[i]_CTRL_STAT

Address Offset:	see Appendix B						Initial Value: 0x000X_0		0x000X_0000	000		
	31 30 29 28 27	26	25 24	23	22 21 20	19 18	17	16	15 14 13 12	11 10 9 8	7 5 3 3 3 2 2	1 0
Bit	Reserved	HLT_AEIM_ERR	EN_XOREG	Reserved	ERR_SRC_ID	Reserved	HLT_SP_OFL	RAM_RST	Reserved	scd_ch	Reserved	SCD_MODE
Mode	۳	RW	RW	<u>م</u>	ц	с	RW	RPw	Я	RŴ	œ	RW
Initial Value	00×0	0	0 0	0	000	00	0	Х	0×0	0×0	00×00	00
Bit 7:2	SCD_MODE: Select MCS scheduling mode 0b00 = Accelerated Scheduling. 0b01 = Round Robin Scheduling. 0b10 = Single Priority Scheduling. 0b11 = Multiple Priority Scheduling.											
Bit 11:8	 Reserved: Read as zero, should be written as zero. SCD_CH: Channel selection for scheduling algorithm. MCS-channel identifier used by several scheduling modes. Note: The actual width of the bit field SCD_CH is calculated as [log2(T+1)]. Unused MSBs are reserved and read as zero. 											
Bit 15:12 Bit 16	 Reserved: Read as zero, should be written as zero. RAM_RST: RAM reset bit. 0 = READ: no RAM reset is active / WRITE : do nothing. 1 = READ: MCS currently resets RAM content / WRITE : trigger RAM reset. 											
	Note: The RAM reset initializes the memory content with zeros. RAM access and enabling of MCS channels is disabled during active RAM reset.											
	Note: This bit is only writable if the bit RF_PROT in register GTM_CTRL is cleared and all MCS-channels are disabled.											

GTM-IP	Specification	Revision 3.1.5.1
	Note: The actual reset value of this bit depends configuration. The reset value is 1, if the RA together with the sub module reset, otherwis If the reset value is 1, the reset value is chan when the RAM reset finished.	AM reset is performed e the reset value is 0.
Bit 17	 HLT_SP_OFL: Halt on stack pointer overflow. 0 = No halt on MCS-channel stack pointer counter 1 = MCS-channel is disabled if a stack pointer counter occurs. 	
Bit 19:18 Bit 22:20	 Reserved: Read as zero, should be written as zer ERR_SRC_ID: Error source identifier. 0b000 = No HW generated Error occurred. 0b001 = Detected ECC error. 0b010 = Detected memory overflow. 0b011 = Detected invalid opcode. 0b100 = Divide by zero. 0b101 = Invalid register write access to GPR channel. 0b110 = Invalid memory write access to protected 0b111 = Invalid AEI bus master access. Note: This register is updated once, if an error was The register is set to its initial value 000 after an existing ERR bit in the register MCS[i]_E occur, ERR_SRC_ID is holding the first typ occurred. 	from write protected memory region. detected by the MCS. r each write access to ERR . If multiple errors
Bit 23 Bit 24	 Reserved: Read as zero, should be written as zero. EN_TIM_FOUT: Enable routing of <i>TIM[i]_CH[x]_F</i>_O Read access to register CTRG/MCS[i]_CTRG internal trigger registers. 1 = Read access to register CTRG/MCS[i]_CTRG external signal <i>TIM[i]_CH[x]_F_OUT</i>. 	<i>OUT</i> signal. provides state of the
Bit 25	 EN_XOREG: Enable extended register set. 0 = Extended operation register sets XOREG, BAF disabled. 1 = Extended operation register sets XOREG, BAF enabled. 	
	NOTE: If the extended operation register sets an instructions can only use the subset OREG arguments in the instructions. In this case the the instructions are always read as zer	of the register set as upper address bits in

GTM-IP	Specification	Revision 3.1.5.1
	unexpected results of the MCS program if register that is not part or OREG.	arguments A or B refer a

Bit 26 **HLT_AEIM_ERR:** Halt on AEI bus master error.

0 = Ignore invalid AEI bus master access.

1 = Halt MCS-channel on invalid AEI bus master access.

- **NOTE:** If the register **HLT_AEIM_ERR** is set and an MCS channel x is executing an invalid bus master access, the MCS channel x is halted, the **ERR** bit of its register **STA** is set and the bit field **ERR_SRC_ID** of this register is updated.
- **NOTE:** If the bus master is accessing a slave that does not insert wait cycles (e.g. register access) it takes two additional clock cycles until the MCS channel is halted. Within that time spawn the MCS channel can continue with its program execution, depending on the selected scheduling mode.
- **NOTE:** The registers **AEIM_XPT_STA** and **AEIM_XPT_ADDR** of the GTM sub module CCM are always updated on the first invalid AEI bus master access, independently of the state of **HLT_AEIM_ERR**.
- Bit 31:27 **Reserved:** Read as zero, should be written as zero.

15.11.12 Register MCS[i]_REG_PROT

Address Offset:	see Appendix B	Initial Value: 0x0000000
	31 30 29 28 28 27 26 26 27 26 27 26 22 22 23 23 23 23 21 21 19 117 16	15 14 13 13 13 10 9 9 9 8 8 8 8 8 8 8 8 8 8 8 7 7 7 7 3 3 3 3 3
Bit	Reserved	WPROT7 WPROT6 WPROT4 WPROT4 WPROT3 WPROT2 WPROT0 WPROT0
Mode	۳	RPW RPW RPW RPW RPW RPW RPW
Initial Value	00000×0	· · · · · · · · ·
Bit 1:0	WPROT0: Register Write Protection	n of MCS-channel 0.

0b00 = no register write protection activated

0b01 = predecessor MCS channel cannot write to its RS[y] registers

0b10 = current MCS channel cannot write to its R[y] registers

Bit 3:2 **WPROT1**: Register Write Protection of MCS-channel 1.

⁰b11 = reserved

Automotive El	ectronics	BOSCH
GTM-IP	Specification	Revision 3.1.5.1
	0b00 = no register write protection activated 0b01 = predecessor MCS channel cannot write to its 0b10 = current MCS channel cannot write to its R[y] 0b11 = reserved	
Bit 5:4	WPROT2: Register Write Protection of MCS-channel 0b00 = no register write protection activated 0b01 = predecessor MCS channel cannot write to its 0b10 = current MCS channel cannot write to its R[y] 0b11 = reserved	s RS[y] registers
Bit 7:6	WPROT3: Register Write Protection of MCS-channel 0b00 = no register write protection activated 0b01 = predecessor MCS channel cannot write to its 0b10 = current MCS channel cannot write to its R[y] 0b11 = reserved	RS[y] registers
Bit 9:8	WPROT4: Register Write Protection of MCS-channel 0b00 = no register write protection activated 0b01 = predecessor MCS channel cannot write to its 0b10 = current MCS channel cannot write to its R[y] 0b11 = reserved	RS[y] registers
Bit 11:10	WPROT5: Register Write Protection of MCS-channel 0b00 = no register write protection activated 0b01 = predecessor MCS channel cannot write to its 0b10 = current MCS channel cannot write to its R[y] 0b11 = reserved	RS[y] registers
Bit 13:12	WPROT6: Register Write Protection of MCS-channe 0b00 = no register write protection activated 0b01 = predecessor MCS channel cannot write to its 0b10 = current MCS channel cannot write to its R[y] 0b11 = reserved	RS[y] registers
Bit 15:14	WPROT7 : Register Write Protection of MCS-channel 0b00 = no register write protection activated 0b01 = predecessor MCS channel cannot write to its 0b10 = current MCS channel cannot write to its R[y] 0b11 = reserved	RS[y] registers
Bit 31:16	Reserved: Read as zero, should be written as zero. Note : Only the first T bit fields of this register (functionally implemented. The other bits (bit 2*T bit fields.	bit 0 to 2*T-1) are

Note: The predecessor channel of MCS channel 0 is MCS channel T-1.

Specification

Note: If an MCS channel x is writing to a general purpose register that is write protected by register MCS[i]_REG_PROT the ERR bit of the register STA is set, the MCS channel x is halted and the ERR_SRC_ID bit field of register MCS[i]_CTRL_STAT is updated.

Note: This register is only writable if the bit **RF_PROT** in register **GTM_CTRL** is cleared.

15.11.13 Register MCS[i]_CTRG

Address Offset:	see Appendix B								In	iti	al	Va	alu	ie:			0x0000_0000										
	31 30 29 28	28 27 26	25	24 23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	3	2	1	0
Bit		Reserved	· · ·	TRG23	TRG22	TRG21	TRG20	TRG19	TRG18	TRG17	TRG16	TRG15	TRG14	TRG13	TRG12	TRG11	TRG10	TRG9	TRG8	TRG7	TRG6	TRG5	TRG4	TRG3	TRG2	TRG1	TRG0
Mode		ш		WA	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW
Initial Value		000000		c	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	state WRITE 0 = d	e of cu e of in	urre put ess: thin	sig g	nal	T	IM	[i]						_		_						τU	- =	1			
Bit 1	state WRITE 0 = d	acces e of cu e of in	ss: urre put ess: thin	nt t sig g	rigg nal	T	IM	[i]						_		_						UT	T =	1			
Bit 2	state WRITE	acces e of cu e of in	ss: urre put ess:	nt t sig	rig																	UT	- =	1			

GTM-IP	Specification	Revision 3.1.5.1
	1 = clear trigger bit TRG2	
Bit 3	<pre>TRG3: trigger bit 3. READ access: state of current trigger bit TRG3 if EN_TIM_FOUT state of input signal TIM[i]_CH3_F_OUT if EN_TIM WRITE access: 0 = do nothing 1 = clear trigger bit TRG3</pre>	
Bit 4	<pre>TRG4: trigger bit 4. READ access: state of current trigger bit TRG4 if EN_TIM_FOUT state of input signal TIM[i]_CH4_F_OUT if EN_TIM WRITE access: 0 = do nothing 1 = clear trigger bit TRG4</pre>	
Bit 5	<pre>TRG5: trigger bit 5. READ access: state of current trigger bit TRG5 if EN_TIM_FOUT state of input signal TIM[i]_CH5_F_OUT if EN_TIM WRITE access: 0 = do nothing 1 = clear trigger bit TRG5</pre>	
Bit 6	<pre>TRG6: trigger bit 6. READ access: state of current trigger bit TRG6 if EN_TIM_FOUT state of input signal TIM[i]_CH6_F_OUT if EN_TIM WRITE access: 0 = do nothing 1 = clear trigger bit TRG6</pre>	
Bit 7	<pre>TRG7: trigger bit 7. READ access: state of current trigger bit TRG7 if EN_TIM_FOUT state of input signal TIM[i]_CH7_F_OUT if EN_TIM WRITE access: 0 = do nothing 1 = clear trigger bit TRG7</pre>	
Bit 8	TRG8: trigger bit 8. READ access: state of current trigger bit TRG8 if EN_TIM_FOUT state of input signal TIM[i+1]_CH0_F_OUT if EN_T WRITE access:	

GTM-IP	Specification	Revision 3.1.5.1
	0 = do nothing 1 = clear trigger bit TRG8	
Bit 9	<pre>TRG9: trigger bit 9. READ access: state of current trigger bit TRG9 if EN_TIM_FOUT state of input signal TIM[i+1]_CH1_F_OUT if EN_ WRITE access: 0 = do nothing 1 = clear trigger bit TRG9</pre>	
Bit 10	<pre>TRG10: trigger bit 10. READ access: state of current trigger bit TRG10 if EN_TIM_FOU state of input signal TIM[i+1]_CH2_F_OUT if EN_ WRITE access: 0 = do nothing 1 = clear trigger bit TRG10</pre>	
Bit 11	<pre>TRG11: trigger bit 11. READ access: state of current trigger bit TRG11 if EN_TIM_FOU state of input signal TIM[i+1]_CH3_F_OUT if EN_ WRITE access: 0 = do nothing 1 = clear trigger bit TRG11</pre>	
Bit 12	<pre>TRG12: trigger bit 12. READ access: state of current trigger bit TRG12 if EN_TIM_FOU state of input signal TIM[i+1]_CH4_F_OUT if EN_ WRITE access: 0 = do nothing 1 = clear trigger bit TRG12</pre>	
Bit 13	<pre>TRG13: trigger bit 13. READ access: state of current trigger bit TRG13 if EN_TIM_FOU state of input signal TIM[i+1]_CH5_F_OUT if EN_ WRITE access: 0 = do nothing 1 = clear trigger bit TRG13</pre>	
Bit 14	TRG14: trigger bit 14. READ access: state of current trigger bit TRG14 if EN_TIM_FOU state of input signal TIM[i+1]_CH6_F_OUT if EN_	

GTM-IP	Specification	Revision 3.1.5.1
	WRITE access: 0 = do nothing 1 = clear trigger bit TRG14	
Bit 15	<pre>TRG15: trigger bit 15. READ access: state of current trigger bit TRG15 if EN_TIM_FO state of input signal TIM[i+1]_CH7_F_OUT if EN WRITE access: 0 = do nothing 1 = clear trigger bit TRG15</pre>	
Bit 16	TRG16: trigger bit 16. 0 = READ: trigger bit is cleared / WRITE : do nothir 1 = READ: trigger bit is set / WRITE : clear trigger l	
Bit 17	TRG17: trigger bit 17. 0 = READ: trigger bit is cleared / WRITE : do nothin 1 = READ: trigger bit is set / WRITE : clear trigger	ng
Bit 18	TRG18: trigger bit 18. 0 = READ: trigger bit is cleared / WRITE : do nothin 1 = READ: trigger bit is set / WRITE : clear trigger l	ng
Bit 19	TRG19: trigger bit 19. 0 = READ: trigger bit is cleared / WRITE : do nothin 1 = READ: trigger bit is set / WRITE : clear trigger l	ng
Bit 20	 TRG20: trigger bit 20. 0 = READ: trigger bit is cleared / WRITE : do nothin 1 = READ: trigger bit is set / WRITE : clear trigger lit 	•
Bit 21	TRG21: trigger bit 21. 0 = READ: trigger bit is cleared / WRITE : do nothin 1 = READ: trigger bit is set / WRITE : clear trigger l	-
Bit 22	TRG22: trigger bit 22. 0 = READ: trigger bit is cleared / WRITE : do nothin 1 = READ: trigger bit is set / WRITE : clear trigger	ng
Bit 23	 TRG23: trigger bit 23. 0 = READ: trigger bit is cleared / WRITE : do nothin 1 = READ: trigger bit is set / WRITE : clear trigger I Note: The trigger bits TRGx are accessible by all N as the CPU. Setting a trigger bit can be perforregister, in the case of an MCS-channel or register in the case of the CPU. Clearing performed with the CTRG register, in the case of the case of the CPU. Clearing performed with the CTRG register, in the case of the CPU. Clearing performed with the CTRG register in the case of the CPU. Clearing performed with the CTRG register in the case of the CPU. An MCS-channel suspended with a WU resumed by setting the appropriate trigger bit. 	bit MCS channels as well ormed with the STRG or the MCS[i]_STRG a trigger bit can be e of an MCS-channel the CPU. Trigger bits MCS-channels or the RM instruction can be

- Note: Besides setting the trigger bits with register STRG/MCS[i]_STRG, the k-th trigger bit TRGk (with k < 16) can also be set by the external capture event that is enabled by the k-th bit of register CCM[i]_EXT_CAP_EN. If bit k bit is disabled, the k-th trigger bit TRGk can only be set by MCS or CPU.
- Note: In the scheduling modes Accelerated Scheduling and Round Robin Scheduling, a write access to MCS[i]_CTRG may take up to T + 1 clock cycles, since the write access is scheduled to the next CPU time slot determined by the MCS scheduler. In the modes Single Prioritization Scheduling and Multiple Prioritization Scheduling, no upper limit access time for a write access to MCS[i]_CTRG can be guaranteed. The High Prioritized tasks have to be disabled in order to guarantee fast write access to MCS[i]_CTRG.

Bit 31:24 **Reserved:** Read as zero, should be written as zero.

Note: The result of a read access to this register differs in dependency of the bit field **EN_TIM_FOUT** of register **MCS[i]_CTRL_STAT**.

Address Offset:	see Appendix B							Initial Value:						0x0000_0000											
	31 30 29 28 27 26 25 25	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	6	5	4	3	2	1	0
Bit	Reserved	TRG23	TRG22	TRG21	TRG20	TRG19	TRG18	TRG17	TRG16	TRG15	TRG14	TRG13	TRG12	TRG11	TRG10	TRG9	TRG8	TRG7	TRG6	TRG5	TRG4	TRG3	TRG2	TRG1	TRG0
Mode	Ľ	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	МЯ	RW						
Initial Value	0×0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit 0	TRG0: trigger bit 0 = READ: trigger 1 = READ: trigger	r b						-									g								
Bit 1	TRG1: trigger bit 0 = READ: trigger 1 = READ: trigger	r b						-									g								
Bit 2	TRG2: trigger bit 0 = READ: trigger 1 = READ: trigger	2. r b	it i	s c	le	are	ed	/\	W	RI-	ΓE	: (do	n	oth	nin	g								
Bit 3	TRG3: trigger bit 0 = READ: trigge	3.				-							•				g								

15.11.14 Register MCS[i]_STRG

GTM-IP	Specification	Revision 3.1.5.1
	1 = READ: trigger bit is set / WRITE : set trigger bit	
Bit 4	TRG4: trigger bit 4.	
	0 = READ: trigger bit is cleared / WRITE : do nothing	
	1 = READ: trigger bit is set / WRITE : set trigger bit	
Bit 5	TRG5: trigger bit 5.	
	0 = READ: trigger bit is cleared / WRITE : do nothing	
	1 = READ: trigger bit is set / WRITE : set trigger bit	
Bit 6	TRG6: trigger bit 6.	
	0 = READ: trigger bit is cleared / WRITE : do nothing	
	1 = READ: trigger bit is set / WRITE : set trigger bit	
Bit 7	TRG7: trigger bit 7.	
	0 = READ: trigger bit is cleared / WRITE : do nothing	
	1 = READ: trigger bit is set / WRITE : set trigger bit	
Bit 8	TRG8: trigger bit 8.	
	0 = READ: trigger bit is cleared / WRITE : do nothing	
	1 = READ: trigger bit is set / WRITE : set trigger bit	
Bit 9	TRG9: trigger bit 9.	
	0 = READ: trigger bit is cleared / WRITE : do nothing	
	1 = READ: trigger bit is set / WRITE : set trigger bit	
Bit 10	TRG10: trigger bit 10.	
	0 = READ: trigger bit is cleared / WRITE : do nothing	
	1 = READ: trigger bit is set / WRITE : set trigger bit	
Bit 11	TRG11: trigger bit 11.	
	0 = READ: trigger bit is cleared / WRITE : do nothing	
	1 = READ: trigger bit is set / WRITE : set trigger bit	
Bit 12	TRG12: trigger bit 12.	
	0 = READ: trigger bit is cleared / WRITE : do nothing	
	1 = READ: trigger bit is set / WRITE : set trigger bit	
Bit 13	TRG13: trigger bit 13.	
	0 = READ: trigger bit is cleared / WRITE : do nothing	
	1 = READ: trigger bit is set / WRITE : set trigger bit	
Bit 14	TRG14: trigger bit 14.	
	0 = READ: trigger bit is cleared / WRITE : do nothing	
	1 = READ: trigger bit is set / WRITE : set trigger bit	
Bit 15	TRG15: trigger bit 15.	
	0 = READ: trigger bit is cleared / WRITE : do nothing	
	1 = READ: trigger bit is set / WRITE : set trigger bit	
Bit 16	TRG16: trigger bit 16.	
	0 = READ: trigger bit is cleared / WRITE : do nothing	
	1 = READ: trigger bit is set / WRITE : set trigger bit	
Bit 17	TRG17: trigger bit 17.	
	0 = READ: trigger bit is cleared / WRITE : do nothing	
	1 = READ: trigger bit is set / WRITE : set trigger bit	
Bit 18	TRG18: trigger bit 18.	
	0 = READ: trigger bit is cleared / WRITE : do nothing	
	1 = READ: trigger bit is set / WRITE : set trigger bit	
Bit 19	TRG19: trigger bit 19.	

GTM-IP	Specification	Revision 3.1.5.1
	0 = READ: trigger bit is cleared / WRITE : do nothing	
	1 = READ: trigger bit is set / WRITE : set trigger bit	
Bit 20	TRG20: trigger bit 20.	
	0 = READ: trigger bit is cleared / WRITE : do nothing	
D': 01	1 = READ: trigger bit is set / WRITE : set trigger bit	
Bit 21	TRG21: trigger bit 21.	
	0 = READ: trigger bit is cleared / WRITE : do nothing	
D:+ 00	1 = READ: trigger bit is set / WRITE : set trigger bit	
Bit 22	TRG22: trigger bit 22.	
	0 = READ: trigger bit is cleared / WRITE : do nothing	
Bit 23	1 = READ: trigger bit is set / WRITE : set trigger bit TRG23: trigger bit 23.	
DILZJ	0 = READ: trigger bit is cleared / WRITE : do nothing	
	1 = READ: trigger bit is set / WRITE : set trigger bit	
	Note: The trigger bits TRGx are accessible by all MC	S channels as well
	as the CPU. Setting a trigger bit can be perform	
	register, in the case of an MCS-channel or t	
	register in the case of the CPU. Clearing a	trigger bit can be
	performed with the CTRG register, in the case of	
	or the MCS[i]_CTRG register in the case of the	
	can be used for signalizing specific events to MC	
	CPU. An MCS-channel suspended with a WURM	l instruction can be
	resumed by setting the appropriate trigger bit.	
	Note: Besides setting the trigger bits with register STI	RG/MCS[i] STRG.
	the k-th trigger bit TRGk (with $k < 16$) can also be	
	capture event that is enabled by the k-t	-
	CCM[i]_EXT_CAP_EN. If bit k bit is disabled,	
	TRGk can only be set by MCS or CPU.	
	Note: In the scheduling modes Accelerated Sche	duling and Round
	Robin Scheduling, a write access to MCS[i]_ST	
	T + 1 clock cycles, since the write access is sch	
	CPU time slot determined by the MCS schedu	
	Single Prioritization Scheduling and Mult	iple Prioritization
	Scheduling, no upper limit access time for a	
	MCS[i]_STRG can be guaranteed. The High Pri	
	to be disabled in order to guarantee fast	write access to
	MCS[i]_STRG.	

Reserved: Read as zero, should be written as zero. Bit 31:24

Register MCS[i]_RESET 15.11.15

Specification

Revision 3.1.5.1

Address Offset:	see Appendix B	Initial Value:	0x0000000										
	31 30 29 27 28 26 26 26 25 23 23 23 23 23 23 21 21 19 11 11	15 14 13 13 12 11 10 9 8	7	9	0 4	r m	2	10					
Bit	Reserved		RST7	RST6	RSTA	RST3	RST2	RST1 RST0					
Mode	۳		RAw	RAw		RAw	RAw	RAw RAw					
Initial Value	0000 00 00		0	0		0	0	0 0					
Bit 0 Bit 1	RST0: Software reset of channel 0 0 = No action 1 = Reset channel RST1: Software reset of channel 1					1							
Bit 2	0 = No action 1 = Reset channel RST2: Software reset of channel 2 0 = No action												
Bit 3	 1 = Reset channel RST3: Software reset of channel 3 0 = No action 1 = Reset channel 												
Bit 4	RST4: Software reset of channel 4 0 = No action 1 = Reset channel												
Bit 5	RST5: Software reset of channel 5 0 = No action 1 = Reset channel												
Bit 6	RST6: Software reset of channel 6 0 = No action 1 = Reset channel												
Bit 7	 RST7: Software reset of channel 7 0 = No action 1 = Reset channel Note: The RSTx (x = 0T-1) bits access of CPU. All channel rel their reset values and channel 	ated registers of c	nai	nne	Īх	are	e s	et to					
	Note: Channel related registers MCS[i]_CH[x]_ *, all MCS in corresponding channel, with register (accessed by MCS[i] _	nternal registers a exception of the	acc C	ess om	sibl	е	bу	the					

Bit 31:8 **Reserved:** Read as zero, should be written as zero.

Specification

15.11.16 Register MCS[i]_CAT

Address Offset:	see Appendix B Initial Value: 0						_0000					
	31 30 30 29 28 28 26 25 25 23 23 23 23 23 23 21 21 21 20 16 17	13 14 13 12 11 10 9 8	7	5	4	з	1	• 0				
Bit	Reserved		CAT7	CAT6 CAT5	CAT4	CAT3	CAT2 CAT1	CATO				
Mode	۵.		RAw	RAw RAw	RAw	RAw	RAw RAw	RAw				
Initial Value	000000 00		0	0 0	0	0	0 0	0				
Bit 0	CAT0: Cancel ARU transfer for chann 0 = Do nothing.	nel 0.		1	1 1			1				
Bit 1	 1 = Cancel any pending blocking ARU CAT1: Cancel ARU transfer for changer 0 = Do nothing. 1 = Cancel any pending blocking ARU 	nel 1.										
Bit 2	CAT2: Cancel ARU transfer for channel 0 = Do nothing. 1 = Cancel any pending blocking ARU	nel 2.										
Bit 3	CAT3: Cancel ARU transfer for channel 0 = Do nothing. 1 = Cancel any pending blocking ARU	nel 3.										
Bit 4	CAT4: Cancel ARU transfer for chant 0 = Do nothing.	nel 4.										
Bit 5	 1 = Cancel any pending blocking ARU CAT5: Cancel ARU transfer for change 0 = Do nothing. 	nel 5.										
Bit 6	 1 = Cancel any pending blocking ARU CAT6: Cancel ARU transfer for change 0 = Do nothing. 		ans	ter.								
Bit 7	 1 = Cancel any pending blocking ARU CAT7: Cancel ARU transfer for changer 0 = Do nothing. 1 = Cancel any pending blocking ARU 	nel 7.										
	Note : The CATx (x = 0T-1) bi corresponding MCS-channel is	t inside the ST	Α	reg	ste							

GTM-IP	Specification	Revision 3.1.5.1
	read or write request is canceled. The MC the instruction after the blocking ARU tran	
	Note : The CATx (x = 0T-1) bit is cleared by channel, when the channel is entering a bl instruction.	
Bit 31:8	Reserved: Read as zero, should be written as a Note : Only the first T bits of this register (bit 0 implemented. The other bits (bit T to 31) a	0 to T-1) are functionally

15.11.17 Register MCS[i]_CWT

Address Offset:	see Appendix B Initial Va	alue:	0x	000	00_	_00	000)
	31 33 33 33 33 33 33 33 33 24 25 25 25 25 25 22 22 22 22 22 22 23 23 23 23 23 23 23	11 10 9 8	7	9 ч	4	з	2	1 0
Bit	Reserved		CWT7	CWT6 CWT5	CWT4	CWT3	CWT2	CWT1 CWT0
Mode	۵				RAw	RAw	RAw	RAw RAw
Initial Value	00 00 00 00 X0					0	0	0 0
Bit 0	CWT0: Cancel WURM instruction for channe 0 = Do nothing. 1 = Cancel any pending WURM instruction.	el 0.			•			·
Bit 1	CWT1: Cancel WURM instruction for channe 0 = Do nothing. 1 = Cancel any pending WURM instruction.	el 1.						
Bit 2	CWT2: Cancel WURM instruction for channel 0 = Do nothing.	el 2.						
Bit 3	 1 = Cancel any pending WURM instruction. CWT3: Cancel WURM instruction for channel 0 = Do nothing. 	el 3.						
Bit 4	 1 = Cancel any pending WURM instruction. CWT4: Cancel WURM instruction for channel 4. 0 = Do nothing. 							
Bit 5	 1 = Cancel any pending WURM instruction. CWT5: Cancel WURM instruction for channel 5. 0 = Do nothing. 							
Bit 6	1 = Cancel any pending WURM instruction.CWT6: Cancel WURM instruction for channel	el 6.						

GTM-IP	Specification	Revision 3.1.5.1
Bit 7	0 = Do nothing. 1 = Cancel any pending WURM instruction. CWT7: Cancel WURM instruction for channel 7.	
	 0 = Do nothing. 1 = Cancel any pending WURM instruction. Note: The CWTx (x = 0T-1) bit inside the scorresponding MCS-channel is set and ar instruction is canceled. The MCS-channel instruction after the WURM instruction. 	ny pending WURM
	Note : The CWTx (x = 0T-1) bit is cleared by the channel, when the channel reaches a WURM i	
Bit 31:8	Reserved: Read as zero, should be written as zero. Note: Only the first T bits of this register (bit 0 to implemented. The other bits (bit T to 31) are re	T-1) are functionally

15.11.18 Register MCS[i]_ERR

Address Offset:	see Appendix B	Initial Value:	0x0000000	
	31 30 29 27 28 28 26 26 25 25 23 23 23 23 21 21 19 11 11 11	15 14 13 13 12 11 10 8	7 5 3 3 4 4 0 0	
Bit	Reserved		ERR7 ERR6 ERR5 ERR4 ERR3 ERR3 ERR2 ERR1 ERR1	
Mode	۲	RCW RCW RCW RCW RCW RCW RCW		
Initial Value	000000 00	0 0 0 0 0 0 0 0		
Bit 0 Bit 1	 ERR0: Error State of MCS-channel 0 = No error signal. 1 = Error signal is pending. ERR1: Error State of MCS-channel 			
Bit 2	 0 = No error signal. 1 = Error signal is pending. ERR2: Error State of MCS-channel 2. 0 = No error signal. 			
Bit 3	 1 = Error signal is pending. ERR3: Error State of MCS-channel 0 = No error signal. 1 = Error signal is pending. 	3.		
Bit 4	ERR4: Error State of MCS-channel	4.		

GTM-IP	Specification	Revision 3.1.5.1
	Specification	1/2/19/011 2.1.2.1
	0 = No error signal.	
	1 = Error signal is pending.	
Bit 5	ERR5: Error State of MCS-channel 5.	
	0 = No error signal.	
	1 = Error signal is pending.	
Bit 6	ERR6: Error State of MCS-channel 6.	
	0 = No error signal.	
Bit 7	1 = Error signal is pending. ERR7 : Error State of MCS-channel 7.	
	0 = No error signal.	
	1 = Error signal is pending.	
	Note: The CPU can read the ERRx (x = 0T-1) bits the current error state of the corresponding M	
	Note : The error state is also evaluated by the sub module is available.	module MON, if this
	Note: Writing a value 1 to this bit resets the correspondence resets the channel internal ERR bit in the ST. registers. Moreover, each write access to t ERR_SRC_ID bit field of register MCS[i]_CT value.	A and channel CTRL his bit also sets the

Bit 31:8 **Reserved:** Reserved **Note:** Only the first T bits of this register (bit 0 to T-1) are functionally implemented. The other bits (bit T to 31) are reserved bits.

15.11.19 Memory MCS[i]_MEM

Address Offset:	see Appendix B Initial Value: 0x0000000
	31 33 30 29 27 28 26 26 25 25 26 25 22 23 23 23 23 23 23 17 11 11 11 11 11 11 11 11 11 11 11 11
Bit	DATA
Mode	RX N
Initial Value	00000 00000 0000
Bit 31:0	DATA: MCS memory location.

16 Memory Configuration (MCFG)

16.1 Overview

The Memory Configuration submodule (MCFG) is an infrastructure module that organizes physical memory blocks and maps them to the RAM ports 0 and 1 of available Multi Channel Sequencer (MCS) modules.

The following parameters are design variables for the MCFG hardware structure that can vary in its range for different devices:

MAW - Memory address width of a large physical memory block. ERM - Enable RAM1 MSB (0 - RAM1 MSB disabled, 1 - RAM1 MSB enabled)

The actual values for these parameters can be obtained from the device specific Appendix.

It should be noted that the actual value of the parameter ERM can be obtained by the bit **ERM** of the register **CCM[i]_HW_CONF**.

Depending on the value of parameter ERM, the MCFG module assumes externally connected physical RAM modules with different sizes. If ERM = 0, MCFG assumes that each MCS instance provides a large physical memory block with 2^{MAW} memory locations each 32 bit wide which leads to a RAM module with 2^{MAW+2} (byte wise) memory addresses. Further each MCS instance provides a small physical memory block with 2^{MAW-1} memory locations each 32 bit wide leading to a RAM module with 2^{MAW+1} (byte wise) memory addresses. If ERM = 1, MCFG assumes that each MCS instance provides two large physical memory block each with 2^{MAW+1} (byte wise) coations each 32-bit leading to a RAM module with 2^{MAW+2} (byte wise) memory addresses.

In order to support different memory sizes for different MCS instances, the MCFG module provides three layout configurations for reorganization of memory pages mapped to the RAM ports of neighboring MCS modules. Figure 16.1.1 shows all layout configurations for the case that ERM = 0 and Figure 16.1.3 shows the layout configurations for the case that ERM = 1. Each box in these pictures represents a physical memory block.

The layout configuration DEFAULT is always assigning a memory block of size $2^{MAW}x32$ bits to MCS RAM port 0. Depending on ERM, RAM port 1 of each MCS is assigned to a memory block of size $2^{MAW-1}x32$ bits (ERM = 0) or a memory block of size $2^{MAW}x32$ bits (ERM = 1).

The layout configuration SWAP is swapping the memory block assigned to RAM port 1 of the current MCS instance with the memory block assigned to RAM port 0 of the successive MCS instance. If ERM = 0, this means that the memory of the current MCS

instance is increased by $2^{MAW-1}x32$ bits but the memory of the successor is decreased by $2^{MAW-1}x32$ bits compared to the DEFAULT configuration. If ERM = 1, the SWAP configuration has no effect on the memory sizes of the individual MCS instances.

The layout configuration BORROW is borrowing the memory block assigned to RAM port 0 of the successive MCS instance for the current instance. This means, the memory of the current MCS module is increased by 2^{MAW}x32 bits but the memory of the successor is decreased by 2^{MAW}x32 bits compared to the DEFAULT configuration.

Considering the order the mentioned MCS modules, it should be noted that the successor of the last MCS instance is the first MCS instance MCS0.

The actual sizes of the memory pages mapped to the MCS RAM ports 0 and 1 depends on the layout configuration for of current instance MCS[i] and the layout configuration of the preceding memory instance MCS[i-1]. The sizes of these memory pages can be obtained by the layout parameters MP0 and MP1, as described in the specification of the MCS.

Table 16.1.2 and Figure 16.1.4 summarize the layout parameters MP0 and MP1 of MCS instance MCS[i] for the case that ERM = 0 and ERM = 1. Note that the predecessor of instance MCS0 is last available MCS instance.

The addressing of memory port 0 ranges from 0 to MP0-4 and the addressing of memory page 1 ranges from MP0 to MP1-4.

This document assumes that the GTM implementation embeds 8 MCS instances. However, the actual number of implemented MCS instances can be obtained from [1].

16.1.1 Memory Layout Configurations (ERM = 0)

Specification

	DEFAULT	SWAP	BORROW			
Configuration for instance MCS[i]	2 ^{MAW} x 32 bit 2 ^{MAW-1} x 32 bit	2 ^{MAW} x 32 bit 2 ^{MAW} x 32 bit	$2^{MAW} \times 32 \text{ bit}$ $2^{MAW} \times 32 \text{ bit}$ $2^{MAW-1} \times 32 \text{ bit}$			
Configuration for instance MCS[i+1]	2 ^{MAW} x 32 bit 2 ^{MAW-1} x 32 bit	2 ^{MAW-1} x 32 bit 2 ^{MAW-1} x 32 bit	2 ^{MAW-1} x 32 bit			

16.1.2 Memory Layout Parameters (ERM = 0)

			Memory Layout Option of preceding MCS instance MCS[i-1]							
			DEFAULT	SWAP	BORROW					
[]]S:		MP0	2 ^{MAW+2}	2 ^{MAW+1}	0					
MP0 instance MCS[i] MP1 MP1 MP0		MP1	2 ^{MAW+2} +2 ^{MAW+1}	2 ^{MAW+2}	2 ^{MAW+1}					
Layout Option S instance M0		MP0	2 ^{MAW+2}	2 ^{MAW+1}	0					
	SWAP	MP1	2 ^{MAW+3}	2 ^{MAW+2} +2 ^{MAW+1}	2 ^{MAW+2}					
Memory La current MCS		MP0	2 ^{MAW+2}	2 ^{MAW+1}	0					
of c	BORROW	MP1	2 ^{MAW+3} +2 ^{MAW+1}	2 ^{MAW+3}	2 ^{MAW+2} +2 ^{MAW+1}					

16.1.3 Memory Layout Configurations (ERM = 1)

	DEFAULT	SWAP	BORROW
Configuration for instance MCS[i]	2 ^{MAW} x 32 bit 2 ^{MAW} x 32 bit	2 ^{MAW} x 32 bit 2 ^{MAW} x 32 bit	2^{MAW} x 32 bit 2^{MAW} x 32 bit 2^{MAW} x 32 bit
Configuration for instance MCS[i+1]	2 ^{MAW} x 32 bit 2 ^{MAW} x 32 bit	2 ^{MAW} x 32 bit 2 ^{MAW} x 32 bit	2 ^{MAW} x 32 bit

16.1.4 Memory Layout Parameters (ERM = 1)

			Memory Layout Option of preceding MCS instance MCS[i-1]							
			DEFAULT	SWAP	BORROW					
S[i]		MP0	2 ^{MAW+2}	2 ^{MAW+2}	0					
MP0 instance MCS[i] MP1 MP0 MP0		2 ^{MAW+3}	2 ^{MAW+3}	2 ^{MAW+2}						
Layout Option S instance MC		MP0	2 ^{MAW+2}	2 ^{MAW+2}	0					
	SWAP	MP1	2 ^{MAW+3}	2 ^{MAW+3}	2 ^{MAW+2}					
Memory La current MCS		MP0	2 ^{MAW+2}	2 ^{MAW+2}	0					
of c	BORROW	MP1	2 ^{MAW+2} +2 ^{MAW+3}	2 ^{MAW+2} +2 ^{MAW+3}	2 ^{MAW+3}					

16.2MCFG Configuration Registers Overview

16.2.1 MCFG Configuration Registers Overview Table

Register Name	Description	Details in Section
MCFG_CTRL	MCFG Memory layout configuration.	16.3.1

16.3MCFG Configuration Registers

16.3.1 Register MCFG_CTRL

Specification

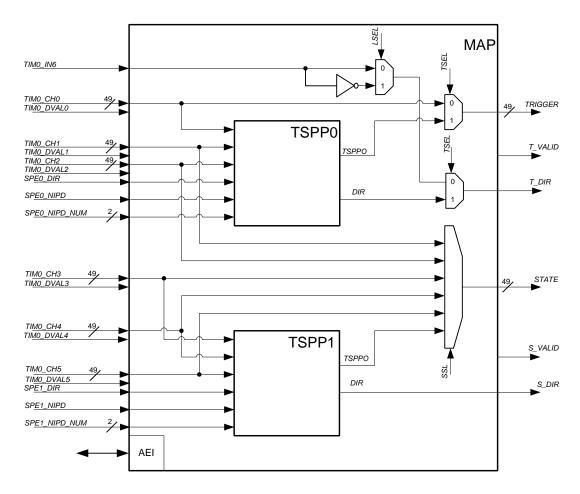
Revision 3.1.5.1

Address Offset:	see Appendix B				Initial Value: 0x0000000						
	31 30 29 28 27 26 26 25 24 24 23 23 23 22 21 20	19 18	17 16	15 14	13 12	11 10	6 8	7 6	5 4	3	1 0
Bit	Reserved	MEM9	MEM8	MEM7	MEM6	MEM5	MEM4	MEM3	MEM2	MEM1	MEMO
Mode	٣	RPw	RPw	RPw	RPw	RPw	RPw	RPw	RPw	RPw	RPw
Initial Value	000000	00	00	00	00	00	00	00	00	00	00
Bit 1:0	MEM0: Configure Memory 0b00 = DEFAULT configur 0b01 = SWAP configuratio 0b10 = BORROW configur 0b11 = Reserved	ratior on	ו	or MC	S-in	stan	ce M	CS0	•		
Bit 3:2	MEM1: Configure Memory 0b00 = DEFAULT configur 0b01 = SWAP configuratio 0b10 = BORROW configur 0b11 = Reserved	ation	۱	or MC	CS-in	stan	ce M	CS1			
Bit 5:4	MEM2 : Configure Memory 0b00 = DEFAULT configur 0b01 = SWAP configuratio 0b10 = BORROW configur	ation	۱	or MC	CS-in	stan	ce M	CS2			
Bit 7:6	0b11 = Reserved MEM3 : Configure Memory pages for MCS-instance MCS3. 0b00 = DEFAULT configuration 0b01 = SWAP configuration 0b10 = BORROW configuration 0b11 = Reserved										
Bit 9:8	MEM4: Configure Memory 0b00 = DEFAULT configur 0b01 = SWAP configuratio 0b10 = BORROW configur 0b11 = Reserved	ratior on	ו	or MC	CS-in	stan	ce M	CS4			
Bit 11:10	MEM5: Configure Memory 0b00 = DEFAULT configur 0b01 = SWAP configuratio 0b10 = BORROW configur 0b11 = Reserved	atior	ו	or MC	S-in	stan	ce M	CS 5	ō.		
Bit 13:12	MEM6 : Configure Memory 0b00 = DEFAULT configur 0b01 = SWAP configuratio 0b10 = BORROW configur	ratior on	ו	or MC	CS-in	stan	ce M	CS6			

GTM-IP	Specification	Revision 3.1.5.1
	0b11 = Reserved	
Bit 15:14	MEM7: Configure Memory pages for MCS-instance MC	S7.
	0b00 = DEFAULT configuration	
	0b01 = SWAP configuration	
	0b10 = BORROW configuration	
	0b11 = Reserved	
Bit 17:16	MEM8: Configure Memory pages for MCS-instance MC	S8.
	0b00 = DEFAULT configuration	
	0b01 = SWAP configuration	
	0b10 = BORROW configuration	
	0b11 = Reserved	
Bit 19:18	MEM9: Configure Memory pages for MCS-instance MC	S9.
	0b00 = DEFAULT configuration	
	0b01 = SWAP configuration	
	0b10 = BORROW configuration	
	0b11 = Reserved	
Bit 31:20	Reserved: Read as zero, should be written as zero.	

NOTE: It should be noted that the actual GTM-IP implementation may embed less MCS instances than mentioned in this register (see [1]). In this case this register only implements the register bits for available MCS instances.

NOTE: This register is only writable if the bit **RF_PROT** in register **GTM_CTRL** is cleared.



17 TIM0 Input Mapping Module (MAP)

17.1 Overview

The MAP submodule generates the two input signals *TRIGGER* and *STATE* for the submodule DPLL by evaluating the output signals of the channel 0 up to channel 5 of submodule TIM0. By using the TIM as input submodule, the filtering of the input signals can be done inside the TIM channels themselves. The MAP submodule architecture is depicted in figure 17.1.1.

17.1.1 MAP Submodule architecture

Generally, the MAP submodule can route the channel signals coming from TIM0 in three ways. First, it is possible to route the whole 49 bits of data coming from channel 0 of module TIM0 (TIM0_CH0) to the *TRIGGER* signal which is then provided to the DPLL together with the T_VALID signal.

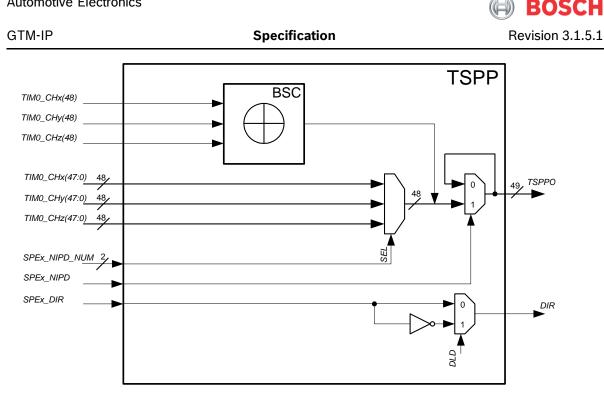
Specification

Second, the MAP module can route one of the five signals coming from the module TIM0 (i.e. the signals coming from channel 1 up to channel 5) to the output signal *STATE* which is then provided to the module DPLL together with the S_VALID signal.

Third, the *TRIGGER*, *T_VALID*, *STATE* and *S_VALID* signals can be generated out of the TIM Signal Preprocessing (TSPP) subunits. This is done in combination with the Sensor Pattern Evaluation (SPE) submodule described in chapter 19.

There, the signal *TRIGGER* is generated in subunit TSPP0 out of the TIM0 signals coming from channel 0 up to 2.

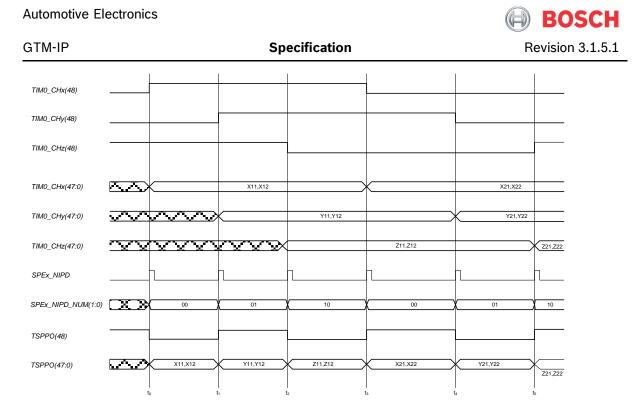
The signal *STATE* is generated in subunit TSPP1 out of the TIM signals coming from channel 3 up to channel 5.


This is only be done, when the TSSPx subunits are enabled and when the *SPEx_NIPD* signal is raised by the SPE submodule. The *SPEx_NIPD_NUM* signal encodes, which of the 3 *TIMx_CHy* input signals has been changed. The *SPEx_DIR* signal is routed through the TSPPx subunit and implements the *T_DIR* or *S_DIR* signal.

A third method to provide a direction signal to DPLL is to use TIM0 channel 6 input ($TIM0_IN6$) and to route it instead of the DIR signal coming from TSSOP0 to the MAP output T_DIR (set TSEL=0)

17.2 TIM Signal Preprocessing (TSPP)

The TSPP combines the three 49 bit input streams coming from the TIM0 submodule and generates one combined 49 bit output stream *TSPPO*. The input stream combination is done in the unit Bit Stream Combination (BSC). The architecture of the TSPP is shown in figure 17.2.1.


17.2.1 TIM Signal Preprocessing (TSPP) subunit architecture

17.2.2 Bit Stream Combination

The BSC subunit is used to xor-combine the three most significant bits TIMO CHx(48), TIMO CHy(48) and TIMO CHz(48) of the TIMO inputs. The xor-combined signal is merged with the remaining 48 bits of one of the three input signals TIM0 CHx(47...0), TIMO CHy(47...0) or TIMO CHz(47...0) the TSPPO signal. The selection is done with the SPEx NIPD NUM input signal coming from the SPE submodule. The action, when the 49 bits are transferred to the TSPPO and the T_VALID or S_VALID signal is raised is determined by the SPEx NIPD signal coming from the SPE submodule. The TSPPO output signal generation is shown in the example in Figure 17.3.

17.2.2.1 TSPP Signal generation for signal TSPPO

The *SPEx_NIPD_NUM* input signal determines, which data is routed to the *TSPPO* signal. At the first edge of *TIM0_CHx(48)* the new data X11 and X12 are routed to *TSPPO(47:0)*. The values X11 and X12 are the two 24 bit values coming from the TIM input channel TIM0_CHx. The next edge is at time t_1 on signal *TIM0_CHy(48)*. Therefore, at time t_1 the *TSPPO(48)* signal level changes and the *TSPPO(47:0)* is set to Y11 and Y12 and so forth.

17.3MAP Register overview

Register name	Description	Details Section	in
MAP_CTRL	MAP Control register	17.4.1	

17.4MAP Register description

17.4.1 Register MAP_CTRL

Specification

Address Offset:	see Appendix B								Initial Value: 0x0000_0000																		
	31	30	29	28	27 26	25	24	23	22	21	20	19 18	17	16	15 14	12	11	10	6	8	7	9	2	r c	5	1	0
Bit	Reserved	TSPP1_12V	TSPP1_11V	TSPP1_10V	Reserved	TSPP1_DLD	TSPP1_EN	Reserved	TSPP0_12V	TSPP0_11V	TSPP0_10V	Reserved	TSPP0_DLD	TSPP0_EN				Reserved					I SEI		SSL		TSEL
Mode	щ	RW	RW	RW	£	RW	RW	R	RW	RW	RW	R	RW	RW				щ					ЪW	1177	RW		RW
Initial Value	0	0	0	0	0	0	0	0	0	0	0	00	0	0				0					c	>	000		0
	 it 0 TSEL: TRIGGER signal output select. 0 = TIM0_CH0 selected as TRIGGER output signal. TIM0_IN6 (TIM0 channel 6 input) is used as direction signal T_DIR. 1 = TSPP0_TSPPO selected as TRIGGER output signal. 																										
Bit 3:1	 SSL: STATE signal output select. 0b000: TIM0_CH1 selected as STATE output signal. 0b001: TIM0_CH2 selected as STATE output signal. 0b010: TIM0_CH3 selected as STATE output signal. 0b011: TIM0_CH4 selected as STATE output signal. 0b100: TIM0_CH5 selected as STATE output signal. 0b101: TSPP1_TSPPO selected as STATE output signal. 0b110: same as '000' 0b111: same as '000' 																										
Bit 4	LSEL : TIM0_IN6 input level selection 0 = <i>TIM0_IN6</i> input level '0' encodes TRIGGER in forward direction. 1 = <i>TIM0_IN6</i> input level '1' encodes TRIGGER in forward direction.																										
Bit 15:5	15:5 Reserved Note: Read as zero, should be written as zero.																										
Bit 16	TSPP0_EN : Enable of TSPP0 subunit. 0 = TSPP0 disabled. 1 = TSPP0 enabled.																										
Bit 17	Т 0	SF =	P P SI	0_ PE	DLC x_D) : [R	DIF si	R l gn	ev al	is	roi		th		it. ugh as	is.											
Bit 19:18	R	les	sei	rve	ed			-				/erte		ritt.	en as :	7.0r	~										
Bit 20	Т 0	SF =	PP In	0_ pu	IOV : t line	Di e e	isa na	ble.	e c ed.	of ⁻	TS	PP0	T	IM	0_CH	x(4	8)	-									
Bit 21	Т	SF	PP	0_		D	isa	bl	e c	of ⁻	-				PP0 is 0_ <i>CH</i> j												

GTM-IP	Specification	Revis
Bit 22	1 = Input line disabled; input for TSPP0 is set to zero (0) TSPP0_I2V : Disable of TSPP0 <i>TIM0_CHz(48)</i> input line 0 = Input line enabled.	
	1 = Input line disabled; input for TSPP0 is set to zero (0)	
Bit 23	Reserved	
	Note: Read as zero, should be written as zero.	
Bit 24	TSPP1_EN : Enable of TSPP1 subunit.	
	0 = TSPP1 disabled.	
	1 = TSPP1 enabled.	
Bit 25	TSPP1_DLD : DIR level definition bit.	
	$0 = SPEx_DIR$ signal is routed through as is.	
	1 = SPEx_DIR signal is inverted.	
Bit 27:26	Reserved	
Bit 28	Note: Read as zero, should be written as zero.	
DIL 20	TSPP1_IOV : Disable of TSPP1 <i>TIM0_CHx(48)</i> input line 0 = Input line enabled.	•
	1 = Input line disabled; input for TSPP1 is set to zero (0)	
Bit 29	TSPP1_IIV : Disable of TSPP1 <i>TIM0 CHy(48)</i> input line	
DIL 25	0 = Input line enabled.	•
	1 = Input line disabled; input for TSPP1 is set to zero (0)	1.
Bit 30	TSPP1_I2V : Disable of TSPP1 <i>TIM0_CHz(48)</i> input line	
	0 = Input line enabled.	•
	1 = Input line disabled; input for TSPP1 is set to zero (0)	
Bit 31	Reserved	
	Note: Read as zero, should be written as zero.	

18 Digital PLL Module (DPLL)

18.1 Overview

The digital PLL (DPLL) sub-module is used for frequency multiplication. The purpose of this module is to get a higher precision of position or value information also in the case of applications with rapidly changed input frequencies. There are two input signals *TRIGGER* and *STATE* for which periodic events are processed. The time period between two active events is called an increment. Each increment is divided into a given number of sub increments by pulses called SUB_INC. The resolution of the generated pulses is restricted by the period of the CMU_CLK0 clock or the TS_CLK respectively (see description of the modules TBU, CMU). The input signals *TRIGGER* and *STATE* can have the meaning of position information of linear or angle motions, mass flow values, temperature, pressure or level of liquids.

By means of the DPLL the load of the CPU can be reduced essentially by relieving it from repeated or periodic standard tasks.

The DPLL has to perform the following tasks:

- prediction of the duration of the current increment in chapter 18.6
- generation of SUB_INC1,2 pulses for up to 2 position counters in normal or emergency mode (see chapter 18.8.3)
- synchronization of the actual position (under CPU control, see chapter 18.8.6.2)
- possibility of seamless switch to emergency mode and back under CPU control, see configuration register DPLL_CTRL_0 at chapter 18.12
- prediction of position and time related events in chapter 18.7

18.2 Requirements and demarcation

The two input signals *TRIGGER* and *STATE* can be sensor signals from the same device or from two independent devices. When they come from the same device the *TRIGGER* input is typically a more frequent signal and *STATE* is a less frequent signal. In such a case the *STATE* signal can support an emergency mode, when no *TRIGGER* signal is available. There are also applications supported when *STATE* and *TRIGGER* are independent signals from different devices. Both input signals are combined with a validation signal *T_VALID* or *S_VALID* respectively, which shows the appearance of new data and must result in a data fetch and a start of the correspondent state machine to perform the calculations (see explanation below).

When *STATE* is a redundant signal of the same device only the *TRIGGER* input is used to generate the SUB_INC1 pulses in normal mode. There is a configuration possible, called emergency mode, for which the SUB_INC1 pulses are generated using the *STATE* input signal.

The decision to switch in the emergency mode and back is made outside the DPLL. The CPU must switch the configuration bit RMO (reference mode) in the DPLL_CTRL_0 register (see chapter 18.12). Because a switch in emergency mode can appear suddenly, the information of the last increment duration of the *STATE* input up to FULL_SCALE should be stored always as a precaution.

The filtering as well as the combination or choice of the input signals is made in the TIM sub-module (see chapter 10) by use of a configurable filter algorithm for each slope and signal as well as in the MAP module (see chapter 16) the right *TRIGGER* or *STATE* signal is selected by a multiplexer or in the SPE module (see chapter 18) different signals are combined to a *TRIGGER* or *STATE* signal by using an antivalence operation.

The filter delay value of the signal is transmitted from the TIM module in the *FT* part of the corresponding signal, because the delay conditions of the signals can change during application.

The filter delays depend also on the filter algorithms used. Only the effective filter delay can be considered in the DPLL.

In order to provide the timing conditions to the DPLL the input trigger signals should have a time stamp (and optional in addition a filter value and a signal level value, as stated above) with an appropriate resolution. The resolution of the time stamps can be either the same resolution as the input time base TBU_TS0 (see chapter 18.4.1) or 8 times higher, selected by configuration bits in the DPLL_CTRL_1 register (see chapter 18.12.2). The time base TBU_TS0 is used to predict events in the future, called actions.

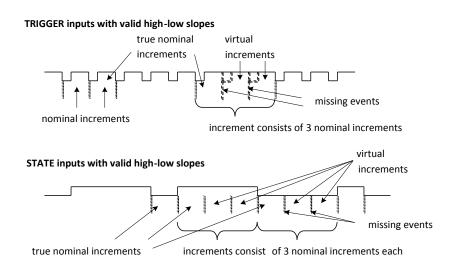
At the SUB_INCx outputs a predefined number of pulses between each active slope of the *TRIGGER/STATE* signal is generated, when the correspondent pulse generator is enabled by the enable bits SGEx=1 in the DPLL_CTRL_1 register (see chapter 18.12.2).

Dependent on configuration different strategies can be used to correct a wrong pulse number.

The FULL_SCALE range is divided into a fix number of nominal increments. Nominal increments do have the same size. The number of nominal increments in HALF_SCALE is specified in the DPLL_CTRL_0 register (see chapter 18.12).

For synchronization purposes some *TRIGGER/STATE* input signals can be suppressed in dependency on the current position. Therefore an increment as duration between two active input events can be either a nominal increment or it can consist of more than one nominal increment.

Specification



While a true nominal increment starts with an active event a virtual increment (of always nominal size) is an increment which starts with a missing event. Each increment which represents a gap (e.g. for synchronization purposes) consists of exactly one true nominal increment and at least one virtual increment, each of them having the same nominal duration (see figure below).

18.3Input signal courses

Typical input signal courses are shown in the figure below.

18.3.1 Trigger and State Input Signal

18.4 Block and interface description

The block description of the DPLL is shown in the following figure.

18.4.1 DPLL Block Diagram

Confidential

Specification

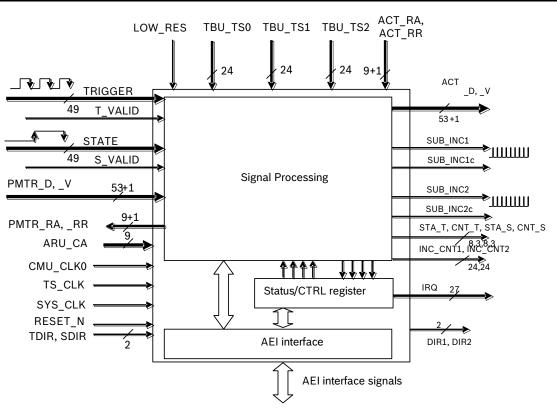


Table 18.4.2 summarizes the interface signals of the DPLL shown by the block diagram above.

18.4.2 Interface description of DPLL

Name	Width	I/O	Description	Comment
TRIGGER	49	1	Normal Signal for triggering DPLL by positions/values Bit(48)= TRIGGER_S Bits(47:24)= TRIGGER_FT Bits(23:0)= TRIGGER_TS	One bit signal value (SV), 24 bits filter delay value info and 24 bits time stamp, filtered in different modes.
T_VALID	1	I	The values of TRIGGER are valid	Announces the arrival of a new <i>TRIGGER</i> value
STATE	49	1	Assistance signal for synchronization STATE(48)= STATE_S STATE(47:24)= STATE_FT STATE_FT STATE(23:0)= STATE_TS	Replacement of signal <i>TRIGGER</i> for emergency situations, or signal from an independent device; bits like above, corresponding

S_VALID	1	I	The values of STATE are valid	Announces the arrival of a new STATE value
PMTR_D	53		Position minus time request data, delivered by ARU on request for up to 24 requests PMTR_RR; SV_i=PMTR_D(52:48): ACB bits, directly written to the correspondent DPLL_ACB_j registers PSA[i]=PMTR_D(47:24): position value for action DLA[i]=PMTR_D(23:0) time delay value for action	Data values for calculation of actual Actions; the values are requested by AENi=1 ¹⁾ and CAIP=0 ²⁾ ; a served request is shown by PMTR_V which signals that valid PMTR data arrived and they are written immediately after that to the corresponding RAM regions and registers; The DLA[i] values must have the same resolution as the TBU_TS0 input.
PMTR_V	1	1	signals a valid PMTR_D value, that means data is delivered on request	when valid: PMTR_D overwrites data in the PSA[i] and DLA[i] registers, also when the corresponding ACT_N[i] ³⁾ bit =1;
ARU_CA	9	1	Channel address; for valid PMTR addresses: demand data by setting PMTR_RR=1 when enabled by AENi=1 ¹⁾ and CAIP=0 ²⁾ ;	counter value of ARU selects PMTR_RA and PMTR_RR when a valid address
PMTR_RA	9	0	read address of PMTR access	reflects ID_PMTR_i according to the selected channel address
PMTR_RR	1	0	read request of PMTR access; suppressed for CAIPi=1 (see DPLL_STATUS register)	reflects the value of the corresponding AENi ¹⁾ bit while the correspondent bit CAIPi=0 ²⁾
ACT_D	53	0	Output of a time stamp, a position and a control signal for a calculated action; SV_i=ACT_D(52:48) : ACB bits, directly written from the correspondent PMTR_D signals; ACT_D(47:24) is the calculated position	Future time stamp with the resolution as TBU_TS0 input, additional position information and additional control bits;

Confidential

			value PSAC[i] for the action in relation to TBU_TS1 or 2 ⁶⁾ and ACT_D(23:0) is the time stamp value TSAC[i] for the action in relation to TBU_TS0 ⁶⁾	
ACT_V	1	0	ACT_D value is available and valid; blocking read access	for a valid action address: ACT_V reflects the shadow value of ACT_N[i] ³⁾ (ACT_N[i] is 1 when new PMTR values are available and the shadow register is updated, when a calculation of the actual PMTR values was done); reset after reading of the ACT_D values
ACT_RA	9	Ι	ACTION read address;	address bits for selection of all 24 action channels
ACT_RR	1	1	read request of selected action	the action data is demanded from another module
IRQ	27	0	Interrupt request output	Interrupts of DPLL;
SUB_INC1	1	0	Pulse output for <i>TRIGGER</i> input filter	sub-position increment provided continuously
SUB_INC2	1	0	Pulse output for STATE input filter (when TRIGGER and STATE are used for 2 independent devices)	sub-position increment provided continuously
SUB_INC1 c	1	0	Pulse output for time base unit 1 in compensation mode (can stop in automatic end mode)	sub-position increment related to <i>TRIGGER</i> input
SUB_INC2 c	1	0	Pulse output for time base unit 2 in compensation mode (can stop in automatic end mode)	sub-position increment related to STATE input (when TRIGGER and STATE are used for 2 independent devices)
TS_CLK	1	1	Time stamp clock	used for generation of the time stamps; this clock is used to generate the SUB_INC1,2 pulses
CMU_CLK	1	1	CMU clock 0	used for rapid pulse correction of SUB_INC1,2

Revision 3.1.5.1

SYS_CLK	1	1	System clock	High frequency clock
RESET_N	1	1	Asynchronous reset signal	Low active; After Reset he DPLL is available only after performing the RAM reset procedures by the DPLL hardware.
LOW_RES	1	Ι	low resolution of TBU_TS0 selected; shows which of the 27 bits of TBU_TS0 are connected to the DPLL	LOW_RES=0: TBU_TS0(DPLL)= lower 24 Bits of TBU_TS0(TBU); LOW_RES=1: TBU_TS0(DPLL)= higher 24 Bits of TBU_TS0(TBU); In the case LOW_RES=1 the TS0_HRT and/or TS0_HRS bits can be set ⁵⁾
TBU_TS0	24	I	Actual time stamp from TBU; is needed to decide, if a calculated action is already in the past	24 bit time input, with a resolution of the time stamp clock
TBU_TS1	24	I	Actual position/value stamp 1; for calculation of position stamps (<i>TRIGGER/STATE</i>)	24 bit pos./val. input, with a resolution of the SUB_INC1 pulses
TBU_TS2	24	I	Actual position/value stamp 2; to be implemented for an additional independent position	ditto for SUB_INC2 for calculation of position stamps (STATE) for SMC ⁵⁾ =RMO ⁴⁾ =1
TDIR	1	I	Direction of <i>TRIGGER</i> input values (TDIR=0 does mean a forward direction and TDIR=1 a backward direction)	direction information from multiple sensors valid only for SMC ⁵⁾ =1 or IDDS ⁵⁾ =1
SDIR	1	I	Direction of STATE input values (SDIR=0 does mean a forward direction and SDIR=1 a backward direction)	direction information from multiple sensors valid only for SMC ⁵⁾ =1
DIR1	1	0	Direction information of SUB_INC1 (count forwards for DIR1=0 and backwards for DIR1=1)	TBU_CH1_BASE; DIR1 changes always after the

Revision 3.1.5.1

DIR2	1	0	Direction information of SUB_INC2 (count forwards for DIR2=0 and backwards for DIR2=1)	
STA_T	8	0	Status of state machine TRIGGER	Output to MCS0. Signals accessible via uC interface as well (DPLL_STA)
CNT_T	3	0	Count TRIGGER	Output to MCS0. This reflects the count of active <i>TRIGGER</i> slopes (mod8). Signals accessible via uC interface as well (DPLL_STA)
STA_S	8	0	Status of state machine STATE	Output to MCS0. Signals accessible via uC interface as well (DPLL_STA)
CNT_S	3	0	Count STATE	Output to MCS0. This reflects the count of active STATE slopes (mod8). Signals accessible via uC interface as well (DPLL_STA)
INC_CNT1	24	0	Increment counter of pulse generator 1 (automatic end mode)	Output to MCS0. Signals accessible via uC interface as well (DPLL_INC_CNT1)
INC_CNT2	24	0	Increment counter of pulse generator 2 (automatic end mode)	Output to MCS0. Signals accessible via uC interface as well (DPLL_INC_CNT2)

For references above the following hints are used:

¹⁾ see DPLL_CTRL_x register, x=2,3,4; see 18.12.3,18.12.4,18.12.5

- ²⁾ see DPLL_STATUS register; see 18.12.30
- ³⁾ see DPLL ACT STA register; see 18.12.7
- ⁴⁾ see DPLL_CTRL_0 register; see 18.12.1
- ⁵⁾ see DPLL_CTRL_1 register; see 18.12.2
- ⁶⁾ see DPLL input signal description; see 18.1

Specification

18.5 DPLL Architecture

18.5.1 Purpose of the module

The DPLL generates a predefined number of incremental signal pulses within the period between two events of an input *TRIGGER* or *STATE* signal, when the corresponding pulse generator is enabled. The resolution of the pulses is restricted by the frequency of the time stamp clock (TS_CLK). Changes in the period length of the predicted time period of the current increment will result in a change of the pulse frequency in order to get the same number of pulses. This adoption can be performed by DPLL hardware, software or with support of DPLL hardware in different modes. The basic part of a DPLL is to make a prediction of the current period between two *TRIGGER* and/or *STATE* signal edges. Disturbances and systematic failures must be considered as well as changes of increment duration caused by acceleration and deceleration of the supervised process. Therefore, a good estimation is to be done using some measuring values from the past. When the process to be predicted takes a steady and differentiable course not only the current increment but also some more increments for the future can be predicted. In utilization of such calculations actions for the future can be predicted.

18.5.2 Explanation of the prediction methodology

As already shown in chapter 18.1 the DPLL has to perform different tasks. The basic function for all these tasks is the prediction of the current increment which is based on a relation between increments in the past. Because the relation between two succeeding intervals at a fixed position remains also valid in the case of acceleration or deceleration the prediction of the duration of the current time interval is done by a similarity transformation. Having a good estimation of the current time interval, all the other tasks can be done easily by calculations explained in chapter 18.6.

18.5.3 Clock topology

All registers are read using the system clock *SYS_CLK*. The SUB_INC1,2 pulses generated have in the normal case the highest frequency not higher then *CMU_CLK0* or the half of *TS_CLK* respectively. For individual pulses the frequency can be doubled. All operations can be performed using the system clock.

Specification

18.5.4 Clock generation

The clock is generated outside the DPLL.

18.5.5 Typical frequencies

For the system clock a reasonable clock frequency should be applied to give the DPLL module sufficient computational power to calculate all needed values (prediction of next increment, actions) in time. The typical system clock frequency is in the range from 40 MHz up to 150 MHz.

18.5.6 Time stamps and systematic corrections

The time stamps for the input signals *TRIGGER* and *STATE* have 24 bits each. These bits represent the value of the 24 bit free running counter running with a clock frequency selected by the configuration of the TBU. Using a typical frequency of 20 MHz the time stamp represents a relative value of time with a resolution of 50 ns.

The input signals have to be filtered. The filter is not part of the DPLL. The time stamps can have a delay caused by the filter algorithm used. There are delayed and undelayed filter algorithms available and the delay value can depend on a time or a position value.

Systematic deviations of *TRIGGER* inputs can be corrected by a profile, which also considers systematic missing *TRIGGERs*. The increments containing missing *TRIGGERS* are divided into the corresponding number of nominal increments whereas the duration of a nominal increment is the greatest divider of all increments duration. For each increment this number of enclosed nominal increments is stored in a profile as NT value for *TRIGGER*. When the increment is a nominal increment the NT value is 1.

For the *TRIGGER* input the value NT is stored in the ADT_T field in RAM region 2c.

In the case of AMT^{4} = 1 the $ADT_T[i]$ values in the RAM region 2c must also contain the adapting information for the *TRIGGER* signal, which considers for each increment a systematic physical deviation **PD** from the perfect nominal increment value with a resolution according to the chosen value of MLT+1, which describes the number of SUB_INC1 pulses for a nominal increment.

The value **PD** for the *TRIGGER* describes the amount of missing or surplus pulses with a sint13 value, to be added to MLT+1 directly. The correction value is in this way also applicable in the case of missing *TRIGGER* inputs for the synchronization gaps. In this

case the amount of provided SUB_INC1 pulses for a nominal increment (MLT+1) + PD is multiplied by NT.

The NT value of the current increment is stored in the variable SYN_T (see **NUTC** register in chapter 18.12.14).

In the case of RMO^{4} = 1 for SMC^{5} =0 (emergency mode) the time stamp of *STATE* is used to generate the output signal SUB_INC1.

More inaccuracy should be accepted in emergency mode because usually there are only fewer events available for FULL_SCALE according to the value SNU⁴).

For the *STATE* signal the systematic deviations of the increments can be corrected in the same way as for *TRIGGER* by profile and adaptation information as described below.

Systematic deviations of *STATE* inputs can be corrected by a profile, which also considers systematic missing *STATE* events. The increments containing missing *STATEs* are divided into the corresponding number of nominal increments whereas the duration of a nominal increment is the greatest divider of all increments duration. For each increment this number of enclosed nominal increments is stored in a profile as NS value for *STATE*. When the increment is a nominal increment the NS value is 1.

For the STATE input the value NS is stored in the ADT_S field in RAM region 1c3.

In the case of **AMS**⁴⁾ = 1 the **ADT_S[i]** values in the RAM region 1c3 must contain the adapting information for the STATE signal, which considers for each increment a systematic physical deviation **PD_S** from the perfect nominal increment value with a resolution according to the chosen value of MLS1, which describes the number of SUB_INC1 pulses for a nominal increment (see below).

The number of pulses SUB_INC1 for a nominal *STATE* increment in emergency mode (for SMC=0) is given by the value of MLS1= (MLT + 1)* (TNU + 1) /(SNU + 1) in order to get the same number of pulses in FULL_SCALE for normal and emergency mode. This value has to be configured by the CPU.

The value **PD_S** for the *STATE* describes the amount of missing or surplus pulses with a sint16 value, to be added to MLS1 directly. The correction value is in this way also applicable in the case of missing *STATE* inputs for the synchronization gaps. In this case the amount of provided SUB_INC1 pulses for a nominal increment MLS1 + PD_S is multiplied by NS.

The current NS value is stored in the variable SYN_S (see **NUSC** register in chapter 18.12.15).

For references above the following hints are used:

GTM-IP	Specification	Revision 3.1.5.1
¹⁾ see DPLL_CTRL_x regis	ster, x=2,3,4; see 18.12.3,18.12.4,18.12.5	

²⁾ see DPLL_STATUS register; see 18.12.30

³⁾ see DPLL_ACT_STA register; see 18.12.7

⁴⁾ see DPLL_CTRL_0 register; see 18.12.1

⁵⁾ see DPLL_CTRL_1 register; see 18.12.2

⁶⁾ see DPLL input signal description; see 18.1

18.5.7 DPLL Architecture overview

As shown in 18.4.1 the DPLL can process different input signals. The signal *TRIGGER* is the normal input signal which gives the detailed information of the supervised process. It can be for instance the information of water or other liquid level representing the volume of the liquid, where each millimeter increasing results in a *TRIGGER* signal generation. In order to get a predefined filling level, without overflow also the inertia of the system must be taken into account. Hence, some delay for closing the inlet valve and also the remaining water amount in the pipe must be considered in order to start the closing action earlier as the filling level will be reached.

A second input signal *STATE* sends an additional (redundant) information for instance at some centimeters and because of intervals with different distances it gives also information about the system state with the direction of the water flow (in or out), while the *TRIGGER* signal must not contain information concerning the flow direction. In some applications the inactive slope of *TRIGGER* can be utilized to transmit direction information. In the case of faults in the *TRIGGER* signal the *STATE* signal is to be processed in order to reach the desired value nevertheless, maybe with some loss of accuracy.

The measuring scale can have some systematic failures, because not all millimeter or centimeter distances measured mean the same value. This could be due to changes in the thickness of the measuring cylinder or the inaccurate position of the marks. These systematic failures are well known by the system and for improvement of the prediction the signals *ADT_T* and *ADT_S* for the correction of the systematic failures of *TRIGGER* and *STATE* respectively are stored in the internal RAM.

The input signals *TRIGGER* and *STATE* are represented as a time stamp signal each, which is stored in the 24 bit TS-part of the corresponding signal.

Information concerning the delay of this signal by filtering of disturbances is stored in the 24 bit FT-part of the signal.

BOSCH

In order to establish the relation of time stamps to the actual time the TBU_TS0⁶⁾ value is also provided showing the actual time value used for prediction of actions in the future.

After reaching the desired water level the water is filled in a bottle by draining. After that the water filling is repeated. The water level at draining is observed by the same sensor signals (the same number of *TRIGGER* pulses), but the duration of the draining could be different from the filling time. Both times together form the FULL_SCALE region, while one of them is a HALF_SCALE region, which can differ in time but not in the number of pulses, especially for *TRIGGER*.

For synchronization purposes some *TRIGGER* marks can be omitted in order to set the system to a proper synchronization value (maybe before the upper filling value is reached).

In emergency situations, when the *TRIGGER* signals are missed the *STATE* signal is used instead of.

The PMTR_i ⁶ signals announce the request for a position minus time calculation for up to 24 events.

All 24 events can be activated using the 24 AENi¹⁾ (action enable) bits. Each of these enable bits are asked by the routing engine for a read access. The corresponding read request is generated by the AENi bit while CAIPx is zero. CAIP1 and CAIP2 are two bits of the DPLL_STATUS register for 12 actions each with the meaning "calculation of actions in progress", controlled by the state machine (see 18.2) for scheduling the operations.

When such a request is serviced by the ARU (in the case CAIPx=0) the values for position and time are written in the corresponding RAM 1a region (0x0200... 0x025C for the position value and 0x0260... 0x02BC for the delay value), the control bits for the corresponding action are set accordingly. When a new PMTR value arrives, an old value is overwritten without notice and the shadow bit of ACT_N[i] is cleared while the ACT_N[i] (new action) bit in the DPLL_ACT_STA register is set. The ACT_N[i] is cleared, when the currently calculated action value is in the past. Overwriting of old information is possible without data inconsistency because the read request to ARU is suppressed during action calculations by the CAIP1,2 bits. In this way always the last possible PMTR value is used consistently.

For references above the following hints are used:

¹⁾ see DPLL_CTRL_x register, x=2,3,4; see 18.12.3,18.12.4,18.12.5

²⁾ see DPLL_STATUS register; see 18.12.30

³⁾ see DPLL_ACT_STA register; see 18.12.7

- ⁴⁾ see DPLL_CTRL_0 register; see 18.12.1
- ⁵⁾ see DPLL_CTRL_1 register; see 18.12.2

Specification

⁶⁾ see DPLL input signal description; see 18.1

18.5.8 DPLL Architecture description

The DPLL block diagram 18.4.1 will now be explained in detail in combination with some example configurations of the control registers. There are different configuration bits available which can adopt the DPLL to the use case (see chapter 18.12). Let for example in HALF_SCALE the *TRIGGER* number TNU⁴) be 0x3B (which is for TNU+1 = 60 decimal that does mean 120 events in FULL_SCALE) and the number of SUB_INC1 pulses between two *TRIGGERs* MLT⁴) be 0x257 (this means 600 pulses per *TRIGGER* event). Than the FULL_SCALE region can be divided into 72000 parts each of them associated with its own SUB_INC1 pulse. For a run through FULL_SCALE all 72000 pulses should appear but maybe with a different pulse frequency between two *TRIGGER* events. For this example after each 600 pulses at the *SUB_INC1* output the next *TRIGGER* event is to be expected with the corresponding new time stamp.

Missing SUB_INC1 pulses due to acceleration have to be taken into account within the next increment. Not one pulse has to be missed or added because of calculation inaccuracy in average for a sufficient number of FULL_SCALE periods. This means that not one pulse is sent in addition and all missing pulses are to be caught up on afterwards.

For the systematic arrangement of *TRIGGER* inputs **the profile** (as already mentioned in chapter 18.5.6 is stored in the RAM region 2c (see chapter 18.14.3). In this field the relative position of gaps can be stored in the NT value and also physical deviations in the PD value.

For the consideration of systematic missing *TRIGGER*s the actual NT value of the profile is stored in the SYN_T bits of the NUTC register (see chapter 18.12.14).

In normal mode the physical deviation values PD in the ADT_T field could be used to balance the local systematic inaccuracy of the *TRIGGER* signal. The value of PD (see chapter 18.14.3) is the pulse difference in the corresponding nominal increment and does mean the number of sub pulses to be added to the nominal number of pulses. PD is a signed integer value using 13 bits: up to +/-4096 pulses can be added for each increment.

The NT value of the profile ADT_T has the value 1, when a nominal increment is assumed. An integer number greater than 1 shows the number of nominal increments to be considered for a gap. For the actual increment after synchronization the corresponding NT value is stored in SYN_T of the NUTC register.

Using the STATE input there are similar configuration bits available (see chapter 18.12)

Let for example in HALF_SCALE the *STATE* number SNU⁴) be 0xB (which is for SNU+1 =12 decimal and while SYSF⁴) =0 that does mean 24 events in FULL_SCALE). In order to get the same number of SUB_INC1 pulses for FULL_SCALE as above for *TRIGGERs* the value (MLT+1)=600 is divided by 2*(SNU+1)=24 and multiplied with 2*(TNU+1)=120. The result 3000 must be stored in MLS1 by the CPU (see chapter 18.12.75).

For the systematic arrangement of *STATE* inputs **the profile** (as already mentioned in chapter 18.5.6 is stored in the RAM region 1c3 (see chapter 18.12.90). In this field the relative position of gaps can be stored in the NS value and also physical deviations in the PD_S value.

For the consideration of systematic missing *TRIGGER*s the actual NS value of the profile is stored in the SYN_S bits of the NUSC register (see chapter 18.12.15).

In emergency mode the physical deviation values PD_S in the ADT_S field could be used to balance the local systematic inaccuracy of the *STATE* signal. The value of PD_S (see chapter 18.12.90) is the pulse difference in the corresponding increment and does mean the number of sub pulses to be added to the nominal number of pulses per increment. PD_S is a signed integer value using 16 bits: up to +/-32768 pulses can be added for each increment.

In emergency mode the physical deviation values PD_S in the ADT_S field could be used to balance the local systematic inaccuracy of the *STATE* signal. The value of PD_S (see chapter 18.12.90) is the pulse difference in the corresponding nominal increment and does mean the number of sub pulses to be added to the nominal number of pulses. PD_S is a signed integer value using 16 bits: up to +/-32768 pulses can be added for each increment.

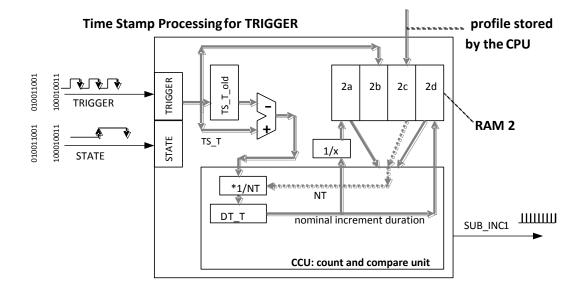
The NS value of the profile ADT_S has the value 1, when a nominal increment is assumed. An integer number greater than 1 shows the number of nominal increments to be considered for a gap. For the actual increment after synchronization the corresponding NS value is stored in SYN_S of the NUSC register.

For references above the following hints are used:

¹⁾ see DPLL_CTRL_x register, x=2,3,4; see 18.12.3,18.12.4,18.12.5

²⁾ see DPLL_STATUS register; see 18.12.30

³⁾ see DPLL_ACT_STA register; see 18.12.7

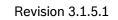

⁴⁾ see DPLL_CTRL_0 register; see 18.12.1

⁵⁾ see DPLL_CTRL_1 register; see 18.12.2

⁶⁾ see DPLL input signal description; see 18.1

18.5.9 Block diagrams of time stamp processing.

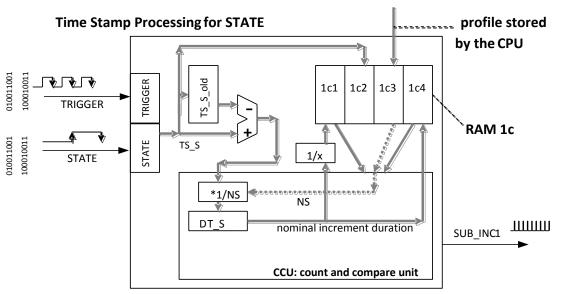
18.5.9.1 Time Stamp Processing Trigger


As shown in the block diagram above the time stamp difference of two succeeding input events is calculated. For the prediction of the current increment duration such values from the past are used. For this purpose the measured and calculated values of the last FULL_SCALE period are stored in the RAM. For the *TRIGGER* input there are 4 different RAM parts in the RAM region 2:

- 2a stores the reciprocals of each nominal increment duration RDT_T
- 2b stores the time stamps of each active input event TSF_T
- 2c is used for the profile ADT_T and
- 2d for the nominal increment duration DT_T.

Because the prediction is based on the relations of increments in the past this relation can be calculated easily by the multiplication of increment duration values with the reciprocal value of another increment. In order not to be forced to distinguish between gaps and "normal" increments duration also for gaps only the nominal duration and the correspondent reciprocal values are stored in the RAM field. This is possible by consideration of the NT value in the profile: the measured increment duration is divided by NT.

18.5.9.2 Time Stamp Processing State



BOSCH

Specificati

For the *STATE* input there are also 4 different RAM parts in the RAM region 1c:

- 1c1 stores the reciprocals of each nominal increment duration RDT S
- 1c2 stores the time stamps of each active input event TSF_S
- 1c3 is used for the profile ADT_S and
- 1c4 for the nominal increment duration DT_S.

The calculations are performed similar as for the *TRIGGER* input. The NS value in the profile shows the appearance of a gap.

18.5.10 Register and RAM address overview

The address map of the DPLL is divided into register and memory regions as defined in Table 18.5.10.1. The addresses from 0x0000 to 0x00FC are reserved for registers, from 0x0100 to 0x01FC is reserved for action registers to serve the ARU at immediately read request.

The RAM is divided into 3 independent accessible parts 1a, 1b+c and 2.

The part 1a from 0x0200 to 0x037C is used for PMTR values got from ARU and intermediate calculation values; there is no write access from the CPU possible, while the DPLL is enabled.

The RAM 1b part from 0x0400 to 0x05FC is reserved for RAM variables and the RAM part 1c from 0x0600 to 0x09FC is used for the *STATE* signal values.

The RAM region 2 from 0x4000 to 0x7FFC is reserved for the *TRIGGER* signal values. RAM region 1a has a size of 288 bytes, Ram 1b+c uses 1,125 Kbytes while RAM region 2 is configurable from 1,5 to 12 Kbytes, depending on the number of *TRIGGER* events in FULL_SCALE. The AOSV_2 register is used to determine the beginning of each part.

The table in 18.5.10.1 gives the DPLL Address map overview

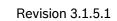
Registers are used to control the DPLL and to show its status. Also parameters are stored in registers when useful. The table below shows the addresses for status and

control registers as well as values stored in additional registers. The register meaning explained in the register overview (chapter18.11) while the bit positions of the status and control registers are described in detail in chapter 18.12.

Time stamps for TRIGGER and *STATE* can have either the same resolution as the TBU_TS0 input or 8 times higher. This is configured in the DPLL_CTRL_1 register (see chapter 18.12.2). While the TBU_TS0 is used for action predictions the higher resolution of *TRIGGER* and *STATE* inputs can be used for a more accurate pulse generation.

The time stamp fields of *TRIGGER* and *STATE* are stored in the corresponding RAM regions in such a way, that for a gap also entries for the virtual increments are provided. This is due to the necessity to calculate time differences between a given number of (real and virtual) input events independent of a gap. Therefore the gap is extended in the RAM fields 2b and 1c2.

For all other RAM regions in RAM 2 and RAM 1c the gap is considered as one increment.


For the access to the RAM fields there must be address pointers. When the device starts all address pointers have a zero value and the first measured and calculated values are stored in the beginning of the corresponding RAM field.

Because the position of the device is usually unknown at the beginning no profile information can be used. The profile regions must have their own address pointers each which are set by the CPU as soon as the position is known. By setting the appropriate value to the address pointer APT_2C of the *TRIGGER* profile or APS_1C3 of the *STATE* profile respectively the synchronization bits in the DPLL_STATUS register SYT or SYS are set respectively. In the following the gap information can be used.

Because the time stamp fields are extended at the gaps there must be additional address pointers for these regions: APT_2B for *TRIGGER* time stamps and APS_1C2 for *STATE* time stamps. These address pointers must be incremented by NT or NS respectively when a gap appears.

Addr.	Addr. range	Value	Byte #	Content	Indication	Regi	RAM
range	End	numb				on	size
Start		er					
0x0000	0x0FC	64	256	Registe	used/reser	0	no
				r	ved		RAM

18.5.10.1 Register and RAM address map

BOSCH

0x100	0x1FC	64	192	ACTIO N register s	direct read from ARU	0	no RAM
0x0200	0x03FC	128	384	PMTR values RAM 1a	CPU R/Pw access, when DPLL disabled; ARU has highest priority	1a with own ports	RAM part 1a: 384 bytes
0x0400	0x05FC	128	384	Variabl es RAM 1b	R and monitored W access by the CPU	1b	RAM part 1b+c : 1,12 5 Kbyt es
0x0600	0x09FC	256	768	STATE data	R and monitored W access by the CPU	1c	
0x0600	0x06FC	64	192	RDT_S[i]	STATE reciprocal values	1c1	
0x0700	0x07FC	64	192	TSF_S[i]	STATE TS values	1c2	
0x0800	0x08FC	64	192	ADT_S[i]	adapted values of STATE	1c3	
0x0900	0x09FC	64	192	DT_S[i]	nom. STATE inc.	1c4	
0x4000	0x47FC 0x7FFC	512 4096	1536 12288	<i>TRIGG</i> ER data	R and monitored W access of CPU	2	RAM part 2: 1,5 12 Kbyt es
0x4000	0x41FC4 FFC	128 1024	38430 72	RDT_T[i]	TRIGGER reciprocal values	2a	
0x42005 000	0x43FC5 FFC	128 1024	38430 72	TSF_T[i]	TRIGGER TS values	2b	

GTM-IP	
--------	--

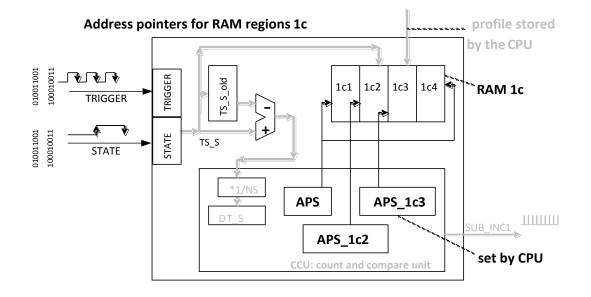
Specification

0x44006 000	0x45FC6 FFC	128 1024	38430 72	ADT_T[i]	adapted values of <i>TRIGGER</i>	2c	
0x46007 000	0x47FC7 FFC	128 1024	38430 72	DT_T[i]	nom. <i>TRIGGER</i> increments	2d	

18.5.10.2 RAM Region 1

RAM region 1 has a size of 1,5 Kbytes and is used to store variables and parameters as well as the measured and calculated values for increments of *STATE*. The RAM 1 region is divided into two independent accessible RAM parts (a and b+c) with own ports. The address information is shown in the table above and the detailed description is performed in the following chapters. The RAM 1a is used to store the PMTR values got from ARU and in addition some intermediate calculation results of actions. RAM region 1b is used for variables needed for the prediction of increments, while RAM 1c is used to store time stamps, profile and duration of all the *STATE* inputs of the last FULL_SCALE region. All variables and values of RAM 1b+c part use a data width of up to 24 bits.

The RAM is to be initialized by the DPLL after HW-reset. All RAM cells must have a zero value after performing the initialize procedure. This is performed when setting The Init_RAM bit in the DPLL_RAM_INI register. The DPLL is only available after finishing this procedure. The initialization progress is shown in the status bits of the same register.


- **RAM Region 1a:** used for storage of PMTR values got from ARU; read and write access by the CPU is only possible, when the DPLL is disabled. The CPU Address range: 0x0200 0x03FC
- **RAM Region 1b:** usable for intermediate calculations and auxiliary values, data width of 3 bytes used for 24 bit values; A write access to this region results in an interrupt to the CPU, when enabled. Address range: 0x0400 0x05FC
- RAM Region 1c: Values of all STATE increments in FULL_SCALE, data width of 3 bytes used for 24 bit values; A write access to this region results in an interrupt to the CPU, when enabled. Address range: 0x0600 0x09FC

In RAM region 1c there is a difference in the amount of data. While for the RAM regions 1c1, 1c3 and 1c4 there are **2*(SNU+1-SYN_NS)** entries for SYSF=0 or **2*(SNU+1) - SYN_NS** entries for SYSF=1, for the RAM region 1c2 there are **2*(SNU+1)** entries (see DPLL_CTRL_0 and _1 registers). For the latter also the virtual events are considered, that means the gap is divided into equidistant parts each having the same position

share as increments without a gap. For that reason the CPU must extend the stored TSF_S[i] values in the RAM region 1c2 before the APS_1C3 is written. The write access to APS_1C3 sets the SYS bit in the DPLL_Status register in order to show the end of the synchronization process. Only when the SYS bit is set the PMTR values can consider more than the last increment duration for the action prediction by setting NUSE to a corresponding value.

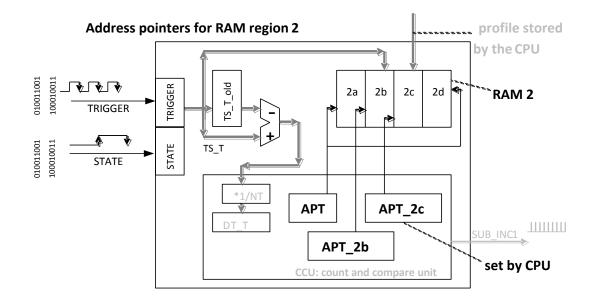
Note: RAM regions 1b and 1c have a common port.

18.5.10.2.1 Address Pointer for RAM 1c

The address pointers for RAM region 1c are shown in the diagram above. While the address pointer APS points to the RAM regions 1c1 and 1c4, the address pointer APS_1C2 points to the time stamp field in the region 1c2. This is necessary, because in the time stamp field the gaps are extended to the number of nominal increments (see explanation above and also to the synchronization procedure explained in chapter 18.8.6.2).

The address pointer APS_1C3 is set by the CPU when the position is known and therefore the relation to the other address pointers is calculated. This setting of this profile address pointer synchronizes the RAM fields to one another. The synchronization is shown in the DPLL_STATUS register (see chapter 18.12.30) by the SYS bit.

18.5.10.3 RAM Region 2


The RAM region 2 has a configurable size of 1,5 to 12 Kbytes and is used to store measured and calculated values for increments of *TRIGGER*. The address information is explained in chapter 18.11 while the meaning is explained in this chapter.

Because of up to 512 *TRIGGER* events in HALF_SCALE the fields 2a, b c and d must have up to 1024 storage places each. For 3 Bytes word size this does mean up to 12 k Byte of RAM region 2.

In order to save RAM size for configurations with less *TRIGGER* events the RAM is configurable by the offset switch Register OSW (0x001C) and the address offset value register of RAM region 2 AOSV_2 (0x0020). The RAM is to be initialized by the DPLL after HW-reset. All RAM cells must have a zero value after performing the initialize procedure. The DPLL is only available after finishing this procedure.

In RAM region 2 there is a difference in the amount of data. While for the RAM regions 2a, 2c and 2d there are **2*(TNU+1-SYN_NT)** entries, for the RAM region 2b there are **2*(TNU+1)** entries (see DPLL_CTRL_0 and _1 registers). For the latter also the virtual events are considered, that means the gap is divided into equidistant parts each having the same position share as increments without a gap. For that reason the CPU must extend the stored TSF_T[i] values in the RAM region 2b before the APT_2C is written.

The write access to APT_2C sets the SYT bit in the DPLL_Status register in order to show the end of the synchronization process. Only when the SYT bit is set the PMTR values can consider more than the last increment duration for the action prediction by setting NUTE to a value greater than one.

18.5.10.3.1 Address Pointer for RAM 2

The address pointers for RAM region 2 are shown in the diagram above. While the address pointer APT points to the RAM regions 2a and 2d, the address pointer APT_2B points to the time stamp field in the region 2b. This is necessary, because in the time stamp field the gaps are extended to the number of nominal increments (see explanation above and also to the synchronization procedure explained in chapter 18.8.6.2).

The address pointer APT_2C is set by the CPU when the position is known and therefore the relation to the other address pointers is calculated. This setting of this profile address pointer synchronizes the RAM fields to one another. The synchronization is shown in the DPLL_STATUS register (see chapter 18.12.30) by the SYT bit.

18.5.11 Software reset and DPLL deactivation

The DPLL module allows different options of deactivation and/or reset.

To stop the operation of the DPLL module it is possible to deactivate the DPLL by setting of DPLL_CTRL_1.DEN = 0. This stops the calculations for the generation of the sub increments and the actions. Some control register areas are only configurable in this mode, some but not all register signals are set into an initial state. The RAM memory is not affected by DPLL deactivation at all. The behavior of the DPLL output signals and registers when deactivated is described in this document.

The deeper option to reconfigure the DPLL is the use of the software reset. When the DPLL module is deactivated setting DPLL_CTRL_1.SWR = 1 performs a reset of all DPLL registers and state controllers. The RAM memory is not affected by the software reset at all. After the software reset the DPLL module remains in deactivated state and the control registers must be configured again before operation (activation by DEN = 1) can start again.

The RAM modules can be reset (written to all zero) by activation of the memory init control bit (INIT_RAM) of the register DPLL_RAM_INI.

If the RAM initialization is automatically done after power on reset or not depends on the GTM implementation.

A special case is the configuration of the control bit DPLL_CTRL_11.STATE_EXT. If this bit shall be modified during operation a software reset of the DPLL module is strongly recommended. A RAM initialisation should also be considered depending on the given application case.

18.6 Prediction of the current increment duration

Confidential

18.6.1 The use of increments in the past

Past values to be considered for the prediction of TRIGGER

In order to take into account values of increments for *TRIGGERs* in the past, the NUTE value is configured to determine the number of past values. In addition the VTN has a value according to the number of virtual increments in the NUTE region. Because gaps come in to the NUTE region or leave it the VTN value must be updated by the CPU until NUTE is set to HALF_SCALE or FULL_SCALE. For the RAM regions 2a and 2d the value NUTE-VTN is to be considered while for the RAM region 2b only the NUTE value is to be considered. This is due to the fact that the time stamp entries in a gap are extended to the number of nominal increments, but duration entries not.

Past values to be considered for the prediction of STATE

In order to take into account values of increments for *STATE* in the past, the NUSE value is configured to determine the number of past values. In addition the VSN has a value according to the number of virtual increments in the NUSE region. Because gaps come in to the NUSE region or leave it the VSN value must be updated by the CPU until NUSE is set to HALF_SCALE or FULL_SCALE. For the RAM regions 1c1 and 1c4 in the past the value NUSE-VSN is to be considered while for the RAM region 1c2 only the NUSE value is to be considered. This is due to the fact that time stamp entries in a gap are extended to the number of nominal increments, but duration entries not.

18.6.2 Increment prediction in Normal Mode and for first PMSM forwards

For the prediction of increments and actions in normal mode the values are calculated as described in the following equations.

Please note, that the ascending order of calculation must be hold in order not to lose results still needed. It is important for *TRIGGER* values to calculate and store in the RAM region 2 all values according to equations up to DPLL-14 before DPLL-1a4...7, DPLL-1b1 and DPLL-1c1, while the last one overwrites DT_T[i] when NUTE (see chapter 18.12.14) is set to the FULL_SCALE range. Because the old value of DT_T[i] is also needed for equation DPLL-10 and DPLL-11 this value is stored temporarily at DT_T_ACT as shown by equation DPLL-1a or DPLL-1b respectively until all prediction calculations are done and after that equation DPLL-1a4...7, DPLL-1b1 and DPLL-1b1 updates DT_T[i]: update DT_T[i] after calculations of equation DPLL-14. For p=APT calculates in normal mode.

When using filter information of TRIGGER_FT, selected by IDT=1, it must be distinguished by IFP, if this filter information is time or position related. In order to make possible to perform the automatic resolution corrections of equations

DPLL-1a1a the filter unit in TIM module must operate using the time stamp clock.

Specification

18.6.2.1 Equations DPLL-1a to calculate TRIGGER time stamps

For calculation of time stamps use the filter delay information and an additional TRIGGER input delay value stored in register TIDEL (initial zero)

this can be also calculated using the value of ADD_IN_CALN:

TS_T= TS_T₁ - FTV_T *(1/ADD_IN_CALN_old¹⁰⁾) for (IDT=1 and IFP=1) (DPLL-1a3)

¹⁰⁾ Consider values, calculated for the last increment; position related filter values are only considered up to at least 1 ms time between two *TRIGGER* events. The reciprocal value is stored using a 32 bit fractional part, while only the 24 lower bits are used - for explanation see note ⁴⁾ at DPLL_CTRL_0 register. The value of 1/ADD_IN_CALN_old or (CDT_TX/NMB_T)_old is set to 0xFFFFFF in the case of an overflow.

NOTE: CDT_TX is the predicted duration of the last *TRIGGER* increment and NMB_T the calculated number of SUB_INC1 events in the last increment, because the new calculations are done by equations DPLL-5 and DPLL-21 for the current increment after that. Therefore in equation DPLL-1a3 the value ADD_IN of the last increment is used (see equation DPLL-25). SYN_T_OLD is the number of TRIGGER events including missing TRIGGERs as specified in the NUTC register for the last increment, with the initial value of 1.

For storage of time stamps in the RAM see also equations DPLL-1a4 ff. after calculation of actions, chapter 18.7.5.1.

18.6.2.2 Equation DPLL-1b to calculate DT_T_ACT (nominal value)

DT_T_ACT= (TS_T - TS_T_OLD)/SYN_T_OLD (DPLL-1b)

For the case SYT=0 (still no synchronization to the profile) the values SYN_T and SYN_T_OLD are still assumed as having the value 1.

Automotive Electronics		BOSCH
GTM-IP	Specification	Revision 3.1.5.1

Correct the current increment duration value got by equation DPLL-1b in the case of physical deviations (ADT=1) by DT_T_ACT = DT_T_ACT * (1 - PDC_T + PDC_T² -PDC_T³) (DPLL-1b1) with the relative correction value for the last increment (for SMC=0) PDC_T = PD_OLD / (MLT+1) (DPLL-1b2) for SMC=1 use PDC_T = PD_OLD / (MLS1) (DPLL-1b3) Note: The term (1 - PDC_T + PDC_T² -PDC_T³) is representing the third order Taylor series of the term 1/(1+PDC_T), which is chosen to reduce the additional time delay due to the more complex computation.

18.6.2.3 Equation DPLL-1c to calculate RDT_T_ACT (nominal value)

RDT_T_ACT = 1 / DT_T_ACT (DPLL-1c)

18.6.2.4 Equation DPLL-2a1 to calculate QDT_T_ACT

Relation of the recent last two increment values for APT=p in forward direction (DIR1=0)

QDT_T_ACT = DT_T_ACT * RDT_T[p-1] (DPLL-2a1)

QDT_T_ACT as well as QDT_T[i] have a 24 bit value using a 6 bit integer part and an 18 bit fractional part.

Note: QDT_T_ACT uses a 6 bit integer part and an 18 bit fractional part.

18.6.2.5 Equation DPLL-3 to calculate the error of last prediction

When q = NUTE-VTN considers for the error calculation only the last valid prediction values for DIR1=0:

Calculate the error of the last prediction when using only RDT_T_FS1, DT_T[p-q], DT_T[p-q-1] and DT_T[p-1] for the prediction of DT_T[p]:

 $EDT_T = DT_T_ACT - (DT_T[p-1] * QDT_T[p-q])$ (DPLL-3) with $QDT_T[p-q] = DT_T[p-q] * RDT_T[p-q-1] \text{ for FST=0} (DPLL-2b1)$ Specification

QDT_T[p-q] = DT_T[p-q] * RDT_T_FS1 for FST=1 (DPLL-2b2) and FST has the meaning: NUTE=FULL_SCALE (see NUTC register) while QDT_T_ACT as well as QDT_T[i] have a 24 bit value using a 6 bit integer part and an 18 bit fractional part.

Note: QDT_T[p-q] uses a 6 bit integer part and an 18 bit fractional part.

18.6.2.6 Equation DPLL-4 to calculate the weighted average error

for SYT=1 calculate:

 $MEDT_T := (EDT_T + MEDT_T) / 2 (DPLL-4)$

18.6.2.7 Equations DPLL-5 to calculate the current increment value

nominal increment value (for ADT=0): $CDT_TX _nom = (DT_T_ACT + MEDT_T) * QDT_T[p-q+1]$ (DPLL-5a1) nominal increment value (for ADT=1): $CDT_TX _nom_corr = CDT_TX _nom * (1 + CDC_T)$ (DPLL-5a2) with for SMC=0 $CDC_T = PD / (MLT+1)$ (DPLL-5a3) or for SMC=1 use $CDC_T = PD / (MLS1)$ (DPLL-5a4) and with (for q>1): $QDT_T[p-q+1] = DT_T[p-q+1] * RDT_T[p-q]$ (DPLL-2c) and for q=1 use equation DPLL-2a1.

while

QDT_T_ACT as well as QDT_T[i] have a 24 bit value using a 6 bit integer part and an 18 bit fractional part.

The CDT_TX_nom value is limited by the relation CTN_MIN < CDT_TX_nom < CTN_MAX (DPLL-5c) When the calculated value exceeds one of the limits, it is replaced by the corresponding limit value.

The expected duration to the next *TRIGGER* event is (for ADT=0):

(\mathbf{A})	BOSCH
Re	evision 3.1.5.1

(DPLL-5b)

Specification

CDT_TX = CDT_TX _nom * SYN_T (for ADT=1): CDT_TX = CDT_TX _nom_corr * SYN_T

Note: QDT_T[p-q+1] uses a 6 bit integer part and an 18 bit fractional part. **Note:** In the case of an overflow in equations DPLL-5a or b set the value to 0xFFFFF and the corresponding CTO bit in the DPLL_STATUS register. In the case of negative values set CDT_TX to 0x0 without any effect to the CTO bit.

18.6.3 Increment prediction in Emergency Mode and for second PMSM forwards

Please note, that the ascending order of calculations for *STATE* and storage of the values in the RAM region 1c must be hold in order not to lose results still needed. The same considerations as done for DT_T_ACT are valid for DT_S_ACT (equation DPLL-6a4...7, DPLL-6b1 and DPLL-6b1): update TD_S[i] only after calculations of equation DPLL-14.

When using filter information of STATE_FT, selected by IDS=1, it must be distinguished by IFP, if this filter information is time or position related. In order to make possible to perform the automatic resolution corrections of equations

In order to make possible to perform the automatic resolution corrections of equations DPLL-6a1a the filter unit in TIM must operate using the time stamp clock.

18.6.3.1 Equations DPLL-6a to calculate STATE time stamps

For calculation of time stamps use the filter delay information, the additional STATE input delay value stored in the register SIDEL (initial zero) and use p=APS while DIR2=0:

TS $S_1 = STATE TS - SIDEL$ (DPLL-6a0) $TS_S =$ $TS_S_1 - FTV_Sx$ (for IDS=1 and IFP=0) (DPLL-6a1) with FTV Sx = FTV S/8(for LOW RES = 1 and TS0 HRS = 0) (DPLL-6a1a) FTV Sx = FTV S (for LOW RES = 0 or TS0 HRS = 1) (DPLL-6a1b) and TS_S = TS_S₁ - FTV_S * (CDT_SX / NMB_S)_old¹⁰ (for IDS=1 and IFP=1) (DPLL-6a2) this can be also calculated using the value of ADD IN CALE: TS S = TS S₁ - FTV S * (1 / ADD IN CALE) old¹⁰ (for IDS=1 and IFP=1) (DPLL-6a3) with see also equations DPLL-6a4 ff. at chapter 18.6.2 for TRIGGER.

¹⁰⁾ Consider values, calculated for the last increment; position related filter values are only considered up to at least 1 ms time between two *STATE* events. The reciprocal value is stored using a 32 bit fractional part, while only the 24 lower bits are used - for explanation see note ⁴⁾ at DPLL_CTRL_0 register. The value of 1/ADD_IN_CALE_old or (CDT_SX/NMB_S)_old is set to 0xFFFFFF in the case of an overflow.

Note: CDT_SX is the predicted duration of the last *STATE* increment and NMB_S the calculated number of SUB_INC1 events in the last increment, because the new calculations are done by equations DPLL-10 and DPLL-22 respectively for the current increment after that. Therefore in equation DPLL-6a3 the value ADD_IN of the last increment is used (see equation DPLL-26). SYN_S_OLD is the number of increments including missing *STATEs* as specified in the **NUSC** register for the last increment with the initial value of 1. The update to the RAM region 1c4 is done after all related calculations (see equation DPLL-6b1 for this reason).

18.6.3.2 Equation DPLL-6b to calculate DT_S_ACT (nominal value)

DT_S_ACT= (TS_S - TS_S_OLD) / SYN_S_OLD (DPLL-6b)

For the case SYS=0 (still no synchronization to the profile) the values SYN_S and SYN_S_OLD are still assumed as having the value 1.

Correct the current increment duration value got by equation DPLL-6b in the case of physical deviations (ADS=1) by

DT_S_ACT = DT_S_ACT * (1 - PDC_S + PDC_S² - PDC_S³) (DPLL-6b1) with the relative correction value for the last increment (for SMC=0) PDC_S = PD_S_OLD/(MLS1) (DPLL-6b2) for SMC=1 use PDC_S = PD_S_OLD/(MLS2) (DPLL-6b3)

Note: The term $(1 - PDC_S + PDC_S^2 - PDC_S^3)$ is representing the third order Taylor series of the term $1/(1+PDC_S)$, which is chosen to reduce the additional time delay due to the more complex computation.

18.6.3.3 Equation DPLL-6c to calculate RDT_S_ACT (nominal value)

RDT_S_ACT = 1 / DT_S_ACT (DPLL-6c)

Specification

18.6.3.4 Equation DPLL-7a1 to calculate QDT_S_ACT

for APS=p in forward direction (DIR2=0)

QDT_S_ACT = DT_S_ACT * RDT_S[p-1] (DPLL-7a1)

QDT_S_ACT as well as QDT_S[i] have a 24 bit value using a 6 bit integer part and an 18 bit fractional part.

Note: QDT_S_ACT uses a 6 bit integer part and an 18 bit fractional part.

18.6.3.5 Equation DPLL-8 to calculate the error of last prediction

with q= NUSE-VSN when using QDT_S[p-q] and DT_S[p-1] for the prediction of DT_S[p]

 $\begin{array}{l} {\sf EDT_S} = {\sf DT_S_ACT} \cdot ({\sf DT_S[p-1]} * {\sf QDT_S[p-q]}) \ ({\sf DPLL-8}) \\ {\sf and with} \\ {\sf QDT_S[p-q]} = {\sf DT_S[p-q]} * {\sf RDT_S[p-q-1]} \ {\sf for} \ {\sf FSS=0} \ ({\sf DPLL-7b1}) \\ {\sf QDT_S[p-q]} = {\sf DT_S[p-q]} * {\sf RDT_S_FS1} \ \ {\sf for} \ {\sf FSS=1} \ ({\sf DPLL-7b2}) \\ {\sf and} \ {\sf FSS} \ {\sf has} \ {\sf the} \ {\sf meaning:} \ {\sf NUSE=FULL_SCALE} \ ({\sf see} \ {\sf NUSC} \ {\sf register}) \\ \end{array}$

QDT_S_ACT as well as QDT_S[i] have a 24 bit value using a 6 bit integer part and an 18 bit fractional part.

Note: QDT_S[p-q] uses a 6 bit integer part and an 18 bit fractional part.

18.6.3.6 Equation DPLL-9 to calculate the weighted average error

for SYS=1 calculate:

 $MEDT_S := (EDT_S + MEDT_S) / 2 (DPLL-9)$

18.6.3.7 Equations DPLL-10 to calculate the current increment (nominal value)

\bigcirc	BOSCH
Re	evision 3.1.5.1

Specification

nominal increment value (for ADS=0): $CDT_SX _nom = (DT_S_ACT + MEDT_S) * QDT_S[p-q+1]$ (DPLL-10a1) or nominal increment value (for ADS=1): $CDT_SX _nom_corr = CDT_SX _nom * (1+CDC_S)$ (DPLL-10a2) with for SMC=0 $CDC_S = PD / (MLS1)$ (DPLL-10a3) for SMC=1 use $CDC_S = PD / (MLS2)$ (DPLL-10a4)

and with

GTM-IP

QDT_S[p-q+1] = DT_S[p-q+1] * RDT_S[p-q] (for q>1) (DPLL-7c) and see equation DPLL-7a1 for q=1 while QDT_S_ACT as well as QDT_S[i] have a 24 bit value using a 6 bit integer.

QDT_S_ACT as well as QDT_S[i] have a 24 bit value using a 6 bit integer part and an 18 bit fractional part.

The CDT_SX_nom value is limited by the relation CSN_MIN < CDT_SX_nom < CSN_MAX (DPLL-10c) When the calculated value exceeds one of the limits, it is replaced by the corresponding limit value.

The expected duration to the next *STATE* event is (for ADT=0): CDT_SX = CDT_SX _nom * SYN_T (for ADT=1): CDT_SX = CDT_SX _nom_corr * SYN_S (DPLL-10b)

Note: QDT_S[p-q+1] uses a 6 bit integer part and an 18 bit fractional part. **Note:** In the case of an overflow in equations DPLL-10a or b set the value to 0xFFFFF and the corresponding CSO bit in the DPLL_STATUS register. In the case of negative values set CDT_SX to 0x0 without any effect to the CSO bit.

All 5 steps above (DPLL-6 to DPLL-10) are only needed in emergency mode. For the normal mode the calculations of equations DPLL-6 and DPLL-7 are done solely in order to get the values needed for a sudden switch to emergency mode.

18.6.4 Increment prediction in Normal Mode and for first PMSM backwards

18.6.4.1 Equations DPLL-2a2 to calculate QDT_T_ACT backwards

QDT_T_ACT = DT_T_ACT * RDT_T[p+1] (DPLL-2a2)

QDT_T_ACT as well as QDT_T[i] have a 24 bit value using a 6 bit integer part and an 18 bit fractional part.

18.6.4.2 Equation DPLL-3a to calculate of the error of last prediction

When q = NUTE-VTN and DIR1=1 using only $QT_T[p+q]$ and $DT_T[p+1]$ for the prediction of $DT_T[p]$

 $\begin{array}{l} {\sf EDT}_T = {\sf DT}_T_ACT \cdot ({\sf DT}_T[p+1] * {\sf QDT}_T[p+q] \ ({\sf DPLL-3a}) \\ {\sf with} \\ {\sf QDT}_T[p+q] = {\sf DT}_T[p+q] * {\sf RDT}_T[p+q+1] \ {\sf for} \ {\sf FST=0} \ ({\sf DPLL-2b3}) \\ {\sf QDT}_T[p+q] = {\sf DT}_T[p+q] * {\sf RDT}_T_FS1 \quad {\sf for} \ {\sf FST=1} \ ({\sf DPLL-2b4}) \\ {\sf and} \ {\sf FST} \ {\sf has} \ {\sf the} \ {\sf meaning:} \ {\sf NUTE=FULL}_SCALE \ ({\sf see} \ {\sf NUTC} \ {\sf register}) \\ \end{array}$

QDT_T_ACT as well as QDT_T[i] have a 24 bit value using a 6 bit integer part and an 18 bit fractional part.

18.6.4.3 Equation DPLL-4 to calculate the weighted average error

For SYT=1 calculate: MEDT_T := (EDT_T + MEDT_T) / 2 (DPLL-4)

18.6.4.4 Equation DPLL-5 to calculate the current increment value

nominal increment value (for ADT=0): $CDT_TX _nom = (DT_T_ACT + MEDT_T) * QDT_T[p+q-1]$ (DPLL-5a5) nominal increment value (for ADT=1): $CDT_TX _nom_corr = CDT_TX _nom * (1 + CDC_T)$ (DPLL-5a6) with for SMC=0 $CDC_T = PD / (MLT + 1)$ (DPLL-5a3) for SMC=1 use $CDC_T = PD / (MLS1)$ (DPLL-5a4)

and with $QDT_T[p+q-1] = DT_T[p+q-1] * RDT_T[p+q]$ (for q>1) (DPLL-2c1)

Specification

for q=1 use equation DPLL-2a1.

while

QDT_T_ACT as well as QDT_T[i] have a 24 bit value using a 6 bit integer part and an 18 bit fractional part.

The CDT_TX_nom value is limited by the relation CTN_MIN < CDT_TX_nom < CTN_MAX (DPLL-5c) When the calculated value exceeds one of the limits, it is replaced by the corresponding limit value.

and the expected duration to the next *TRIGGER* event (for ADT=0): CDT_TX = CDT_TX _nom * SYN_T (for ADT=1): CDT_TX = CDT_TX _nom_corr * SYN_T (DPLL-5b)

Note: In the case of an overflow in equations DPLL-5a1 or b set the value to 0xFFFFF and the corresponding CTO bit in the DPLL_STATUS register. In the case of negative values set CDT_TX(_nom) to 0x0.

18.6.5 Increment prediction in Emergency Mode and for second PMSM backwards

18.6.5.1 Equation DPLL-7a2 to calculate QDT_S_ACT backwards

QDT_S_ACT = DT_S_ACT * RDT_S[p+1] (DPLL-7a2)

QDT_S_ACT as well as QDT_S[i] have a 24 bit value using a 6 bit integer part and an 18 bit fractional part.

18.6.5.2 Equation DPLL-8a to calculate the error of the last prediction

```
While q= NUSE-VSN, use only QDT_S[p+q] and DT_S[p+1] for the prediction of DT_S[p]
EDT_S = DT_S_ACT - (DT_S[p+1] * QDT_S[p+q]) (DPLL-8a)
with
QDT_S[p-q] = DT_S[p+q] * RDT_S[p+q+1] for FSS=0 (DPLL-7b3)
QDT_S[p-q] = DT_T[p+q] * RDT_S_FS1 for FSS=1 (DPLL-7b4)
and FSS has the meaning: NUSE=FULL SCALE (see NUSC register)
```

QDT_S_ACT as well as QDT_S[i] have a 24 bit value using a 6 bit integer part and an 18 bit fractional part.

18.6.5.3 Equation DPLL-9 to calculate the weighted average error

```
For SYS=1 calculate:
MEDT_S := (EDT_S + MEDT_S) / 2 (DPLL-9)
```

18.6.5.4 Equations DPLL-10 to calculate the current increment value

nominal increment value (for ADS=0): CDT SX nom = (DT S ACT + MEDT S) * QDT S[p+q-1] (DPLL-10a5) or nominal increment value (for ADS=1): CDT SX nom corr = CDT SX nom * (1+CDC S) (DPLL-10a6) with for SMC=0 CDC S = PD / (MLS1)(DPLL-10a3) for SMC=1 use CDC S = PD/(MLS2)(DPLL-10a4) and with QDT S[p+q-1] = DT S[p+q-1] * RDT S[p+q] (for q>1) (DPLL-7c1) for q=1 use equation DPLL-7a. while QDT S ACT as well as QDT S[i] have a 24 bit value using a 6 bit integer part and an 18 bit fractional part. The CDT SX nom value is limited by the relation CSN MIN < CDT SX nom < CSN MAX (DPLL-10c) When the calculated value exceeds one of the limits, it is replaced by the corresponding limit value. and calculate the expected duration to the next STATE event (for ADT=0): CDT SX = CDT SX nom * SYN T (for ADT=1): CDT SX = CDT SX nom corr * SYN S (DPLL-10b)

Note: In the case of an overflow in equations DPLL-10a1 or b set the value to 0xFFFFFF and the corresponding CSO bit in the DPLL_STATUS register. In the case of negative values set CDT_SX(_nom) to 0x0.

All 5 steps above (DPLL-6 to DPLL-10) are only needed in emergency mode. For the normal mode the calculations of equations DPLL-6 and DPLL-7 are done solely in order to get the values needed for a sudden switch to emergency mode.

18.7 Calculations for actions

As already shown for the calculation of the current interval by equations DPLL-1 to DPLL-10 for the prediction of actions a similar calculation is to be done, as shown by the equations DPLL-11. to DPLL-14. The calculation of actions is also needed when the DPLL is used for synchronous motor control applications (SMC=1, see DPLL_CTRL_1 register). For action prediction purposes the measured time periods of the past (one FULL_SCALE back, when the corresponding NUTE or NUSE values are set properly by the CPU) are used. The calculation can be explained by the following assumptions, which are considerably simple:

Take the corresponding increments for prediction in the past and put the sum of it in relation to the increment $(DT_T[k], DT_S[k], with k \ge 0$, which is represented by the time stamp difference) which is exactly one FULL_SCALE period in the past (DPLL-11 or DPLL-13 respectively). Make a prediction for the coming sum of increments using the current measured increment $(DT_T_ACT \text{ or } DT_S_ACT \text{ respectively})$, that means DPLL-1 or DPLL-6 respectively) and add a weighted average error (DPLL-3 and DPLL-4 or DPLL-8 and DPLL-9 respectively, calculated for one increment prediction) before multiplication with the relation of equation DPLL-11 or DPLL-13 respectively in order to get the result as described by equations DPLL-12 or DPLL-14 respectively.

In order to avoid division operations instead of the increment (DT_T[k], DT_S[k], with k > 0) in the past its reciprocal value (RDT_T[k], RDT_S[k], with k > 0) is used, which is stored also in RAM. For the calculation of actions perform always a new refined calculation as long as the resulting time stamp is not in the past. In the other case the TSAC/PSAC values (time/position stamp of action calculated) is set to the time/position stamp of the last input event (TRIGGER/STATE), the ACT_N[i] bit in the DPLL_ACT_STA register is reset, while the corresponding ACT_N[i] bit in the DPLL_ACT_STA_shadow register is set. Each new PMTR_i value will set this ACT_N[i] bit again and reset the correspondent shadow bit until a new calculation is performed.

Please make sure that the prediction parameters are chosen such that under all conditions (acceleration/deceleration) the values of PDT_T, PDT_S and DTA respectively do not exceed the value 0xFFFFF. This requirement can limit the predicted position range in the case of very low speed.

Specification

GTM-IP

Action updates at highest speed

Up to 32 action values can be calculated. For the shortest increment duration $(23,4 \ \mu s)$ not all of them can be updated with each active input event. Please notice the following conditions and parameters for an estimation of possible results.

All time estimation values are given for a system clock frequency of 100 MHz and the assumption, that the calculation of the DPLL is not impeded by a remote read or write access to the DPLL RAMs. Each RAM access is to be considered by an additional delay of about 40 ns (t_{remote_RAM_acces}, to be precised later). When using a different system clock frequency the calculation duration is extended accordingly.

1.) Typical time needed for basic operations (RAM update, pointer calculation and SUB_INC generation for normal, emergency mode or one PMSM:

 $t_{basic_0} = 9,9 \ \mu s.$

2.) Typical time needed basic operations (RAM update, pointer calculation and SUB_INC generation for two PMSMs:

 $t_{\text{basic}_{1}} = 11,0 \ \mu s.$

3.) Typical time needed to calculate one action

 $t_{action_i} = 3,7 \ \mu s.$

Please notice that the above mentioned values are observed worst case values, when the two state machines of TRIGGER and STATE are both in operation.

These values allow the calculation of at least 3 action values for each input event for all specified increments duration. The complete time needed for the basic operation, n action calculations and k remote RAM access operations can be calculated as follows

 $t_{complete} = t_{basic_0/1} + n^* t_{action_i} + k^* t_{remote_RAM_access}$.

Typical applications

Normal and emergency mode

For a typical application with the shortest increment duration of 100 μ s in normal or emergency mode the calculation of up to 24 action values can be performed for each active input event.

One PMSM

For one PMSM and a typical shortest increment time of 39 μ s there is the calculation of up to 7 action values possible for each input event.

Two PMSMs with restricted action calculations

When only one PMSM uses the action calculation service and the shortest increment duration is 39 μ s, there can up to 7 actions served for each active input event.

Two PMSMs with unrestricted action calculations

When 2 PMSMs are used and both use the action calculation service at a minimal increment duration of 39 μ s there are up to 7 action calculations possible for each of the two engines - that means up to 14 action calculations per increment in average.

18.7.1 Action calculations for TRIGGER forwards

valid for RMO=0 or for SMC=1 with

Specification

p=APT_2B, t=APT, m=NA[i] (part w), mb=NA[i](part b)/1024, NUTE-VTN=q, NUTE=n

Note: All 5 steps in equations DPLL-11 to DPLL-12 are only calculated in normal mode.

18.7.1.1 Equation DPLL-11a1 to calculate the time prediction for an action

For DIR1=0 and q>m calculate:

 $\begin{array}{l} {\sf PDT}_T[i] = ({\sf TSF}_T[p+m-n] - {\sf TSF}_T[p-n] + \\ {\sf mb}^* \; {\sf DT}_Tx[t-q+1]) * \; {\sf RDT}_T[t-q] \; ({\sf DPLL-11a1}) \\ {\sf with} \\ {\sf DT}_Tx[t-q+1] = \; {\sf DT}_T[t-q+1] \; {\sf for} \; {\sf TS0}_H{\sf RT}=0 \; ({\sf DPLL-11b2}) \\ {\sf or} \\ {\sf DT}_Tx[t-q+1] = \; {\sf DT}_T[t-q+1]/8 \; {\sf for} \; {\sf TS0}_H{\sf RT}=1 \; ({\sf DPLL-11b3}) \\ {\sf and} \; {\sf while} \; {\sf the} \; {\sf multiplication} \; {\sf with} \; {\sf mb} \; {\sf does} \; {\sf mean} \; {\sf the} \; {\sf fractional} \; {\sf part} \; {\sf of} \; {\sf NA[i]}. \end{array}$

For SMC=0 and RMO=0 calculate for DIR1=0 all 32 actions in forward direction, if requested; in the case SMC=1 calculate up to 16 actions 0 to 15 in dependence of the *TRIGGER* input.

18.7.1.2 Equation DPLL-11a2 to calculate the time prediction for an action

For SYT=1, NUTE= 2*(TNU+1), q>m and DIR1=0 equation DPLL-11a2 is equal to

 $PDT_T[i] = (TSF_T[p+m] - TSF_T[p] + mb* DT_Tx[t-q+1]) * RDT_T[t] (DPLL-11a2) with$

DT_Tx[t-q+1] = DT_T[t-q+1] for TS0_HRT=0 (DPLL-11b2) or DT_Tx[t-q+1] = DT_T[t-q+1]/8 for TS0_HRT=1 (DPLL-11b3)

18.7.1.3 Equation DPLL-11b to calculate the time prediction for an action

for DIR1=0, NUTE-VTN=q, q (< or =) m, n>1 and t=APT:

PDT_T[i] = (m+mb)*DT_Tx[t-q+1] * RDT_T[t-q] (DPLL-11b)

with

DT_Tx[t-q+1] = DT_T[t-q+1] for TS0_HRT=0 (DPLL-11b2) or DT_Tx[t-q+1] = DT_T[t-q+1]/8 for TS0_HRT=1 (DPLL-11b3)

Note: Make the calculations above before updating the TSF_T[i] values according to equations DPLL-1c3 ff.

18.7.1.4 Equation DPLL-11c to calculate the time prediction for an action

for n=1 (this is always valid for SYT=0)

PDT_T[i] = (m+mb)* DT_T_ax* RDT_T[t-1] (DPLL-11c) with

DT_T_ax = DT_T_ACT for TS0_HRT=0 (DPLL-1a4a) or DT_T_ax = DT_T_ACT/8 for TS0_HRT=1 (DPLL-1a4b)

Note: For the relevant last increment add the fractional part of DT_T_ACT as described in NA[i].

18.7.1.5 Equation DPLL-12 to calculate the duration value until action

DTA[i] = (DT_T_ACT + MEDT_T)* PDT_T[i] (DPLL-12)

18.7.2 Action calculations for TRIGGER backwards

valid for RMO=0 or for SMC=1 with p=APT_2B, t=APT, m=NA[i] (part w), mb=NA[i](part b)/1024, q= NUTE-VTN and n=NUTE

For SMC=0 and RMO=0 calculate for DIR1=1 all 32 actions in backward direction for special purposes; in the case SMC=1 calculate up to 16 actions 0 to 15 in dependence of the *TRIGGER* input.

```
Robert Bosch GmbH
```


Note: All 5 steps in equations DPLL-11 to DPLL-12 are only calculated in normal mode or when SMC=1.

18.7.2.1 Equation DPLL-11a3 to calculate the time prediction for an action

For DIR1=1 and q>m calculate: PDT_T[i] = (TSF_T[p-m+n] - TSF_T[p+n] + mb* DT_Tx[t+q-1]) * RDT_T[t+q] (DPLL-11a3) with DT_Tx[t+q-1] = DT_T[t+q-1] for TS0_HRT=0 (DPLL-11b4) or DT_Tx[t+q-1] = DT_T[t+q-1]/8 for TS0_HRT=1 (DPLL-11b5)

18.7.2.2 Equation DPLL-11a4 to calculate the time prediction for an action

For SYT=1 and NUTE = $2^{(TNU+1)}$, q>m, VTN= 2^{SYN} and hence NUTE-VTN = $2^{(TNU+1-SYN}NT)$ for DIR1=1 this is equal to PDT_T[i] = (TSF_T[p-m] - TSF_T[p]+ mb* DT_Tx[t+q-1]) * RDT_T[t] (DPLL-11a4) with DT_Tx[t+q-1] = DT_T[t+q-1] for TS0_HRT=0 (DPLL-11b4) or DT_Tx[t+q-1] = DT_T[t+q-1]/8 for TS0_HRT=1 (DPLL-11b5)

Note: Make the calculations above before updating the TSF_T[i] values according to equations DPLL-1c3 ff.

18.7.2.3 Equation DPLL-11b1 to calculate the time prediction for an action

For NUTE-VTN =q, q (< or =) m the following equation is valid for n>1 and t=APT:

 $PDT_T[i] = (m+mb)*DT_Tx[t+q-1] * RDT_T[t+q] (DPLL-11b1) with$

 $DT_Tx[t+q-1] = DT_T[t+q-1]$ for TS0_HRT=0 (DPLL-11b4) or $DT_Tx[t+q-1] = DT_T[t+q-1]/8$ for TS0_HRT=1 (DPLL-11b5) 18.7.2.4 Equation DPLL-11c1 to calculate the time prediction for an action

for n=1 (this is always valid for SYT=0)

PDT_T[i] = (m+mb)* DT_T_ax * RDT_T[t+1] (DPLL-11c1) with

DT_T_ax = DT_T_ACT for TS0_HRT=0 (DPLL-1a4a) or DT_T_ax = DT_T_ACT/8 for TS0_HRT=1 (DPLL-1a4b)

Note: For the relevant last increment add the fractional part of DT_T_ACT as described in NA[i].

18.7.2.5 Equation DPLL-12 to calculate the duration value for an action

DTA[i] = (DT_T_ACT + MEDT_T)* PDT_T[i] (DPLL-12)

Use the results of equations DPLL-1a, b, DPLL-3 and DPLL-4 for the above calculation

18.7.3 Action calculations for STATE forwards

valid for RMO=1 with p=APS_1C2, t=APS, m=NA[i](part w) mb=NA[i](part b)/1024, NUSE-VSN = q and NUSE=n>m

For SMC=0 and RMO=1 calculate for DIR2=0 all 32 actions in forward direction, if requested; in the case SMC=1 and RMO=1 calculate up to 16 actions 16 to 31 in dependence of the STATE input.

Note: All 5 steps of equations DPLL-13 to DPLL-14 are only calculated in emergency mode or for SMC=1 in combination with RMO=1.

Specification

18.7.3.1 Equation DPLL-13a1 to calculate the time prediction for an action

For DIR2=0 and q>m calculate: $PDT_S[i] = (TSF_S[p+m-n] - TSF_S[p-n] + mb^{T}Sx[t-q+1] * RDT_S[t-q] (DPLL-13a1)$ with

$$\begin{split} DT_Sx[t-q+1] &= DT_S[t-q+1] \text{ for } TS0_HRS=0 \text{ (DPLL-13b2)} \\ or \\ DT_Sx[t-q+1] &= DT_S[t-q+1]/8 \text{ for } TS0_HRS=1 \text{ (DPLL-13b3)} \end{split}$$

18.7.3.2 Equation DPLL-13a2 to calculate the time prediction for an action

For **SYS=1 and NUSE=2*(SNU+1)**, q>m, SYSF=0, VSN=2*SYN_NS and hence NUSE-VSN = 2*(SNU+1-SYN_NS) equation DPLL-13a1 is equal to

$$\label{eq:pdt_sigma} \begin{split} \mathsf{PDT}_S[i] = (\mathsf{TSF}_S[p+m] - \mathsf{TSF}_S[p] + \mathsf{mb*DT}_Sx[t-q+1]) * \mathsf{RDT}_S[t] \ (\mathsf{DPLL-13a2}) \\ \mathsf{with} \end{split}$$

DT_Sx[t-q+1] = DT_S[t-q+1] for TS0_HRS=0 (DPLL-13b2) or DT_Sx[t-q+1] = DT_S[t-q+1]/8 for TS0_HRS=1 (DPLL-13b3)

18.7.3.3 Equation DPLL-13b to calculate the time prediction for an action

For NUSE -VTN=q, q (< or =) m and n>1:

```
\label{eq:pdf_state} \begin{split} \mathsf{PDT}_S[i] &= (\mathsf{m} + \mathsf{mb})^* \mathsf{DT}_S \mathsf{x}[\mathsf{t} - \mathsf{q} + 1] * \mathsf{RDT}_S[\mathsf{t} - \mathsf{q}] \ (\mathsf{DPLL} - 13\mathsf{b}) \\ \text{with} \end{split}
```

DT_Sx[t-q+1] = DT_S[t-q+1] for TS0_HRS=0 (DPLL-13b2) or

DT_Sx[t-q+1] = DT_S[t-q+1]/8 for TS0_HRS=1 (DPLL-13b3)

18.7.3.4 Equation DPLL-13c to calculate the time prediction for an action

for n=1

Robert Bosch GmbH

 $PDT_S[i] = (m+mb)* DT_S_ax * RDT_S[t-1] (DPLL-13c) with$

DT_S_ax = DT_S_ACT for TS0_HRS=0 (DPLL-6a4a) or DT_S_ax = DT_S_ACT/8 for TS0_HRS=1 (DPLL-6a4b)

18.7.3.5 Equation DPLL-14 to calculate the duration value for an action

Specification

DTA[i] = (DT_S_ACT + MEDT_S)* PDT_S[i] (DPLL-14)

Use the results of DPLL-7, DPLL-8 and DPLL-9 for the above calculation

18.7.4 Action calculations for STATE backwards

valid for RMO=1 with p=APS_1C2, t=APS, m=NA[i](part w) mb=NA[i](part b)/1024, NUSE-VSN = q and NUSE=n

For SMC=0 and RMO=1 calculate for DIR1=1 all 32 actions in backwards mode for special purposes; in the case SMC=1 and RMO=1 calculate up to 16 actions 16 to 31 in dependence of the *STATE* input.

Note: All 5 steps of equations DPLL-13 to DPLL-14 are only calculated in emergency mode or for SMC=1 in combination with RMO=1.

18.7.4.1 Equation DPLL-13a3 to calculate the time prediction for an action

For (DIR2= 1 (SMC=1) or DIR1=1 (SMC=0)) and q>m calculate

 $PDT_S[i] = (TSF_S[p-m+n] - TSF_S[p+n] + mb^{T}Sx[t+q-1]) * RDT_S[t+q] (DPLL-13a3)$ with

```
DT_Sx[t+q-1]= DT_S[t+q-1] for TS0_HRS=0 (DPLL-13b4)
or
DT Sx[t+q-1] = DT S[t+q-1]/8 for TS0 HRS=1 (DPLL-13b5)
```

Specification

18.7.4.2 Equation DPLL-13a4 to calculate the time prediction for an action

For **SYS=1**, **NUSE=2*(SNU+1)**, q>m, SYSF=0, VSN=2*SYN_NS and hence NUSE-VSN = 2*(SNU+1-SYN_NS) equation DPLL-13a3 is equal to

 $\label{eq:pdf_S[i] = (TSF_S[p-m] - TSF_S[p] + mb* DT_Sx[t+q-1]) * RDT_S[t] (DPLL-13a4) with$

DT_Sx[t+q-1]= DT_S[t+q-1] for TS0_HRS=0 (DPLL-13b4) or DT_Sx[t+q-1] = DT_S[t+q-1]/8 for TS0_HRS=1 (DPLL-13b5)

18.7.4.3 Equation DPLL-13b1 to calculate the time prediction for an action

For NUSE-VSN =q, q (< or =) m, NUSE=n and n>1:

 $PDT_S[i] = m*DT_Sx[t+q-1] * RDT_S[t+q]$ (DPLL-13b1) with

 $DT_Sx[t+q-1] = DT_S[t+q-1]$ for TS0_HRS=0 (DPLL-13b4) or $DT_Sx[t+q-1] = DT_S[t+q-1]/8$ for TS0_HRS=1 (DPLL-13b5)

18.7.4.4 Equation DPLL-13c1 to calculate the time prediction for an action

for n=1 PDT_S[i] = (m+mb)* DT_S_ax * RDT_S[t+1] (DPLL-13c1) with DT_S_ax = DT_S_ACT for TS0_HRS=0 (DPLL-6a4a) or DT_S_ax = DT_S_ACT/8 for TS0_HRS=1 (DPLL-6a4b)

Specification

18.7.4.5 Equation DPLL-14 to calculate the duration value until action

DTA[i] = (DT_S_ACT + MEDT_S)* PDT_S[i] (DPLL-14)

Use the results of DPLL-7, DPLL-8 and DPLL-9 for the above calculation

18.7.5 Update of RAM in Normal and Emergency Mode

After considering the calculations for up to all 24 actions according to equations (DPLL-11, DPLL-12), only when going back to state 1 or 21 (because of a new TRIGGER or STATE event, that means when no further PMTR values are to be considered) set time stamp values and duration of increments in the RAM.

18.7.5.1 Equation DPLL-1a4 to update the time stamp values for TRIGGER

TSF_T[s]=TS_Tx (DPLL-1a4) using the following equations for the determination of TS_Tx

For TS0_HRT=0: TS_Tx=TS_T (DPLL-1a4w) DT_T_ax = DT_T_ACT (DPLL-1a4a)

For TS0_HRT=1: TS_Tx(20:0)=TS_T/8 (DPLL-1a4x) TS_Tx(23:21)=TBU_TS0_T(23:21) (DPLL-1a4y) for TBU_TS0_T(20:0) > or = TS_Tx(20:0) TS_Tx(23:21)=TBU_TS0_T(23:21) -1 (DPLL-1a4z) for TBU_TS0_T(20:0) < TS_Tx(20:0) DT_T_ax = DT_T_ACT/8 (DPLL-1a4b) Note: the combination of values LOW_RES=0 and TS0_HRT=1 is not possible.

Store the time stamp values in the time stamp field according to the address pointer APT_2B=s, but make this update only after the calculation of actions 18.7 because the old TSF_T[i] values are still needed for these calculations. Please note that the address pointer after a gap is still incremented by SYN_T_OLD in that case (see state machine step 1 in chapter 18.8.6).

Specification

18.7.5.2 Equation DPLL-1a5-7 to extend the time stamp values for TRIGGER in forward direction

when SYT=1 and SYN_T_OLD=r>1 and DIR1=0

 $TSF_T[s-1] = TSF_T[s] - DT_T_ax \quad (DPLL-1a5)$ $TSF_T[s-2] = TSF_T[s-1] - DT_T_ax \quad (DPLL-1a6)$ until $TSF_T[s-r+1] = TSF_T[s-r+2] - DT_T_ax \quad (DPLL-1a7)$

after the incrementation of the pointer APT_2B by SYN_T_OLD

18.7.5.3 Equations DPLL-1a5-7 for backward direction

when SYT=1 and SYN_T_OLD=r>1 and DIR1=1

$$\begin{split} TSF_T[s+1] &= TSF_T[s] - DT_T_ax \quad (DPLL-1a5) \\ TSF_T[s+2] &= TSF_T[s+1] - DT_T_ax \quad (DPLL-1a6) \\ until \\ TSF_T[s+r-1] &= TSF_T[s+r-2] - DT_T_ax \quad (DPLL-1a7) \end{split}$$

after the decrementation of the pointer APT_2B by SYN_T_OLD

18.7.5.4 Equations DPLL-1b1 and DPLL-1c1 to update the RAM after calculation

DT_T[p] = DT_T_ACT (DPLL-1b1) save old reciprocal value from RAM before overwriting: RDT_T_FS1= RDT_T[p] (DPLL-1c1) after that store new value in RAM RDT_T[p]= RDT_T_ACT (DPLL-1c2)

Store increment duration and reciprocal value in RAM region 2 in normal mode after calculation of actions only when a new active *TRIGGER* slope is detected and in emergency mode directly after calculation of DT_T_ACT or RDT_T_ACT respectively.

18.7.5.5 Equation DPLL-6a4 to update the time stamp values for STATE

TSF_S[s]=TS_Sx (DPLL-6a4) using the following equations for the determination of TS_Sx

Specification

For TS0_HRS=0: TS_Sx=TS_S (DPLL-6a4) DT S ax = DT S ACT (DPLL-6a4a)

For TS0_HRS=1: TS_Sx(20:0)=TS_S/8 (DPLL-6a4x) TS_Sx(23:21)=TBU_TS0_S(23:21) (DPLL-6a4y) for TBU_TS0_S(20:0) > or = TS_Sx(20:0) TS_Sx(23:21)=TBU_TS0_S(23:21) -1 (DPLL-6a4z) for TBU_TS0_S(20:0) < TS_Sx(20:0) DT_S_ax = DT_S_ACT/8 (DPLL-6a4b) Note: the combination of values LOW_RES=0 and TS0_HRS=1 is not possible.

Store the time stamp value in the time stamp field according to the address pointer APS_1C2=s, but make this update only after the calculation of actions (equations DPLL-13a2, 18.7.3.2 or DPLL-13a4 18.7.4.2, if applicable) because the old TSF_S[i] values are still needed for these calculations. Please note, that the address pointer after a gap is still incremented by SYN_S_OLD in that case (see state machine step 21 in chapter 18.8.6).

18.7.5.6 Equations DPLL-6a5-7 to extend the time stamp values for STATE

When SYS=1 and SYN_S_OLD=r>1 and DIR2=0 or DIR1=0 respectively calculate

$$\begin{split} TSF_S[s-1] &= TSF_S[s] - DT_S_ax & (DPLL-6a5) \\ TSF_S[s-2] &= TSF_S[s-1] - DT_S_ax & (DPLL-6a6) \\ until \\ TSF_S[s-r+1] &= TSF_S[s-r+2] - DT_S_ax & (DPLL-6a7) \end{split}$$

after incrementation of the pointer APS_2b by SYN_S_OLD

18.7.5.7 Equations DPLL-6a5-7 for backward direction

When SYS=1 and SYN_S_OLD=r>1 and DIR2=1 or DIR1=1 respectively calculate

$$\begin{split} TSF_S[s+1] &= TSF_S[s] - DT_S_ax \quad (DPLL-6a5) \\ TSF_S[s+2] &= TSF_S[s+1] - DT_S_ax \quad (DPLL-6a6) \\ until \\ TSF_S[s+r-1] &= TSF_S[s+r-2] - DT_S_ax \quad (DPLL-6a7) \end{split}$$

after the incrementation of the pointer APS_1C2 by SYN_S_OLD

18.7.5.8 Equations DPLL-6b1 and DPLL-6c2 to update the RAM after calculation

DT_S[p] = DT_S_ACT (DPLL-6b1) save old reciprocal value from RAM before overwriting: RDT_S_FS1= RDT_S[p] (DPLL-6c1) after that store new value in RAM RDT_S[p] = RDT_S_ACT (DPLL-6c2)

when a new active *STATE* slope is detected in emergency mode or in normal mode (SMC=RMO=0) directly after calculation of the values above.

Store increment duration and reciprocal value in RAM region 1c in emergency mode after calculation of actions only when a new active *STATE* slope is detected and in normal mode directly after calculation of DT_S_ACT or RDT_S_ACT respectively.

18.7.6 Time and position stamps for actions in Normal Mode

18.7.6.1 Equation DPLL-15 to calculate the action time stamp

TSAC[i]= DTA[i] - DLA[i] + TS_Tx (for DTA[i] > DLA[i] and DTA[i] - DLA[i] < 0x800000) (DPLL-15a) TSAC[i]= TS_Tx (for DTA[i] < DLA[i]) (DPLL-15b) TSAC[i]= 0x7FFFFF + TS_Tx (for DTA[i] > DLA[i] and DTA[i] - DLA[i] > 0x7FFFFF) (DPLL-15c) Note: For TS Tx see equations (DPLL-1a4 and following), chapter 18.7.5.1.

The calculation is done after the calculation of the current expected duration value according to equation DPLL-12 at chapter 18.7.2.5. The time stamp of the action can be calculated as shown above in equation DPLL-15 using the delay value of the action and the current time stamp.

18.7.6.2 Equations DPLL-17 to calculate the position stamp forwards

for **DIR1=0** and TS0 HRT=0:

PSAC[i] = PSA[i] - (DLA[i]*RCDT_TX_NOM)*(MLT+1) (DPLL-17) with

Specification

RCDT_TX_NOM= (1/CDT_TX_NOM) * SYN_T (DPLL-17a) and RCDT_TX= 1/CDT_TX (DPLL-17b)

for **DIR1=0** and TS0_HRT=1: PSAC[i] = PSA[i] - (8*DLA[i]*RCDT_TX_NOM)*(MLT+1) (DPLL-17d) with RCDT TX NOM= (1/CDT TX NOM) * SYN T (DPLL-17a)

and RCDT TX= 1/CDT TX (DPLL-17b)

replace (MLT+1) in equations (DPLL-17) and (DPLL-17d) by MLS1 for SMC=1

use the calculated value of (DPLL-17b) also for the generation of SUB_INCi and serve the action by transmission of TSAC[i] and PSAC[i] to ACT_D_i.

The action is to be updated for each new *TRIGGER* event until the calculated time stamp is in the past.

In this case the values of TSAC[i] and PSAC[i] depend on the DPLL_CTRL_11.ACBU signal.

When DPLL_CTRL_11.ACBU = '0': Use the time stamp of the last input event instead of the calculated value and the calculated position stamp of the actual increment as target position value.

When DPLL_CTRL_11.ACBU = '1':

For ACB_[z][1]= '1': is used as input signal to control if "action in past" shall be checked based on position information. If the position has reached "past" use the calculated position stamp of the actual increment as target position value.

For ACB_[z][1]= '0': In this case the PSAC[i] is used as calculated by the DPLL.

For ACB_[z][0]= '1': is used as input signal to control if "action in past" shall be checked based on time information. If the time has reached "past" use the time stamp of the last input event instead of the calculated TSAC[i] value.

For ACB_[z][0]= '0': In this case the TSAC[i] is used as calculated by the DPLL.

Set the corresponding shadow bit in the DPLL_ACT_STA register. Because of the blocking read operation the ACT_D values can be read only once.

Specification

18.7.6.3 Equations DPLL-17 to calculate the position stamp backwards

For **DIR1=1** and TS0_HRT=0: PSAC[i] = PSA[i] + (DLA[i]*RCDT_TX_NOM)*(MLT+1) (DPLL-17c) with RCDT_TX_NOM= (1/CDT_TX_NOM) * SYN_T (DPLL-17a) and RCDT_TX= 1/CDT_TX (DPLL-17b)

For **DIR1=1** and TS0_HRT=1: PSAC[i] = PSA[i] + (8*DLA[i]*RCDT_TX_NOM)*(MLT+1) (DPLL-17e) with RCDT_TX_NOM= (1/CDT_TX_NOM) * SYN_T (DPLL-17a) and RCDT_TX= 1/CDT_TX (DPLL-17b)

replace (MLT+1) in equations (DPLL-17c) and (DPLL-17e) by MLS1 for SMC=1

use the calculated value of (DPLL-17b) also for the generation of SUB_INCi and serve the action by transmission of TSAC[i] and PSAC[i] to ACT_D_i.

The action is to be updated for each new *TRIGGER* event until the calculated time stamp is in the past.

In this case the values of TSAC[i] and PSAC[i] depend on the DPLL_CTRL_11.ACBU signal.

When DPLL_CTRL_11.ACBU = '0': Use the time stamp of the last input event instead of the calculated value and the calculated position stamp of the actual increment as target position value.

When DPLL_CTRL_11.ACBU = '1':

For ACB_[z][1]= '1': is used as input signal to control if "action in past" shall be checked based on position information. If the position has reached "past" use the calculated position stamp of the actual increment as target position value.

For ACB_[z][1]= '0': In this case the PSAC[i] is used as calculated by the DPLL.

For ACB_[z][0]= '1': is used as input signal to control if "action in past" shall be checked based on time information. If the time has reached "past" use the time stamp of the last input event instead of the calculated TSAC[i] value.

For ACB_[z][0]= '0': In this case the TSAC[i] is used as calculated by the DPLL.

Set the corresponding shadow bit in the DPLL_ACT_STA register. Because of the blocking read operation the ACT_D values can be read only once.

18.7.7 The use of the RAM

The RAM is used to store the data of the last FULL_SCALE period. The use of single port RAMs is recommended. The data width of the RAM is usual 3 bytes, but could be extended to 4 bytes in future applications. There are 3 different RAMs, each with separate access ports. The RAM 1a is used to store the position minus time requests, got from the ARU. No CPU access is possible to this RAM during operation (when the DPLL is enabled).

Ram 1b is used for configuration parameters and variables needed for calculations. Within RAM 1c the values of the *STATE* events are stored. RAM 1b and RAM 1c do have a common access port and are also marked as RAM 1bc in order to clarify this fact.

RAM 2 is used for values of the *TRIGGER* events.

Because of the access of the DPLL internal state machine at the one side and the CPU at the other side the access priority has to be controlled for both RAMs 1bc and 2. The access priority is defined as stated below. The CPU access procedure via AE-interface goes in a wait state (waiting for data valid) while it needs a colliding RAM access during serving a corresponding state machine RAM access. In order not to provoke unexpected behavior of the algorithms the writing of the CPU to the RAM regions 1b, 1c or 2 will be monitored and results in interrupt requests when enabled.

CPU access is specified at follows:

1. CPU has highest priority for a single read/write access. The DPLL algorithm is stalled during external bus RAM accesses.

2. After serving the CPU access to the RAM the DPLL gets the highest RAM access priority for 8 clock cycles. Afterwards continue with 1.

The RAM address space has to be implemented in the address space of the CPU.

18.7.8 Time and position stamps for actions in Emergency Mode

Specification

18.7.8.1 Equation DPLL-18 to calculate the action time stamp

TSAC[i]= DTA[i] - DLA[i] + TS_Sx (for DTA[i] > DLA[i] and DTA[i] - DLA[i] < 0x800000) (DPLL-18a) TSAC[i]= TS_Sx (for DTA[i] < DLA[i]) (DPLL-18b) TSAC[i]= 0x7FFFFF + TS_Sx (for DTA[i] > DLA[i] and DTA[i] - DLA[i] > 0x7FFFFF) (DPLL-18c)

Note: For TS_Sx see equations (DPLL-6a4 and following), chapter 18.7.5.5.

The calculation is done after the calculation of the current expected duration value according to equation DPLL-14 at chapter 18.7.3.5. The time stamp of the action can be calculated as shown in equation DPLL-18 using the delay value of the action and the current time stamp.

18.7.8.2 Equations DPLL-20 to calculate the position stamp forwards

for **DIR2=0** or DIR1=0 respectively and TS0_HRS=0: PSAC[i] = PSA[i] - (DLA[i]*RCDT_SX_NOM)*MLS1 (DPLL-20)

with RCDT_SX_NOM= (1/CDT_SX_NOM) * SYN_S (DPLL-20a) and RCDT_SX= 1/CDT_SX (DPLL-20b)

for **DIR2=0** or DIR1=0 respectively and TS0_HRS=1: PSAC[i] = PSA[i] - (8*DLA[i]*RCDT_SX_NOM)*MLS1 (DPLL-20d)

with RCDT_SX_NOM= (1/CDT_SX_NOM) * SYN_S (DPLL-20a) and RCDT_SX= 1/CDT_SX (DPLL-20b)

replace MLS1 in equations (DPLL-20) and (DPLL-20d) by MLS2 for (SMC=1 and RMO=1) $\ensuremath{\mathsf{RMO}}$

use the calculated value of (DPLL-17b) also for the generation of SUB_INCi and serve the action by transmission of TSAC[i] and PSAC[i] to ACT_D_i.

The action is to be updated for each new *STATE* event until the calculated time stamp is in the past.

In this case the values of TSAC[i] and PSAC[i] depend on the DPLL_CTRL_11.ACBU signal.

When DPLL_CTRL_11.ACBU = '0': Use the time stamp of the last input event instead of the calculated value and the calculated position stamp of the actual increment as target position value.

When DPLL_CTRL_11.ACBU = '1':

For ACB_[z][1]= '1': is used as input signal to control if "action in past" shall be checked based on position information. If the position has reached "past" use the calculated position stamp of the actual increment as target position value.

For ACB_[z][1]= '0': In this case the PSAC[i] is used as calculated by the DPLL.

For ACB_[z][0]= '1': is used as input signal to control if "action in past" shall be checked based on time information. If the time has reached "past" use the time stamp of the last input event instead of the calculated TSAC[i] value.

For ACB_[z][0]= '0': In this case the TSAC[i] is used as calculated by the DPLL.

Set the corresponding shadow bit in the DPLL_ACT_STA register. Because of the blocking read operation the ACT_D values can be read only once.

18.7.8.3 Equations DPLL-20 to calculate the position stamp backwards

For DIR2=1 or DIR1=1 respectively and TS0_HRS=0: PSAC[i] = PSA[i] + (DLA[i]*RCDT_SX_NOM)*MLS1 with		(DPLL-20c)
RCDT_SX_NOM= (1/CDT_SX_NOM) and	* SYN_S	(DPLL-20a)
RCDT_SX= 1/CDT_SX	(DPLL-20b)	

For **DIR2=1** or DIR1=1 respectively and TS0_HRS=1: PSAC[i] = PSA[i] + (8*DLA[i]*RCDT_SX_NOM)*MLS1 (DPLL-20e) with RCDT_SX_NOM= (1/CDT_SX_NOM) * SYN_S (DPLL-20a) and RCDT_SX= 1/CDT_SX (DPLL-20b)

replace MLS1 in equations (DPLL-20c) and (DPLL-20e) by MLS2 for (SMC=1 and RMO=1) $\ensuremath{\mathsf{RMO}}$

use the calculated value of (DPLL-20b) also for the generation of SUB_INCi and serve the action by transmission of TSAC[i] and PSAC[i] to ACT_D.

The action is to be updated for each new *STATE* event until the event is in the past. In this case use the time stamp of the last input event instead of the calculated value and the calculated position stamp of the actual increment as target position value. Set the corresponding shadow bit in the DPLL_ACT_STA register. Because of the blocking read operation the ACT_D values can be read only once.

use the calculated value of (DPLL-17b) also for the generation of SUB_INCi and serve the action by transmission of TSAC[i] and PSAC[i] to ACT_D_i.

The action is to be updated for each new *STATE* event until the calculated time stamp is in the past.

In this case the values of TSAC[i] and PSAC[i] depend on the DPLL_CTRL_11.ACBU signal.

When DPLL_CTRL_11.ACBU = '0': Use the time stamp of the last input event instead of the calculated value and the calculated position stamp of the actual increment as target position value.

When DPLL_CTRL_11.ACBU = '1':

For ACB_[z][1]= '1': is used as input signal to control if "action in past" shall be checked based on position information. If the position has reached "past" use the calculated position stamp of the actual increment as target position value.

For ACB_[z][1]= '0': In this case the PSAC[i] is used as calculated by the DPLL.

For ACB_[z][0]= '1': is used as input signal to control if "action in past" shall be checked based on time information. If the time has reached "past" use the time stamp of the last input event instead of the calculated TSAC[i] value.

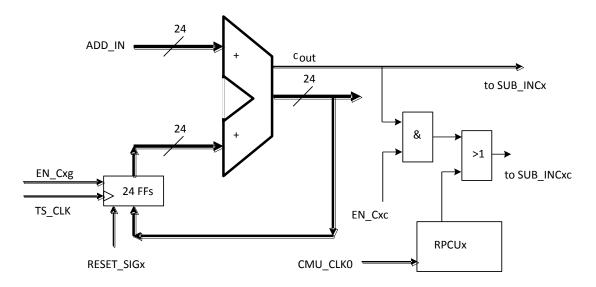
For ACB_[z][0]= '0': In this case the TSAC[i] is used as calculated by the DPLL.

Set the corresponding shadow bit in the DPLL_ACT_STA register. Because of the blocking read operation the ACT_D values can be read only once.

18.8 Signal processing

18.8.1 Time stamp processing

Signal processing does mean the computation of the time stamps in order to calculate at which time the outputs have to appear. For such purposes the time stamp values have to be stored in the RAM and by calculating the difference between old and new values the duration of the last time interval is determined simply. This difference should be also stored in the RAM in order to see the changes between the intervals by changing the conditions and the speed of the observed process. Specification



18.8.2 Count and compare unit

The count and compare unit processes all input signals taking into account the configuration values. It uses a state machine and provides the output signals as described above.

18.8.3 Sub pulse generation for SMC=0

18.8.3.1 Adder for generation of SUB_INCx by the carry c_{out}.

Note: The *SUB_INC* generation by the circuit above has the advantage, that the resolution for higher speed values is better as for a simple down counter.

After RESET and after EN_Cxg=0 the flip-flops (FFs) should have a zero value. EN_Cxg has to be zero until reliable ADD_IN values are available and the pulse generation starts. This is controlled by the configuration bits SGE1,2 in the DPLL_CONTROL_1 register. The calculated values for the increment prediction using equations DPLL-2c 18.6.2.7, DPLL-2c1 18.6.4.4, DPLL-7c 18.6.3.7 or DPLL-7c1 18.6.4.4 respectively are valid only when at least NUTE>1 *TRIGGER* values or at least NUSE>1 *STATE* values are available. For NUTE =1 or NUSE=1 respectively the equations DPLL-25 18.8.3.4 and DPLL-26 18.8.3.6 use the actual increment value subtracted by the weighted average error.

The generation of *SUB_INC1* pulses depends on the configuration of the DPLL. In automatic end mode the counter **INC_CNT1** resets the enable signal EN_C1 when the number of pulses desired is reached. In this case only the uncompensated output *SUB_INC1* remains active in order to provide pulses for the input filter unit. In the case of acceleration missing pulses can be determined at the next *TRIGGER/STATE* event in normal/emergency mode easily. For the correction strategy COA = 0 those missing

pulses are sent out **with CMU_CLK0** frequency as soon they are determined. During this time period the EN_Cxg remains cleared. After calculation or providing of a new ADD_IN value the FFs are enabled by EN_Cxg. In this way no pulse is lost. The new pulses are sent out afterwards, when **INC_CNT1** is set to the desired value, maybe by adding MLT+1 or MLS1 respectively for the new *TRIGGER/STATE* event.

Because the used DIV procedure of the algorithms results only in integer values, a systematic failure could appear. The pulse generation at *SUB_INC1* will stop in automatic end mode when the **INC_CNT1** register reaches zero or all remaining pulses at a new increment will be considered in the next calculation. In this way the loss of pulses can be avoided.

When a new *TRIGGER/STATE* appears the value of SYN_T*(MLT+1) or SYN_S*MLS1 respectively is added to **INC_CNT1**, **when SGE1=1**. Therefore for FULL_SCALE 2*(TNU+1)*(MLT+1) pulses *SUB_INC1* generated, when **INC_CNT1** reaches the zero value. The generation of *SUB_INC1* pulses has to be done as fast as possible. The calculations for the ADD_IN value must be done first. Therefore all values needed for calculation are to be fetched in a forecast.

18.8.3.2 Equation DPLL-21 to calculate the number of pulses to be sent in normal mode using the automatic end mode condition

For RMO=0, SMC=0 and DMO=0

NMB_T = ((MLT+1) + PD_store) *SYN_T + MP + MPVAL1 (DPLL-21) with

PD_store = ADT_T[12:0] , prefetched during last increment SYN_T = ADT_T[18:16], prefetched during last increment MPVAL1 = pulse correction value for PCM1_SHADOW_TRIGGER=1

while the value for PD_store is zero for AMT=0 and the value of MP is zero for COA=0

In order to get a higher resolution for higher speed a generator for the sub-pulses is chosen using an adder. All missing pulses MP are considered using equation DPLL-21 and are determined by counting the number of pulses of the last increment. The value SYN_T is stored from the last increment using NT of the ADT_T[i] value at RAM region 2c.

Confidential

Specification

18.8.3.3 Equations DPLL-22-24 to calculate the number of pulses to be sent in emergency mode using the automatic end mode condition for SMC=0

For RMO=1, SMC=0 and DMO=0; the value for PD S store is zero for AMS=0

NMB_S = (MLS1 + PD_S_store) *SYN_S+ MP(DPLL-22)withMLS1= (MLT+1) * (TNU+1) / (SNU+1)(DPLL-23)PD_S_store = ADT_S[15:0], prefetched during last incrementSYN_S = ADT_S[21:16], prefetched during last incrementMPVAL1 = pulse correction value for PCM1_SHADOW_STATE=1

while the value for PD_S_store is zero for AMS=0 and the value of MP is zero for COA=0

Please note, that these calculations above in equations DPLL-21 and DPLL-22 are only valid for an automatic end mode (DMO = 0).

For calculation of the number of generated pulses a value of 0.5 is added as shown in equations DPLL-25 or DPLL-26 respectively in order to compensate rounding down errors at the succeeding arithmetic operations. Because in automatic end mode the number of pulses is limited by **INC_CNT1** it is guaranteed, that not more pulses as needed are generated and in the same way missing pulses are caught up for the next increment.

18.8.3.4 Equation DPLL-25 to calculate ADD_IN in normal mode for SMC=0

In normal mode (for RMO=0) calculate in the case LOW_RES=TS0_HRT ADD_IN_CALN= (NMB_T+0.5) *RCDT_TX (DPLL-25) with RCDT_TX is the 2³² time value of the quotient in equation DPLL-17b 18.7.6.3.

In normal mode (for RMO=0) calculate in the case LOW_RES=1 and TS0_HRT=0

ADD_IN_CALN= (NMB_T+0.5) *(RCDT_TX /8) (DPLL-25a) with RCDT_TX is the 2³² time value of the quotient in equation DPLL-17b

Confidential

Specification

18.7.6.3.

For RMO=0 and SMC=0:

ADD_IN_CAL1 = ADD_IN_CALN

(DPLL-25b)

LOW_RES=0 and TS0_HRT=1 is not possible. For such a configuration the RCT bit in the DPLL_STATUS register is set together with the ERR bit.

In the automatic end mode (DMO=0) missing pulses should be sent to the input RPCUx (rapid pulse catch up on) in 18.8.3.1, to be caught up on with CMU_CLK0 (for COA=0). When normal and rapid pulses are generated simultaneously, the SUB_INCx frequency is doubled at this moment in order to count two pulses at the TBU_CHx_BASE register. In order to make the frequency doubling possible, the CMU_CLK0 should be having a frequency which does not exceed half the frequency of TS_CLK. In addition the ADD_IN value should never exceed the value 0x800000. This limitation is only necessary for DMO=0 and COA=0 (see DPLL_CTRL_1 register).

For the normal mode replace ADD_IN of the ADDER (see Figure 18.8.3.1) by ADD_IN_CAL1 (when calculated, DLM=0) or ADD_IN_LD1 (when provided by the CPU, DLM=1).

The sub-pulse generation in this case is done by the following calculations using a 24 bit adder with a carry out c_{out} and the following inputs:

- ADD_IN

- the second input is the output of the adder, stored one time stamp clock before

In order not to complicate the calculation procedure use a Multiplier with a sufficient bit width at the output and use the corresponding shifted output bits.

18.8.3.5 Enabling of the compensated output for pulses

The c_{out} of the adder influences directly the *SUB_INC1* output of the DPLL (see Figure 18.8.3.1). The compensated output SUB_INCxc is in automatic end mode only enabled by EN_Cxc when **INC_CNTx** >0.

18.8.3.6 Equation DPLL-26 to calculate ADD_IN in emergency mode for SMC=0

In emergency mode (RMO=1) calculate

Robert Bosch GmbH

Specification

in the case LOW_RES=TS0_HRS

ADD_IN_CALE= (NMB_S+0.5)* RCDT_SX (DPLL-26) while RCDT_SX is the 2³² time value of the quotient in equation DPLL-20b 18.7.8.2.

In emergency mode (RMO=1) calculate in the case LOW_RES=1 and TS0_HRS=0

ADD_IN_CALE= (NMB_S+0.5)* RCDT_SX /8 (DPLL-26a) while RCDT_SX is the 2³² time value of the quotient in equation DPLL-20b 18.7.8.2.

For RMO=1 and SMC=0:

ADD_IN_CAL1 = ADD_IN_CALE (DPLL-26b)

LOW_RES=0 and TS0_HRS=1 is not possible. For such a configuration the RCS bit in the DPLL_STATUS register is set together with the ERR bit.

In the automatic end mode (DMO=0) missing pulses should be sent to the input RPCUx (rapid pulse catch up on) in 18.8.3.1, to be caught up on with CMU_CLK0 (for COA=0). When normal and rapid pulses are generated simultaneously, the SUB_INCx frequency is doubled at this moment in order to count two pulses at the TBU_CHx_BASE register. In order to make the frequency doubling possible, the CMU_CLK0 should be having a frequency which does not exceed half the frequency of the system clock. In addition the ADD_IN value should never exceed the value 0x800000 when the TS_CLK frequency exceeds half the frequency of the system clock. This limitation is only necessary for DMO=0 and COA=0 (see DPLL_CTRL_1 register).

For the emergency mode replace ADD_IN of the ADDER (see Figure 18.8.3.1) by ADD_IN_CAL1 (when calculated, DLM=0) or ADD_IN_LD1 (when provided by the CPU, DLM=1).

The sub-pulse generation in this case is done by the following calculations using a 24 bit adder with a carry out c_{out} and the following inputs:

- ADD_IN

- the second input is the output of the adder, stored one time stamp clock before.

In order not to complicate the calculation procedure use a Multiplier with a sufficient bit width at the output and use the corresponding shifted output bits.

18.8.4 Sub pulse generation for SMC=1

18.8.4.1 Necessity of two pulse generators

The Adder of picture 18.8.3.1 must be implemented twice in the case of SMC=1: one for SUB_INC1 controlled by the *TRIGGER* input and (while RMO=1) one for SUB_INC2, controlled by the *STATE* input. In the case described in the chapter above for SMC=0 only one Adder is used to generate SUB_INC1 controlled by the *TRIGGER* in normal mode or by *STATE* in emergency mode.

18.8.4.2 Equation DPLL-27 to calculate the number of pulses to be sent for the first device using the automatic end mode condition

For SMC=1 and DMO=0

NMB_T = (MLS1 + PD_store) *SYN_T + MP + MPVAL1 (DPLL-27)

with

PD_store = ADT_T[12:0] , prefetched during last increment SYN_T = ADT_T[18:16], prefetched during last increment MPVAL1 = pulse correction value for PCM1_SHADOW_TRIGGER=1

while the value for PD_store is zero for AMT=0 and for COA=0 use zero instead of the value of MP

18.8.4.3 Equation DPLL-28 to calculate the number of pulses to be sent for the second device using the automatic end mode condition

for RMO=1, SMC=1 and DMO=0

with

PD_S_store = ADT_S[15:0], prefetched during last increment SYN_S = ADT_S[21:16], prefetched during last increment MPVAL2 = pulse correction value for PCM2_SHADOW_STATE=1 while the value for PD_S_store is zero for AMS=0 and for COA=0 use zero instead of the value of MP

Please note, that these calculations above in equations DPLL-27 and DPLL-28 are only valid for an automatic end mode (DMO = 0). In addition the number of generated pulses is added by 0.5 as shown in equations DPLL-30 or DPLL-31 respectively in order to compensate rounding down errors at the succeeding division operation. Because in automatic end mode the number of pulses is limited by **INC_CNTx** it is guaranteed, that not more pulses as needed are generated and in the same way missing pulses are made up for the next increment.

18.8.4.4 Equation DPLL-30 to calculate ADD_IN for the first device for SMC=1

The sub-pulse generation in this case is done by the following calculations using a 24 bit adder with a carry out c_{out} and the following inputs:

- ADD_IN

- the second input is the (delayed) output of the adder, stored with each time stamp clock.

Replace ADD_IN by ADD_IN_CAL1 (when calculated, DLM1=0) or ADD_IN_LD1 (when provided by the CPU, DLM1=1) respectively while:

For SMC=1 and LOW_RES=TS0_HRT

ADD_IN_CAL1= (NMB_T+0.5) * RCDT_TX (DPLL-30)

When RCDT_TX is the 2³² time value of the quotient in equation DPLL-17b 18.7.6.3.

For SMC=1,LOW_RES= 1 and TS0_HRT=0

ADD_IN_CAL1= (NMB_T+0.5) * (RCDT_TX /8) (DPLL-30a)

When RCDT_TX is the 2^{32} time value of the quotient in equation DPLL-17b 18.7.6.3.

In order not to complicate the calculation procedure use a Multiplier with a sufficient bit width at the output and use the corresponding shifted output bits.

ADD_IN_CAL1 is a 24 bit integer value. The CDT_TX is the expected duration of current *TRIGGER* increment.

The c_{out} of the adder influences directly the *SUB_INC1* output of the DPLL (see 18.8.3.1). The SUB_INC1 output is in automatic end mode only enabled by EN_C1 when **INC_CNT1** >0.

18.8.4.5 Equation DPLL-31 to calculate ADD_IN for the second device for SMC=1

Replace ADD_IN by ADD_IN_CAL2 (when calculated, DLM2=0) or ADD_IN_LD2 (when provided by the CPU, DLM2=1) respectively while:

for SMC=1, RMO=1 and LOW_RES=TS0_HRS: ADD_IN_CAL2= (NMB_S+0.5)* RCDT_SX (DPLL-31)

When RCDT_SX is the 2³² time value of the quotient in equation DPLL-20b 18.7.8.2.

for SMC=1, RMO=1, LOW_RES=1 and TS0_HRS=0: ADD_IN_CAL2= (NMB_S+0.5)* (RCDT_SX /8) (DPLL-31a)

When RCDT_SX is the 2^{32} time value of the quotient in equation DPLL-20b 18.7.8.2.

In order not to complicate the calculation procedure use a Multiplier with a sufficient bit width at the output and use the corresponding shifted output bits.

The c_{out} of the adder2 influences directly the *SUB_INC2* output of the DPLL (see chapter 18.8.3.1).

The SUB_INC2 output is in automatic end mode only enabled by EN_C2 when $INC_CNT2 > 0$.

Note:

Please note, that after RESET and after EN_Cxc=0 (after stopping in automatic end mode) the flip-flops (FFs) have a zero value and also EN_Cxg has to be zero until reliable ADD_IN values are available and the pulse generation starts. The calculated values for the increment prediction using equations DPLL-2c 18.6.2.7, DPLL-2c1 18.6.4.4, DPLL-7c 18.6.3.7 or DPLL-7c1 18.6.4.4 respectively are valid only when NUTE>1 or NUSE>1 respectively. For NUTE=1 or NUSE=1 respectively the equations DPLL-30 (see chapter 18.8.4.4) and DPLL-31 (see chapter 18.8.4.5) use the actual increment value subtracted by the weighted average error.

The generation of SUB_INCx pulses depends on the configuration of the DPLL.

In automatic end mode the counter **INC_CNTx** resets the enable signal EN_Cxcu when the number of pulses desired is reached. In this case only the uncompensated outputs SUB_INCx remain active in order to provide pulses for the input filter units. A new *TRIGGER* or *STATE* input respectively can reset the FFs and also ADD_IN, especially when EN_Cxc was zero before. In the case of acceleration missing pulses can be determined at the next *TRIGGER/STATE* event easily. For the correction strategy COA = 0 those missing pulses are sent out with CMU_CLK0 frequency as soon they are determined. After that the pulse counter **INC_CNTx** should be always zero and the new pulses are sent out afterwards, when **INC_CNTx** is set to the desired value by adding MLS1 or MLS2 for the new *TRIGGER* or *STATE* event respectively.

Because the used DIV procedure of the algorithms results only in integer values, a systematic failure could appear. The pulse generation will stop when the **INC_CNTx** register reaches zero or all remaining pulses at a new increment will be considered in the next calculation. In this way the loss of pulses can be avoided.

When a new *TRIGGER* appears the value of SYN_T*MLS1 is added to **INC_CNT1**. Therefore for FULL_SCALE 2*(TNU+1)*MLS1 pulses *SUB_INC1* generated, when **INC_CNT1** reaches the zero value. The generation of SUB_INC1 pulses has to be done as fast as possible.

When a new *STATE* appears the value of SYN_S*MLS2 is added to **INC_CNT2**. Therefore for FULL_SCALE 2*(SNU+1)*MLS2 pulses *SUB_INC2* generated, when **INC_CNT2** reaches the zero value. The generation of SUB_INC2 pulses has to be done as fast as possible.

18.8.5 Calculation of the Accurate Position Values

All appearing *TRIGGER* and *STATE* signals do have a time stamp and a position stamp assigned after the input filter procedure. For the calculation of the exact time stamp the filter values are considered in the calculations of equations DPLL-1a 18.6.2.1 or DPLL-6a 18.6.3.1 respectively. A corresponding calculation is to be performed for the calculation of position values.

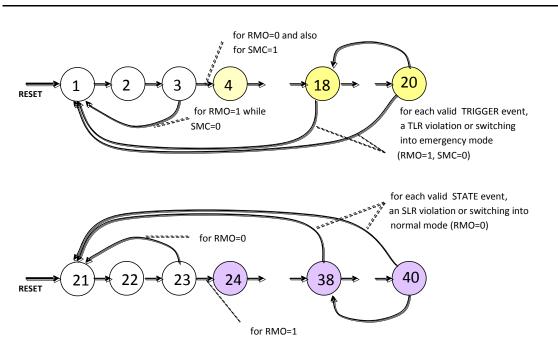
The PSTC and PSSC values can be corrected by the CPU, when needed.

After reset, while FTD=0 and no active TRIGGER slope is detected: PSTC = 0 (DPLL-32a)

Calculate the new Position value for each active TRIGGER event: PSTC= PSTC_old + NMB_T_TAR_OLD (DPLL-32b) when FTD=1 and SGE1=1

GTM-IP	Specification	Revision 3.1.5.1
NMB_T_old is the	last PSTC value and e number of pulses which are calculated sending out in the last increment.	
After reset, while PSSC= 0	FSD=0 and no active STATE slope is detected: (DPLL-33a)	
Calculate the new Position value for each STATE event: PSSC= PSSC_old + NMB_S_TAR_OLD when FSD=1 and SGE1=1 (SMC=0) or SGE2=1 (SMC=1) respectively with PSSC_old is the last PSSC value and NMB_S_old is the number of pulses which are calculated and provided for sending out in the last increment.		(DPLL-32b)

18.8.6 Scheduling of the Calculation


After enabling the DPLL with each active TRIGGER or STATE event respectively a cycle of operations is performed to calculate all the results shown in detail in the table below 18.2. A state machine controls this procedure and consists of two parts, the first is triggered by an active slope of the signal TRIGGER, begins at step 1 and ends at step 20 (in normal mode and for SMC=1). The second state machine is controlled by an active slope of the signal STATE, begins at step 21 and ends at step 40 (in emergency mode and also for SMC=RMO=1). Depending on the mode used all 20 steps are executed or already after 2 steps the jump into the initial state is performed, as shown in the state machine descriptions below. For each new extended cycle (without this jump) all prediction values for actions in the case SMC=0 are calculated once more (with maybe improved accuracy because of better parameters) and all pending decisions are made using these new values when transmitted to the decision device.

In 18.8.6.7.1 the steps of the state machine are described. Please note, that the elaboration of the steps depends on the configuration bits described in the comments. The steps 4 to 17 are only calculated in normal mode (in the state machine explanation below marked yellow in 18.2), but steps 24 to 37 are only calculated in emergency mode (in the state machine explanation below marked cyan in 18.2) when SMC=0.

18.8.6.1 State machine partitioning for normal and emergency mode.

BOSCH

Revision 3.1.5.1

Specification

18.8.6.2 Synchronization description

TRIGGER:

The APT (address pointer for duration and reciprocal duration values of *TRIGGER* increments) is initially set to zero and incremented with each active *TRIGGER* event. Therefore data are stored in the RAM beginning from the first available value. The actual duration of the last increment is stored at DT_T_ACT. For the prediction of the next increment it is assumed, that the same value is valid as long as NUTE is one.

A missing *TRIGGER* is assumed, when at least after TOV* DT_T_ACT no active *TRIGGER* event appears.

The data of equations DPLL-1b1 and DPLL-1c2 18.7.5.4 are written in the corresponding RAM regions and APT is incremented accordingly up to 2*TNU-2*SYN_NT+1.

The APT_2B (address pointer for the time stamp field of *TRIGGER*) is initially set to zero and incremented with each active *TRIGGER* event. When no gap is detected because of the incomplete synchronization process at the beginning, for all *TRIGGER* events the time stamp values are written in the RAM up to 2*(TNU+1) entries, although only 2*(TNU+1-SYN_NT) events in FULL_SCALE appear. When the current position is detected, the synchronization procedure can be performed as described below: Before the CPU sets the APT_2C address pointer in order to synchronize to the profile, it writes the corresponding increment value for the necessary extension of the RAM region 2b value APT_2B_EXT into the register APT_2B_sync and sets the status bit APT_2C_status. This value can be e.g. 2*SYN_NT, when all gaps in FULL_SCALE

already passed the input data stream of *TRIGGER*, or less then this value, when up to now e.g. only a single gap is to be considered in the data stream stored already in the RAM region 2b. The number of virtual increments to be considered depends on the number of inputs already got. After writing APT_2C by the CPU, with the next *TRIGGER* event the APT_2B address pointer is incremented (as usual) and then the additional offset value APT_2B_EXT is added to it once (while APT_2B_STATUS=1 and for forward direction). For that reason the APT_2B_STATUS bit is reset after it. The old APT_2B value before adding the offset is stored in the APT_2B_OLD register as information for the CPU where to start the extension procedure. In the following the CPU fills in the time stamp field around the APT_2B_OLD position taking into account the corresponding number of virtual entries stored in the APT_2B_EXT value and the corresponding NT values in the profile. The extension procedure ends when all gaps considered in the APT_2B_EXT value are treated once. In the consequence all storage locations of RAM region 2b up to now do have the corresponding entries. Future gaps are treated by the DPLL.

For a backward direction the APT_2C_ext value is subtracted accordingly.

When the CPU writes the APT_2C address pointer the SYT bit is set simultaneously. For SYT=1 in normal mode (SMC=0) the LOCK1 bit is set with the system clock, when the right number of increments between two synchronization gaps is detected by the DPLL. An unexpected missing *TRIGGER* or an additional *TRIGGER* between two synchronization gaps does reset the LOCK1 bit in normal mode. In that case the CPU must correct the SUB_INC pulse number and maybe correct the APT_2C pointer. For this purpose the LL11 interrupt can be used.

When SYT is set the calculations of equations DPLL-1 to DPLL-5 are performed accordingly and the values are stored in (and distributed to) the right RAM positions. This includes the multiple time stamp storage by the DPLL for a gap according to equations DPLL-1a5 to 7 forwards 18.7.5.2 or backwards 18.7.5.3. The APT_2B pointer is for that reason incremented or decremented before this operation considering the virtual increments in addition.

Please note, that for the APT and APT_2C pointers the gap is considered as a single increment.

STATE:

The APS (address pointer for duration and reciprocal duration values of *STATE*) is initially set to zero and incremented with each active *STATE* event. Therefore data are stored in the RAM field beginning at the first location. The actual duration of the last increment is stored at DT_S_ACT. For the prediction of the next increment it is assumed, that the same value is valid as long as NUSE is one.

A missing *STATE* is assumed, when at least after SOV* DT_S_ACT no active *STATE* event appears.

The data of equations DPLL-6b1 and DPLL-6c2 18.7.5.8 is written in the corresponding RAM regions and APS is incremented accordingly up to 2*SNU-2*SYN_NS+1 (for SYSF=0).

The APS_1C2 (address pointer for the time stamp field of *STATE*) is initially set to zero and incremented with each active *STATE* event. When no gap is detected because of the incomplete synchronization process at the beginning, for all *STATE* events the time stamp values are written in the RAM up to 2*(SNU+1) entries, although (e.g. for SYSF=0) only 2*(SNU+1-SYN_NS) events in FULL_SCALE appear. When the current position is detected, the synchronization procedure can be performed as described below:

Before the CPU sets the APS 1C3 address pointer in order to synchronize to the profile, it writes the corresponding increment value APS_1C2_EXT for the necessary extension of the RAM region 1c2 into the register DPLL_APS_SYNC and sets the APS 1C2 STATUS bit there. This value can be e.g. 2*SYN NS (for SYSF=0) or SYN NS (for SYSF=1), when all gaps in FULL SCALE already passed the input data stream of STATE. Also less then this value can be considered, when up to now only a single gap is to be considered in the data stream stored already in the RAM region 1c2. The number of increments to be considered depends on the number of inputs already got. After writing APS 1C3 by the CPU, with the next active STATE slope the APS 1C2 address pointer is incremented (as usual) and then the additional offset value APS_1C2_EXT is added to it once (while APS_1C2_STATUS=1 and forward direction). For that reason the APS 1C2 STATUS bit is reset after it. The old APS 1C2 value is stored in the APS 1C2 OLD register as information for the CPU where to start the extension procedure. In the following the CPU extends the time stamp field beginning from the APS 1C2 OLD position taking into account the corresponding number of virtual entries according to the APS 1C2 EXT value and also the correspondent NS values in the profile. The extension procedure ends when all gaps considered in the APS 1C2 EXT value are treated once. In the consequence all storage locations of RAM region 1c2 up to now do have the corresponding entries. Future gaps are treated by the DPLL.

For a backward direction the APS_1C2_EXT value is subtracted accordingly.

When the CPU writes the APS_1C3 address pointer the SYS bit is set simultaneously. For SYS=1 in emergency mode (SMC=0 and DMO=1) the LOCK1 bit is set with the system clock, when the right number of increments between two synchronization gaps is detected by the DPLL. An unexpected missing *STATE* or an additional *STATE* between two synchronization gaps does reset the LOCK1 bit in emergency mode. In that case the CPU must correct the SUB_INC1 pulse number and maybe correct the APS_1C3 pointer. For this purpose the LL11 interrupt can be used.

When SYS is set the calculations of equations DPLL-5 to DPLL-10 are performed accordingly and the values are stored in (and distributed to) the right RAM positions. This includes the multiple time stamp storage by the DPLL for a gap according to equations DPLL-6a5 to 7 forwards 18.7.5.6 or backwards 18.7.5.7. The APS_1C2 pointer is for that reason incremented or decremented before this operation considering the virtual increments in addition.

Please note, that for the APS and APS_2c pointers the gap is considered as a single increment.

SMC=1:

For SMC=1 it is assumed, that the starting position is known by measuring the characteristic of the device. In this way the APT and APT_2C as well the APS and APS_1C3 values are set properly, maybe with an unknown repetition rate. When no gap is to be considered for *TRIGGER* or *STATE* signals the APT_2B and APS_1C2 address pointers are set equal to APT or APS respectively. It is assumed, that all missing *TRIGGERs* and missing *STATEs* can be also considered from the beginning, when a valid profile with the corresponding adapted values is written in the RAM regions 1c3 and 2c respectively. In that case the TSF_T[i] and TSF_S[i] must be extended by the DPLL according to the profile. Thus the SYT and SYS bits could be set from the beginning and the LOCK1 and LOCK2 bits are set after recognition of the corresponding gaps accordingly. When no gap exists (SYN_NT=0 or SYN_NS=0), the LOCK bits are set immediately. The CPU can correct the APT_2C and APS_1C3 pointer according to the recognized repetition rate later once more without the loss of Lock1,2.

18.8.6.3 Operation for direction change in normal and emergency mode (SMC=0)

When for SMC=0 in normal mode a backwards condition is detected for the TRIGGER input signal (e.g. when THMI is not violated), the LOCK1 bit in the DPLL_STATUS register is reset, the NUTE value in NUTC register is set to 1 (the same for NUSE in NUSC). The address pointers APT_2C as described below (and after that decremented for each following active slope of *TRIGGER* as long as the DIR1 bit shows the backward direction).

Please notice, that in the case of the change of the direction the ITN and ISN bit in the DPLL_STATUS register are reset.

For this transition to the backward direction no change of address pointer APT and APT_2B is necessary.

profile update for TRIGGER when changing direction

The profile address pointer APT_2C is changed step by step in order to update the profile information in SYN_T, SYN_T old and PD_store:

- decrement APT_2C, load SYN_T

- decrement APT_2C, load SYN_T

- decrement APT_2C, load SYN_T, PD_store, update SYN_T_OLD

- decrement APT_2C, **make calculations**, load SYN_T and PD_store, update SYN_T_OLD and PD_store_old and wait for a new *TRIGGER* event.

Note: The update of SYN_T_OLD and the loading of PD_store can be performed in all steps above. The value of APT_2B needs not to be corrected. For a direction change from backwards to forwards make the same corrections by incrementing APT_2C.

Make calculations does mean: the operation of the state machine starts with the calculations of NMB_T and INC_CNT1 using the actual APT_2C address pointer value, see 18.2.

The TBU_TB1 value is to be corrected by the number of pulses sent out in the wrong direction mode during the last and current increment. This correction is done by sending out SUB_INC1 pulses for decrementing TBU_TB1 (while DIR1=1).

Save inc_cnt1 value at direction change to inc_cnt1_save.

Calculate the new inc_cnt1 value as follows:

1. Stop sending pulses and save inc_cnt1 at the moment of direction change as inc_cnt1_save .

2. Set inc_cnt1 to the target value of the last increment

nmb_t_tar_old

3. Add the target number of trigger which were calculated for the current increment when this value was already added to inc_cnt1 before the direction change is detected

+ nmb_t_tar

4. Subtract the value of still not sent pulses (remaining value at inc_cnt1_save)

- inc_cnt1_save

5. Calculate the new target pulses to be sent considering the new values of SYN_T and PD_store and add them:

+ nmb_t_tar_new

This does mean the following equation:

inc_cnt1 = nmb_t_tar_old + nmb_t_tar

- inc_cnt1_save + nmb_t_tar_new

All pulses summarized at inc_cnt1 are sent out by the maximum possible frequency, because no speed information is available for the first increment after changing the direction. Please notice that no pulse correction using PCM1 of DPLL_CTRL1 is possible during direction change.

When PSTC was incremented/decremented at the active slope and after that the direction change was detected at the same input event, correct **PSTC** once by

- nmb_t_tar_old when changed to backwards

+ nmb_t_tar_old when changed to forwards

in order to compensate the former operation. When the direction information is known before an intended change of PSTC, do not change them.

Store the new calculated value **nmb_t_tar_new** at **nmb_t_tar** for the correct calculation of PSTC at the next input event.

consequences for STATE

With the next active *STATE* event the direction information is already given. The profile pointer APS_1C3 is to be corrected by a two times decrement in order to point to the profile of the next following increment. In the following it is decremented with each *STATE* event while DIR1=1. The SYN_S and PD_S_store values must be updated accordingly, including SYN_S_OLD and PD_S_store_old.

Because the right direction is already known when an input event appears, make the following corrections:

- decrement APS_1C3, load SYN_S and PD_S_store, update SYN_S_OLD and PD_S_store_old

- decrement APS_1C3, **make calculations**, load SYN_S and PD_S_store, update SYN_S_OLD and PD_S_store_old and wait for a new *STATE* event.

Note: The update of SYN_S_OLD and the loading of PD_S_store can be performed in all steps above. The value of APS_1C2 needs not to be corrected.

When a new *STATE* event occurs, all address pointers are decremented accordingly as long as DIR1=1.

In **emergency mode** the pulses are corrected as follows:

Save inc_cnt1 value at direction change to inc_cnt1_save.

Calculate the new inc_cnt1 value as follows:

1. Stop sending pulses and save inc_cnt1 at the moment of direction change as inc_cnt1_save.

2. Set inc_cnt1 to the target value of the current increment

nmb_s_tar

Please notice, that in difference to the normal mode, nmb_s_tar is to be used instead of nmb_s_tar_old, because direction information in emergency mode is only given from the TRIGGER input and occurs of a STATE event independently. That means: The calculations at the last STATE event were done for the correct former direction. In addition still no pulse calculations are performed for the current increment, because the direction change is known at the moment of the recent STATE event. Later direction changes are considered at the next STATE event.

3. Do not add the calculated number of state pulses because no new STATE event occurred.

4. Subtract the value of still not sent target pulses (remaining value at inc_cnt1_save) - inc_cnt1_save

5. Add the new calculated target pulses for the current increment

+ nmb_s_tar_new

when for the calculation all new conditions of PD_S_store and SYN_S are considered. inc_cnt1 = nmb_s_tar_old - inc_cnt1_save + nmb_s_tar_new

All pulses summarized at inc_cnt1 are sent out by the maximum possible frequency, because no speed information is available for the first increment after changing the direction. Please notice that no pulse correction using PCM1 of DPLL_CTRL1 is possible during direction change.

Do not change PSSC and suppress incrementing/decrementing of PSSC at the event directly following to the direction change information.

Store the new calculated value **nmb_s_tar_new** at **nmb_s_tar** for the correct calculation of PSTC at the next input event.

repeated change to forward direction for TRIGGER

The DIR1 bit remains set as long as the THMI value remains none violated for the following *TRIGGER* events and is reset when for an inactive TRIGGER slope the THMI is violated.

Resetting the DIR1 to 0 results (after repeated reset of LOCK1, ITN, ISN) the opposite correction of the profile address pointer considered.

This does mean two increment operations of the address pointer APS_1C3 including the update of SYN_S and PD_S_store with the automatic update of SYN_S_OLD and PD_S_store_old for STATE and

Specification

four increment operations of the address pointer APT_2C including the update of SYN_T and PD_store with the automatic update of SYN_T_OLD and PD_store_old for TRIGGER.

The correction of TBU_CH1 is done by sending out the correction pulses with the highest possible frequency at SUB_INC1 while DIR1=0. The number of pulses is calculated as shown above.

consequences for STATE

see corrections above. After that the address pointers are incremented again with each following active *STATE* event as long as DIR1=0.

18.8.6.4 Operation for direction change for TRIGGER (SMC=1)

When for SMC=1 a backwards condition is detected for the *TRIGGER* input signal (TDIR=1, resulting in DIR1=1), the LOCK1 bit in the DPLL_STATUS register is reset, the NUTE value in NUTC register is set to 1. The address pointers APT and APT_2C as well as APT_2B are decremented for each active slope of *TRIGGER* as long as the DIR1 bit shows the backward direction.

Please notice, that in the case of the change of the direction the ITN bit in the DPLL_STATUS register is reset.

profile update for TRIGGER

Make the same update steps for the profile address pointer as shown in chapter 18.8.6.3: Decrement APT_2C for 2 times with the update of the SYN_T and PD_store values at each step with an automatic update of SYN_T_OLD and PD_store_old:

- decrement APT_2C, load SYN_T, PD_store, update SYN_T_OLD

- decrement APT_2C, **make calculations**, load SYN_T and PD_store, update SYN_T_OLD and PD_store_old and wait for a new *TRIGGER* event.

In the normal case no correction of wrong pulses sent is necessary, because the direction change is detected by the pattern immediately.

Nevertheless a correction is necessary as shown below. In the other case: see treatment of pulses TBU_CH1_BASE in normal mode at chapter 18.8.6.3.

Save inc_cntx value at direction change to inc_cnt1_save.

Calculate the new inc_cnt1 value as follows:

- 1. Clear inc_cnt1.
- 2. Set inc_cnt1 to the target value of the last increment

nmb_t_tar

Please notice, that in difference to the normal mode, nmb_t_tar is to be used instead of nmb_t_tar_old, because the direction information is known before the calculation takes place.

3. Do not add the calculated number of trigger pulses because it is not calculated yet before the direction change information is known.

4. Subtract the value of still not sent pulses (remaining value at inc_cnt1_save)

Specification

- inc_cnt1_save

5. Add the new calculated target pulses for the current increment

+ nmb_t_tar_new

when for the calculation all new conditions of PD_S_store and SYN_S are considered. inc_cnt1 = nmb_t_tar_old - inc_cnt1_save + nmb_t_tar_new

All pulses summarized at inc_cnt1 are sent out by the maximum possible frequency, because no speed information is available for the first increment after changing the direction. Please notice that no pulse correction using PCM1 of DPLL_CTRL1 is possible during direction change.

Suppress changing of PSTC for the TRIGGER event when a direction change is detected.

Store the new calculated value **nmb_t_tar_new** at **nmb_t_tar** for the correct calculation of PSTC at the next input event.

repeated change to forward direction for TRIGGER

The DIR1 bit remains set as long as the TDIR bit is set for the following *TRIGGER* events and is reset when for an active *TRIGGER* slope the TDIR is zero.

Resetting the DIR1 to 0 results (after repeated reset of LOCK1 and ITN) the opposite correction of the address pointer use.

This does mean two increment operations of the address pointer including the update of SYN_T and PD_store.

A complex correction of TBU_CH1_BASE and INC_CNT1 is in the normal case not necessary, when all increments are equal (SYN_NT=0) and no adapt information is used. In this case only the MLS1 value is added to INC_CNT1 in order to back count the value for the last increment. In the other case: see treatment of pulses TBU_CH1_BASE and ICN_CNT1 in normal mode at chapter 18.8.6.3.

18.8.6.5 Operation for direction change for STATE (SMC=1)

When for SMC=1 a backwards condition is detected for the *STATE* input signal (SDIR=1, resulting in DIR2=1), the LOCK2 bit in the DPLL_STATUS register is reset, the NUSE value in NUSC register is set to 1 and the address pointers APS and APS_1C3_f and APS_1C2 are decremented for each active slope of *STATE* as long as the DIR2 bit shows the backward direction.

Please notice, that in the case of the change of the direction the ISN bit in the DPLL_STATUS register is reset.

For this transition to the backward direction no change of address pointer APS and APS_1C2 is necessary.

profile update for STATE

Make the same update steps for the profile address pointer as shown in chapter 18.8.6.3: Decrement APS_1C3 for 2 times with the update of the SYN_S, SYN_S_OLD, PD_S_store and PD_S_store_old values at each step:

- decrement APT 1c3, load SYN S, PD S store, update SYN S OLD

- decrement APT_1c3, **make calculations**, load SYN_S and PD_S_store, update SYN S OLD and PD S store old and wait for a new *STATE* event.

A complex correction of TBU_CH2_BASE and INC_CNT2 is in the normal case not necessary, when all increments are equal (SYN_NS=0) and no adapt information is used. In this case only the MLS2 value is added to INC_CNT2 in order to back count the value for the last increment. In the other case: see treatment of pulses TBU_CH1_BASE and ICN_CNT1 in normal mode at chapter 18.8.6.3.

For the second PMSM the pulses are corrected as follows:

Save inc_cnt2 value at direction change to inc_cnt2_save.

Calculate the new inc_cnt2 value as follows:

1. Clear inc_cnt2.

2. Set inc_cnt2 to the target value of the last increment

nmb_s_tar

Please notice, that in difference to the normal mode, nmb_s_tar is to be used instead of nmb_s_tar_old, because no new calculation is performed so far.

3. Do not add the calculated number of state pulses because it is not calculated yet before the direction change information is known.

4. Subtract the value of still not sent pulses (remaining value at inc_cnt2_save)

- inc_cnt2_save

5. Add the new calculated target pulses for the current increment

+ nmb_s_tar_new

when for the calculation all new conditions of PD_S_store and SYN_S are considered. inc_cnt2 = nmb_s_tar_old - inc_cnt2_save + nmb_s_tar_new

All pulses summarized at inc_cnt2 are sent out by the maximum possible frequency, because no speed information is available for the first increment after changing the direction. Please notice that no pulse correction using PCM2 of DPLL_CTRL1 is possible during direction change.

Do not change PSSC for a STATE event when a direction change is detected.

Store the new calculated value **nmb_s_tar_new** at **nmb_s_tar** for the correct calculation of PSTC at the next input event.

repeated change to forward direction for STATE

The DIR2 bit remains set as long as the SDIR bit is set for the following *STATE* events and is reset when for an active *STATE* slope SDIR is zero.

Resetting the DIR2 to 0 results (after repeated reset of LOCK2 and FSD) in the opposite correction of the address pointer use.

After a last decrementing of all address pointers the APS_1C3 is incremented 2 times with a repeated update of SYN_S, SYN_S_OLD and PD_S_store after each increment.

18.8.6.6 DPLL reaction in the case of non plausible input signals

When the DPLL is synchronized concerning the *TRIGGER* signal by setting the FTD, SYT and LOCK1 bits in the DPLL_STATUS register, the number of active *TRIGGER* events between the gaps is to be checked continuously.

When additional events appear while a gap is expected, the LOCK1 bit is reset and the ITN bit in the DPLL_STATUS register is set.

When an unexpected gap appears (missing *TRIGGERS*), the NUTE value in the NUTC register is set to 1, the LOCK1 bit is reset and the ITN bit in the DPLL_STATUS register is set. The address pointers are incremented with the next active *TRIGGER* slope accordingly.

The TOR Bit in the DPLL_STATUS register is set, when the time to the next active *TRIGGER* slope exceeds the value of the last nominal *TRIGGER* duration multiplied with the value of the TLR register (see chapter 18.12.72). In this case also the TORI interrupt is generated, when enabled.

When in the following the direction DIR1 changes as described in the chapters above the ITN bit in the DPLL_STATUS register is reset, the use of the address pointers APT_2C is switched and the pulse correction takes place as described above.

In all other cases the CPU can interact to leave the instable state. This can be done by setting the APT_2C address pointer which results in a reset of the ITN bit. In the following NUTE can also be set to higher values.

When the DPLL is synchronized concerning the *STATE* signal by setting the FSD, SYS and LOCK1 (for SMC=0) or LOCK2 (for SMC=1) bits in the DPLL_STATUS register, the number of active *STATE* events between the gaps is to be checked continuously.

When additional events appear while a gap is expected or while an unexpected missing *STATE* event appears, the LOCK1,2 bit is reset and the ISN bit in the DPLL_STATUS register is set.

When an unexpected gap appears for RMO=SMC=1 (missing *STATEs* for synchronous motor control), the NUSE value in the NUSC register is set to 1, the LOCK2 bit is reset and the ISN bit in the DPLL_STATUS register is set. The address pointers are incremented with the next active *STATE* slope accordingly.

When the *STATE* locking range SLR is violated⁷, the state machine 2 will remain in state 21 and the address pointer APS, APS_1C2 and APS_1C3 will remain unchanged until the CPU sets the APS_1C3 accordingly. In this case also the NUSE value in the NUSC register is set to 1. The DPLL stops the generation of the SUB_INC1,2 pulses respectively and will perform no other actions - remaining in step21 of the second state machine (see 18.2).

Robert Bosch GmbH

Specification

⁷⁾ The SOR Bit in the DPLL STATUS register is set, when the time to the next active STATE slope exceeds the value of the last nominal STATE duration multiplied with the value of the SLR register (see chapter 18.12.73).

In this case also the SORI interrupt is generated, when enabled.

When in the following the direction DIR2 changes as described in the chapters above the ISN bit in the DPLL STATUS register is reset, the use of the address pointers APS 1C3 is switched and the pulse correction takes place as described above. In all other cases the CPU must interact to leave the instable state. This can be done by setting the APS 1C3 address pointers which results in a reset of the ISN bit. In the following NUSE can also be set to higher values.

18.8.6.7 State description of the State Machine.

State description of the State Machine Table 18.8.6.7.1

Step	Description	Comments
always for DEN=1	for each inactive TRIGGER slope with TEN=1: check, if the last active TRIGGER slope was passing the PVT check; only in this case perform the following tasks: calculate the time stamp difference ΔT to the last active event, store this value at THVAL; when THMI >0 is violated (ΔT < THMI): generate TINI interrupt, set DIR1=0 (forwards) set BWD1=0 (see DPLL_STATUS register) else (only for THMI >0): set DIR1= 1 (backwards); set BWD1=1 (see DPLL_STATUS register) after changing the direction correct the pulses WP sent with wrong direction information and send the pulses for the actual increment in addition with highest possible frequency: WP=NMB_T- DPLL_INC_CNT1;	for SMC=0; set DIR1 always after inc./ decr. the address pointers APT, APT_x; go to step 1; stop output of SUB_INC1 and correct pulses after changing DIR1 after incr./ decr. of APS_x set DIR2 always after incr./decr. the address pointers APS, APS_x; go to step 1

GTM-IP

Specification

	correct INC_CNT1 by addition of 2*WP before sending the correction pulses; generate the TISI interrupt; check THMA, when THMA is violated, generate the TAXI interrupt; go to step 1 for each inactive STATE slope with SEN=1: set DIR2=DIR1	
always for DEN=1 and (TEN=1 or SEN=1, respectively)	set DIR1=BWD1=TDIR , set DIR2=BWD2=SDIR; for each change of TDIR go to step 1 after performing the following calculations: correct INC_CNT1 correct the pulses (WP, see above) sent with wrong direction information and send the pulses for the actual increment in addition with highest possible frequency.	for SMC=1; set the direction bits always after incr./decr. the corresponding address pointers;
	For each change of SDIR go to step 21 after performing the following calculations: update of SYN_S, PD_S_store according to chapter 18.8.6.3 correct INC_CNT1,2 correct the pulses sent with wrong direction information and send the pulses for the actual increment in addition with highest possible frequency.	
1	When DEN = 0 or TEN=0: stay in step 1 until DEN=1, TEN=1 and at least one active <i>TRIGGER</i> has been detected (FTD=1); the following steps are performed always (not necessarily in step 1, but also in steps 18 to 20 (when waiting for new PMTR values to be calculated): compare TRIGGER_S with TSL (active slope); When no active TRIGGER slope appears and when TS_T_CHECK time is reached:	Depending on TSL, TEN, DEN step one is leaving with the next <i>TRIGGER</i> input; Note: Step 1 is also left in emergency mode when an active <i>TRIGGER</i> event appears in order to make a switch back to normal mode possible; _old - values are values valid at the last but one active <i>TRIGGER</i> event;

	for the whole table was
 send missing TRIGGER INT also when a gap is 	for the whole table: use
INT, also when a gap is	always MLS1 instead of
expected according to the	(MLT+1) for the case
profile; set MT=1 (missing <i>TRIGGER</i> bit) in the	SMC=1;
DPLL_STATUS register;	
do not leave the active	
step, until a valid active	
TRIGGER appears.	
When an active TRIGGER slope	
appears check PVT	
- when the PVT value is violated:	dir_crement does mean:
generate the PWI interrupt, ignore the	increment for DIR1=0
TRIGGER input and wait for the next	decrement for DIR1=1
active TRIGGER slope (ignore each	
inactive slope); do not store any value	
- When the PVT value is fulfilled:	^{*)} replace (MLT+1) by
store the actual position stamp at PSTM	MLS1 for SMC=1
(value at the TRIGGER event)	
update the RAM region 2 by equation	**) NMB T TAR is the
DPLL-1a-c (see chapter 18.7.5)	target value of NMB T of
store the actual INC_CNT1 value at	the last increment (see
MP1 as missing pulses (instead of	step 5 ff.)
calculation in step 5)	Step 5 (1.)
store all relevant configuration bits ${f X}$ of	***) add MPVAL1 once to
the DPLL_CTRL(0,1) Registers in	INC CNT1, that means
shadow registers and consider them for	only when PCM1=1
all corresponding calculations of steps 2	
to 20 accordingly; the relevant bits are	**** ⁾ SGE1_delay is the
explained in the registers itself	value of SGE1 delayed by
generate the TASI interrupt;	one active TRIGGER
for FTD=0:	event
 set PSTC=PSTM 	*****) PD_store = 0 for
 set FTD (first TRIGGER 	AMT=0 (see
detected)	DPLL_CTRL_0 register)
 do not change PSTC, APT, 	
APT_2B	
 for (RMO=0 or SMC=1) 	
and SGE1=1: increment	
INC_CNT1 by (MLT+1)*)	
+MPVAL1***)	
 send SUB INC1 pulses 	
with highest possible	
frequency when SGE1=1	
and	
DPLL_CTRL_11.SIP1 =	
0.	

	for SYT=0 and FTD =1:	
	 dir_crement APT and APT_2B by one; dir_crement for SGE1_delay^{****})=1: PSTC by NMB_T_TAR^{**}) for (RMO=0 or SMC=1) and SGE1=1: increment INC_CNT1 by (MLT+1)[*]) +MPVAL1^{***}) 	
	for SYT=1 : dir_crement APT, APT_2C, dir_crement APT_2B by SYN_T_OLD dir_crement for SGE1_delay****)=1 PSTC by NMB_T_TAR**) for (RMO=0 or SMC=1) and SGE1=1: increment INC_CNT1 by SYN_T*((MLT+1)*)+ PD_store)*****) + MPVAL1***) PD_store is 0 for AMT=0 within the DPLL_STATUS register: set LOCK1 bit accordingly;	
2	calculate TS_T according to equations DPLL-1a; calculate DT_T_ACT = TS_T - TS_T_OLD calculate RDT_T_ACT calculate QDT_TX according to equation DPLL-2	
3	send CDTI interrupt when NTI_CNT is zero or decrement NTI_CNT when not zero; calculate EDT_T and MEDT_T according to equations DPLL-3 and DPLL-4 for (RMO=1 and SMC=0): update SYN_T, PD_store and go back to step 1	Note: There are different behaviors of RM and HW- IP: For the HW-IP the values of SYN_T and PD_store are not updated until a new active TRIGGER slope occurs.

Specification

Revision 3.1.5.1

4	calculate CDT_TX according to equation DPLL-5a and b;	for RMO=0 or SMC=1;
5	calculate missing pulses: MP1 = INC_CNT1(at the moment of an active TRIGGER slope)	for RMO=0 or SMC=1; ^{*)} replace (MLT+1) by MLS1 for SMC=1;
	calculate target pulses: NMB_T_TAR = ((MLT+1) ^{*)} *+ PD_store) *SYN_T + MPVAL1 (instead of PD_store use zero in the case AMT=0)	add MPVAL1 only for PCM=1 and reset PCM1 after that;
6	sent MP with highest possible frequency and set NMB_T = NMB_T_TAR	for RMO=0 or SMC=1, DMO=0 and COA=0
7	calculate the number of pulses to be sent NMB_T = NMB_T_TAR + MP (see equations DPLL-21 or DPLL-27 respectively)	for RMO=0 or SMC=1, DMO=0 and COA=1
8	NMB_T = SYN_T*CNT_NUM_1	for RMO=0 or SMC=1, DMO=1
9	update SYN_T and PD_store;	Note: There are different behaviors of RM and HW- IP: For the HW-IP the values of SYN_T and PD_store are not updated until a new active TRIGGER slope occurs.
10	calculate ADD_IN_CAL1 according to equation DPLL-25 and DPLL-25b or DPLL-31 and store this value in RAM use ADD_IN_CAL1 as ADD_IN value for the case DLM=0 use ADD_IN_LD1 as ADD_IN for the case DLM=1, but do this update immediately (without waiting for this step 10); for DMO=DLM=0 and EN_C1u=0: reset the flip-flops in the SUB_INC1 generator; start sending SUB_INC1;	
11	calculate TS_T_CHECK = TS_T + DT_T_ACT *(TOV) ;	for RMO=0 or SMC=1;

	· · · · · ·	
12	automatic setting of actions masking bits in the DPLL_STATUS register: for SMC=0: set CAIP1=CAIP2=1 for SMC=1: set only CAIP1=1	steps 12 to 16 are not valid for the combination: (SMC=0 and RMO=1)
13	for all correspondent actions with ACT_N[i]=1 calculate: NA[i] = (PSA[i] - PSTC)/(MLT+1)*)for forward direction with w= integer part and b = remainder of the division (fractional part); for backward direction use NA[i] = (PSTC - PSA[i])/(MLT+1)*) and consider in both cases the time base overflow in order to get a positive difference	actions 011 for SMC=1 actions 023 for SMC=0 depending on ACT_N[i] in DPLL_ACT_STA register; replace MLT+1 by MLS1 for SMC=1
14	calculate PDT_T[i] and DTA[i] for up to 24 action values according to equations DPLL-11 and DPLL-12;	actions 011 for SMC=1 actions 023 for SMC=0
15	calculate TSAC[i] according to equation DPLL-15 and PSAC[i] according to equation DPLL-17	actions 011 for SMC=1 actions 023 for SMC=0
16	automatic resetting of actions masking bits in the DPLL_STATUS register: for SMC=0: set CAIP1=CAIP2=0 for SMC=1: set only CAIP1=0; set the corresponding ACT_N[i] bits in the DPLL_ACT_STA register	Set ACT_N[i] for all enabled actions concerned: 011 for SMC=1 023 for SMC=0
17	check the relation of the last increment to its predecessor according to the profile and taking into account TOV: set the ITN status bit and reset the corresponding LOCK bit, when not plausible;	for all conditions
	go to step 18, when no active <i>TRIGGER</i> appears for all following steps 18 to 20: go immediately back to step 1, when an active TRIGGER event occurs, interrupt all calculations there and reset all CAIP in that case; when going back to step 1: store TS_T in RAM 2b according to APT_2B; update RAM 2a and RAM 2d	

BOSCH

Revision 3.1.5.1

Revision 3.1.5.1

٦

BOSCH

18	wait for a new PMTR value; set the corresponding CAIPx values and go to step 19 in that case	go immediately to step 1 and update the RAM according to step 17 when an active <i>TRIGGER</i> event occurs
19	make the requested action calculation according to new PMTR values	go immediately to step 1 and update the RAM according to step 17 when an active <i>TRIGGER</i> event occurs
20	reset CAIPx and go back to step 18	go immediately to step 1 and update the RAM according to step 17 when an active <i>TRIGGER</i> event occurs
21	When DEN = 0 or SEN=0: make sure that the first active slope of STATE is detected; stay in step 1 until DEN=1, SEN=1 and at least one active <i>STATE</i> has been detected (FSD=1); the following steps are performed always (not necessarily in step 21, but also in steps 38 to 40 (when waiting for new PMTR values to be calculated): compare STATE_S with SSL (active slope); for each inactive slope: generate a SISI interrupt;	Depending on SSL, SEN, DEN step 21 is leaving with the next <i>STATE</i> input; for the steps 22-37: for SMC=1 replace: MLS1 by MLS2, LOCK1 by LOCK2; SUB_INC1 by SUB_INC2; CNT_NUM_1 by CNT_NUM_1 by CNT_NUM_2; MPVAL1 by MPVAL2; EN_C1u by EN_C2u;
	 send missing STATE INT when TS_S_CHECK time is reached and set MS=1 (missing STATE bits) in that case; do not leave step 21 while no active STATE appears. When an active STATE slope appears: 	dir_crement does mean: increment for DIR2=0 decrement for DIR2=1 or DIR1 respectively *) target number of pulses of the last increment (see step 25 ff.)
	store the actual position stamp at PSSM (value at the STATE event) update RAM by equation DPLL-6a-c (see chapter 18.7.5); store the actual INC_CNT1/2 at MP1/MP2 respectively as missing pulses (instead of calculations in step 25)	 **) add MPVAL1 or MPVAL2 only once, that means as long as PCM1 or PCM2 is set respectively ***) SGE1_delay is the value of SGE1 delayed by

BOSCH Revision 3.1.5.1

store all relevant configuration bits X of the DPLL_CTRL(0,1) Registers in shadow registers and consider them for all corresponding calculations of steps 22 to 37 accordingly; the relevant bits are explained in the registers itself for FSD=0: stat DCCO_DCCM
 set PSSC=PSSM set FSD (first STATE detected) do not increment PSSC (EMO 1 = 10M0 0)
 for (RMO=1 and SMC=0) and SGE1=1: increment INC_CNT1 by MLS1+MPVAL1^{**)} for (PMO_1 and SMO_1)
 for (RMO=1 and SMC=1) and SGE2=1: increment INC_CNT2 by MLS2+MPVAL2^{**)}
for SYS=0, FSD =1:
 dir_crement PSSC by NMB_S_TAR*) for (SMC=0 and SGE1_delay***)=1) or (SMC=1 and SGE2_delay****)=1)
 increment INC_CNT1 by MLS1+MPVAL1^{**)} (for SMC=0, SGE1=1 and RMO=1);
 increment INC_CNT2 by MLS2+MPVAL2^{**)} (for SMC=1, SGE2=1 and RMO=1);
 dir_crement APS and APS 1C2
for SYS=1 :
 dir_crement APS and APS_1C3
 dir_crement APS_1C2 by SYN S OLD
• for RMO=1 and SMC=0:
for SGE1_delay ***) =1 dir_crement PSSC by
NMB_S_TAR ^{*)} ; for SGE1=1 increment

GINFIF	G	ΤI	٧	-IF	C
--------	---	----	---	-----	---

Specification

	INC_CNT1 by SYN_S*(MLS1 + PD_S_store) + MPVAL1 ^{**)} • for RMO=1 and SMC=1: for SGE2_delay ^{*****} =1 dir_crement PSSC by NMB_S_TAR ^{*)} ; for SGE2=1 increment INC_CNT2 by SYN_S*(MLS2 + PD_S_store) ^{*****}) +MPVAL2 ^{**)} • within the DPLL_STATUS register: set LOCK1 or 2 bit accordingly;	
22	calculate TS_S according to equations DPLL-6a; calculate DT_S_ACT = TS_S - TS_S_OLD calculate RDT_S_ACT calculate QDT_SX	
23	send CDSI interrupt; calculate EDT_S and MEDT_S according to equations DPLL-8 and DPLL-9 for RMO=0: go back to step 21 for RMO=0 and update SYN_S and PD_S_store using the current ADT_S[i] values in that case;	
24	—	only for RMO=1
25	calculate missing pulses - for TBU_CH1: MP1 = INC_CNT1(active STATE slope) - for TBU_CH2: MP2 = INC_CNT2(active STATE slope) calculate target number of pulses: NMB_S_TAR = (MLS1 + PD_S_store)*SYN_S + PD_S_store +MPVAL1 (for SMC=0) NMB_S_TAR = MLS2* (SYN_S + PD_S_store) + MPVAL2 (for SMC=1) (instead of PD_S_store use zero in the case AMS=0)	only for RMO=1 for SMC=0 instead of MPVAL1 use zero for PCM1=0 for SMC=1 instead of MPVAL2 use zero for PCM2=0; add MPVAL1/2 once to INC_CNT1/2 and reset PCM1/2 after that
26	sent MPx with highest possible frequency and set	only for RMO=1, DMO=0 and COA=0

	NMB S = NMB S TAR	
27	calculate number of pulses to be sent according to DPLL-22 or NMB_S = NMB_S_TAR + MPx	DMO=0 and COA=1
28	NMB_S = SYN_S*CNT_NUM_1 (SMC=0) NMB_S = SYN_S*CNT_NUM_2 (SMC=1)	only for RMO=1, DMO=1
29	update SYN_S and PD_S_store;	Note: There are different behaviors of RM and HW- IP: For the HW-IP the values of SYN_S and PD_S_store are not updated until a new active STATE slope occurs.
30	calculate ADD_IN_CAL2 according to equation DPLL-26 and DPLL-26b or DPLL-31 respectively and store this value in RAM use ADD_IN_CAL2 as ADD_IN value for the case DLM=0 use ADD_IN_LD2 as ADD_IN for the case DLM=1, but do this update immediately (without waiting for this step 30); for RMO=1, DMO=DLM=0 and EN_C1u=0 (EN_C1u=0): reset the flip-flops in the SUB_INC1 or SUB_INC2 generator respectively; start sending SUB_INC1 / SUB_INC2;	only for RMO=1 for DLM=0 for DLM=1
31	calculate TS_S_CHECK = TS_S + DT_S_ACT * (SOV);	only for RMO=1;
32	automatic setting of actions masking bits in the DPLL_STATUS register: CAIP1 and CAIP2 for SMC=0 only CAIP2 for SMC=1	for RMO=1
33	for all actions with ACT_N[i]=0 calculate: NA[i] = (PSA[i] - PSSC)/MLS1 for forward direction with w = integer part and b = remainder of the division (fractional part) for backward direction use NA[i] = (PSSC - PSA[i])/(MLS1)	for SMC=0: 24 actions, for SMC=1: 12 actions; depending on ACT_N[i] in DPLL_ACT_STA register

34	and consider in both cases the time base overflow in order to get a positive difference use MLS2 as divider in the case of SMC=1 calculate PDT_S[i] and DTA[i] for up to 24 action values according to equations DPLL-13 and DPLL-14;	only for RMO=1; for SMC=0 actions 023 for SMC=1 actions 1223
35	calculate TSAC[i] according to equation DPLL-18 and PSAC[i] according to equation DPLL-20	for the relevant actions (see above) and RMO=1
36	automatic reset of the actions masking bit CAIP in the DPLL_STATUS register: CAIP1=CAIP2=0 for SMC=0 and only CAIP2=0 for SMC=1 set the corresponding ACT_N[i] bits in the DPLL_ACT_STA register	for the relevant actions (see above) and RMO=1 Set ACT_N[i] and reset ACT_WRi for all enabled actions
37	check the duration of the last increment to its predecessor according to the profile and taking into account SOV: set the ISN status bit and reset the corresponding LOCK bit, when not plausible;	for all conditions
	go to step 38, when no active <i>STATE</i> appears for all following steps 38 to 40: go immediately back to step 21, when an active <i>STATE</i> event occurs, interrupt all calculations there and reset all CAIPx in that case;	
	when going back to step 21: store TS_S in RAM 1c2 according to APS_1C2; update RAM 1c1 and RAM 1c4	
38	wait for a new PMTR value; set the corresponding CAIPx values and go to step 39 in that case	go immediately to step 21 and update the RAM according to step 37 when an active <i>STATE</i> event occurs
39	make the requested action calculation according to new PMTR values	go immediately to step 21 and update the RAM according to step 37 when

Revision 3.1.5.1

Specification

		an active STATE event occurs
40	reset CAIP and go back to step 38	go immediately to step 21 and update the RAM according to step 37 when an active <i>STATE</i> event occurs

18.9 DPLL Interrupt signals

The DPLL provides 27 interrupt lines. These interrupts are shown below.

18.9.1 DPLL Interrupt signals

Signal	Description	
DPLL_DCGI_IRQ	Direction change	
DPLL_SORI_IRQ	STATE is out of range	
DPLL_TORI_IRQ	TRIGGER is out of range	
DPLL_CDSI_IRQ	STATE duration calculated for last increment	
DPLL_CDTI_IRQ	TRIGGER duration calculated for last increment	
DPLL_TE4_IRQ	TRIGGER event interrupt 4 request ³⁾	
DPLL_TE3_IRQ	TRIGGER event interrupt 3 request ³⁾	
DPLL_TE2_IRQ	TRIGGER event interrupt 2 request ³⁾	
DPLL_TE1_IRQ	TRIGGER event interrupt 1 request ³⁾	
DPLL_TE0_IRQ	TRIGGER event interrupt 0 request ³⁾	
DPLL_LL2_IRQ	Loss of lock interrupt for SUB_INC2 request	
DPLL_GL2_IRQ	Get of lock interrupt for SUB_INC2 request	
DPLL_E_IRQ	Error interrupt request	
DPLL_LL1_IRQ	Loss of lock interrupt for SUB_INC1 request	
DPLL_GL1_IRQ	Get of lock interrupt for SUB_INC1 request	
DPLL_W1_IRQ	Write access to RAM region 1b or 1c interrupt request	
DPLL_W2_IRQ	Write access to RAM region 2 interrupt request	
DPLL_PW_IRQ	Plausibility window violation interrupt of TRIGGER	
	request	
DPLL_TAS_IRQ	TRIGGER active slope while NTI_CNT is zero interrupt	
	request	
DPLL_SAS_IRQ	STATE active slope interrupt request	
DPLL_MT_IRQ	Missing TRIGGER interrupt request	
DPLL_MS_IRQ	Missing STATE interrupt request	

PE IRQ

DPLL PD IRQ

DPLL

GTM-IP	Specification Revision 3.1.5.1
DPLL_TIS_IRQ	TRIGGER inactive slope interrupt request
DPLL_SIS_IRQ	STATE inactive slope interrupt request
DPLL_TAX_IRQ	TRIGGER maximum hold time violation interrupt request
DPLL_TIN_IRQ	<i>TRIGGER</i> minimum hold time violation interrupt request

Note: TEi_IRQ depends on the TINT value in ADT_T[i]¹⁾ and is only active when $SYT^{2)}$ =1.

DPLL enable interrupt request

DPLL disable interrupt request

¹⁾ see RAM region 2 explanations ; see 18.14

²⁾ see DPLL STATUS register; see 18.12.30

³⁾ see TINT value in the corresponding ADT_T[i] section of RAM region 2; see 18.14.3

18.10 MCS to DPLL interface

A reduced AEI interface is implemented in the DPLL, which can only be accessed by the MCS Bus Master interface in the same cluster. The purpose of this interface is to enable a faster interchange of data between the MCS and the DPLL, while enabling a certain control over the DPLL internal state machine.

18.10.1 Architecture and organization

The implemented interface has an address width of 4 bits, while the size of the data interface is 24 bits.

The following table shows the implemented AEI addresses from the MCS side. Label RD refers to the label used for the address when reading from the MCS or writing from the DPLL, whereas Label WR refers to the label used for the address when writing from the MCS or reading from the DPLL.

18.10.2 General functionality

In order to have a better understanding of the implications when this interface is used, the following working concepts are informally defined here. They refer to the STATE engine operation when DPLL_CTRL_11.STATE_EXT is set.

Update of ram: Operation which stores TSF_S, DT_S_ACTUAL and RDT_S_ACTUAL back to the RAM and reads the profile.

Calculation of sub-increments: Calculation of DT_S_ACTUAL, RDT_S_ACTUAL, NMB_S and ADD_IN.

Change of direction: Update of profile and its increment or decrement (only in the STATE processor).

Calculation of actions (PMT): Where the calculation of PSAC and TSAC is performed (only in state processor).

If **DPLL_CTRL_11.STATE_EXT is not set**, the DPLL will ignore the data written to this interface from the MCS. The DPLL will not update the interface either and a read done to this interface from the MCS can obtain out-of-date information.

If **DPLL_CTRL_11.STATE_EXT is set**, some modifications are done to the way that the DPLL module works when using the STATE engine.

Up to 128 STATE events can be handled.

RAM1c is not used anymore. Instead, the data needed to perform each of the already described operations is fetched from registers in this interface. The data that would have to be written back to RAM1c is also written to this interface.

In each of the procedures described above, the DPLL will enter in one or more stalled states, in which it will wait for one or more words to be written to MCS2DPLL_DEB15 (STATUS_INFO)

Operation	STA_S value	First Keyword	Second Keyword
Update of ram	0b00001_001	0xE	0x1
Calculation of sub-increments	0b00010_000	0xD	0x2
Calculation of actions	0b01110_000	0xC	0x3
Change of direction	0b00000_100	0xB	0x4
Change of direction	0b00000_110	0xB	0x4

18.10.2.1 Correspondence between STA_S values and their unlocking keywords

The stalled STATE in the DPLL is freed by writing the upper keywords to MCS2DPLL_DEB15. Please note the requirements on DPLL level (described in 18.15) regarding the data on the interface that has to be written by the MCS program. If this data is incorrectly delivered or the STATE state machine is unlocked before delivery, the proper signal processing of the DPLL cannot be assured.

For the particular case of an update of ram after a virtual increment, the data field TSF_S is not calculated completely by the DPLL STATE processing unit. Instead, the values needed in order to fill this data field are provided (18.7.5.6 and 18.7.5.7)

18.10.3 MCS to DPLL Register overview

Address offset (see	Common Label	Label RD	Label WR	Details in
AppendixB				section
)				
0x0	MCS2DPLL_DEB0	DT_S_P	DT_S_P1	18.15.1
0x4	MCS2DPLL_DEB1	not used	RDT_S_P1	18.15.2
0x8	MCS2DPLL_DEB2	TS_SX	RDT_S_PQ1	18.15.3
0xC	MCS2DPLL_DEB3	DT_SX	DT_S_PQ	18.15.4
0x10	MCS2DPLL_DEB4	SYN_S_OLD	RDT_S_PQ	18.15.5
0x14	MCS2DPLL_DEB5	M_DW	DT_S_PQ1	18.15.6
0x18	MCS2DPLL_DEB6	not used	ADT_S_P	18.15.7
0x1C	MCS2DPLL_DEB7	RDT_S_P_R D	S_P_RD	18.15.8
0x20	MCS2DPLL_DEB8	not used	TSF_S_P	18.15.9
0x24	MCS2DPLL_DEB9	not used	TSF_S_P_MQ	18.15.10
0x28	MCS2DPLL_DEB1 0	not used	TSF_S_P_PM_M Q	18.15.11
0x2C	MCS2DPLL_DEB1 1	not used	TSF_S_P_PM	18.15.12
0x30	MCS2DPLL_DEB1 2	not used	ADT_S_P1	18.15.13
0x34	MCS2DPLL_DEB1 3	not used	not used	18.15.14
0x38	MCS2DPLL_DEB1 4	not used	not used	18.15.15
0x3C	MCS2DPLL_DEB1 5	not used	STATUS_INFO	18.15.16

18.10.3.1 MCS to DPLL Register overview

18.11 DPLL Register Memory overview

The available registers and the size of the RAM area 2 depends on the chosen device. Please refer to Appendix B.

18.11.1 Available DPLL register overview

Register name	Description	Details in Section	۱
DPLL_CTRL_0	DPLL Control Register 0	18.12.1	

Revision 3.1.5.1

DPLL_CTRL_1	DPLL Control Register 1	18.12.2
DPLL_CTRL_2	DPLL Control Register 2 (actions 0-7 enable)	18.12.3
DPLL_CTRL_3	DPLL Control Register 3 (actions 8-15 enable)	18.12.4
DPLL_CTRL_4	DPLL Control Register 4 (actions 16-23 enable)	18.12.5
DPLL_CTRL_5	DPLL Control Register 5 (actions 24-31 enable) ²⁾	18.12.6
DPLL_ACT_STA	DPLL ACTION Status Register with connected shadow register	18.12.7
DPLL_OSW	DPLL Offset and switch old/new address register	18.12.8
DPLL_AOSV_2	DPLL Address offset register for APT in RAM region 2	18.12.9
DPLL_APT	DPLL Actual RAM pointer to RAM regions 2a, b and d	18.12.10
DPLL_APS	DPLL Actual RAM pointer to regions 1c1, 1c2 and 1c4	18.12.11
DPLL_APT_2C	DPLL Actual RAM pointer to RAM region 2c	18.12.12
DPLL_APS_1C3	DPLL Actual RAM pointer to RAM region 1c3	18.12.13
DPLL_NUTC	DPLL Number of recent TRIGGER events used for calculations (mod 2*(TNU +1-SYN_NT))	18.12.14
DPLL_NUSC	DPLL Number of recent STATE events used for calculations (e.g. mod 2*(SNU +1-SYN_NS) for SYSF=0)	18.12.15
DPLL_NTI_CNT	DPLL Number of active TRIGGER events to interrupt	18.12.16
DPLL_IRQ_NOTIFY	DPLL Interrupt notification register	18.12.17
DPLL_IRQ_EN	DPLL Interrupt enable register	18.12.18
DPLL_IRQ_FORCINT	DPLL Interrupt force register	18.12.19

Specification

Automotive Electronics

GTM-IP

Revision 3.1.5.1

DPLL_IRQ_MODE	DPLL Interrupt mode register	18.12.20
DPLL_EIRQ_EN	DPLL Error interrupt enable register	18.12.21
DPLL_INC_CNT1	DPLL Counter for pulses for TBU_CH1_BASE to be sent in automatic end mode	
DPLL_INC_CNT2	DPLL Counter for pulses for TBU_CH2_BASE to be sent in automatic end mode when SMC=RMO=1	18.12.23
DPLL_APT_SYNC	DPLL old RAM pointer and offset value for TRIGGER	18.12.24
DPLL_APS_SYNC	DPLL old RAM pointer and offset value for STATE	18.12.25
DPLL_TBU_TS0_T	DPLL TBU_CH0_BASE value at last TRIGGER event	18.12.26
DPLL_TBU_TS0_S	DPLL TBU_CH0_BASE value at last STATE event	18.12.27
DPLL_ADD_IN_LD1	DPLL direct load input value for SUB_INC1	18.12.28
DPLL_ADD_IN_LD2	DPLL direct load input value for SUB_INC2	18.12.29
DPLL_STATUS	DPLL Status Register	18.12.30
 DPLL_ID_PMTR_[z] (z:031)	DPLL 9 bit ID information for input signals PMT z ³⁾	18.12.31
DPLL_CTRL_0_SHADOW_TRIGGE	R DPLL shadow register of DPLL_CTRL_0	18.12.32
DPLL_CTRL_0_SHADOW_STATE	DPLL shadow register of DPLL_CTRL_0	18.12.33
DPLL_CTRL_1_SHADOW_TRIGGE	R DPLL shadow register of DPLL_CTRL_1	18.12.34
DPLL_CTRL_1_SHADOW_STATE	DPLL shadow register of DPLL_CTRL_1	18.12.35
DPLL_RAM_INI	DPLL initialization control and status for RAMs	18.12.36

²⁾Note: This register is not available for all devices. Please refer to appendix B.
 ³⁾Note: The registers DPLL_ID_PMTR 24-31 are not available for all devices. Please refer to appendix B.

18.11.2 RAM Region 1a map description

Memory name	Description	Details in section
PSA[i] (i:0NOAC-1)	Position/Value request for action i	18.13.1
DLA[i] (i:0NOAC-1)	Time to react before PSAi	18.13.2
NA[i] (i:0NOAC-1)	Number of TRIGGER/STATE increments to ACTION i	18.13.3
DTA[i] (i:0NOAC-1)	Calculated relative time to ACTION i	18.13.4

¹⁾Note: The values PSA24-31, DLA24-31, NA24-31 and DTA24-31 in RAM 1a are not available for all devices. Please refer to appendix B.

18.11.3 RAM Region 1b map description

Memory name	Description	Details in section
TS_T	Actual signal TRIGGER time	
	stamp register TRIGGER_TS	18.12.38
TS_T_OLD	Previous signal TRIGGER time	
	stamp register	18.12.38
	TRIGGER_TS_OLD	
FTV_T	Actual signal TRIGGER filter	18.12.39
	value	
TS_S	Actual signal STATE time	18.12.40 and
	stamp register STATE_TS	18.12.41
TS S OLD	Previous signal STATE time	18.12.40 and
	stamp register	
	STATE_TS_OLD	
FTV_S	Actual signal STATE filter value	18.12.42
ТНМІ	TRIGGER hold time min. value	18.12.43
ТНМА	TRIGGER hold time max. value	18.12.44
THVAL	measured last pulse time from	18.12.45
	active to inactive TRIGGER	
	slope	
ΤΟΥ	Time out value of TRIGGER,	18.12.46
	according to the last nominal	
	increment for a missing	
	TRIGGER	

Revision 3.1.5.1

	-	
TOV_S	Time out value of STATE,	18.12.47
	according to the last nominal	
	increment for a missing STATE	
ADD_IN_CAL1	calculated ADD_IN value for	18.12.48
	SUB_INC1 generation	
ADD_IN_CAL2	calculated ADD_IN value for	18.12.49
	SUB_INC2 generation	
MPVAL1		18.12.50
	added/subtracted directly to SUB_INC1 and INC_CNT1	
	once	
MPVAL2	missing pulses to be	18.12.51
	added/subtracted directly to	10.12.01
	SUB_INC2 and INC_CNT2	
	once	
NMB_T_TAR	target number of TRIGGER	18.12.52
	pulses	
NMB_T_TAR_OLD	target number of TRIGGER pulses	18.12.53
NMB_S_TAR	target number of STATE pulses	18 12 5/
NMB_S_TAR_OLD	target number of STATE pulses	
RCDT TX	reciprocal value of expected	
	increment duration (T)	10.12.00
RCDT_SX	reciprocal value of expected	18.12.57
	increment duration (S)	
RCDT_TX_NOM	reciprocal value of the	18.12.58
	expected nominal increment	
RCDT_SX_NOM	duration (T) reciprocal value of the	18 12 50
	expected nominal increment	
	duration (S)	
RDT_T_ACT	actual reciprocal value of	18.12.60
	TRIGGER	
RDT_S_ACT	actual reciprocal value of	18.12.61
	STATE	
DT_T_ACT	Duration of last TRIGGER	18.12.62
	increment	10 10 00
DT_S_ACT	Duration of last STATE increment	18.12.63
EDT_T	Absolute error of prediction for	18.12.64
	last TRIGGER increment	10.12.04
MEDT T	Average absolute error of	18.12.65
	prediction up to the last	
	TRIGGER increment	
EDT_S	absolute error of prediction for	18.12.66
	last STATE increment	

Specification

GTM-IP	Specification	Revision 3.1.5.1
MEDT_S	Average absolute error of prediction up to the last STATE increment	18.12.67
CDT_TX	Expected duration of current TRIGGER increment	18.12.68
CDT_SX	Expected duration of current STATE increment	
CDT_TX_NOM	Expected nominal duration of current TRIGGER increment (without consideration of missing events)	18.12.70
CDT_SX_NOM	Expected nominal duration of current STATE increment (without consideration of missing events)	18.12.71
TLR	TRIGGER locking range value; the TOR bit in the DPLL_STATUS register is set when violated	18.12.72
SLR	STATE locking range value; the SOR bit is set when violated	18.12.73
PDT_[i] (i:0NOAC-1)	predicted time to ACTION i	18.12.74
MLS1	Calculated number of sub- pulses between two STATE events (to be set by CPU)	18.12.75
MLS2	Calculated number of sub- pulses between two STATE events (to be set by CPU) for the use when SMC=RMO=1	18.12.76
CNT_NUM_1	number of sub-pulses of SUB_INC1 in continuous mode, updated by the host only	18.12.77
CNT_NUM_2	number of sub-pulses of SUB_INC2 in continuous mode, updated by the host only	18.12.78
PVT	Plausibility value of next active TRIGGER slope	18.12.79
PSTC	Accurate calculated position stamp of last TRIGGER input;	18.12.80
PSSC	Accurate calculated position stamp of last STATE input;	18.12.81
PSTM	Measured position stamp at last active TRIGGER input	18.12.82 and 18.12.83
PSTM_OLD	Measured position stamp at last but one active TRIGGER input	

Revision 3.	1.5.1
-------------	-------

r		
PSSM	Measured position stamp at	18.12.84 and
	last active STATE input	18.12.85
PSSM_OLD	Measured position stamp at	18.12.84 and
	last but one active STATE input	18.12.85
NMB_T	Number of pulses of current	18.12.86
	increment in normal mode for	
	SUB_INC1 (see equation	
	DPLL-21 or for SMC=1	
	equation DPLL-27	
	respectively)	
NMB_S	Number of pulses of current	18.12.87
	increment in emergency mod	
	for SUB_INC1 (see equation	
	DPLL-22) or in the case	
	SMC=1 for SUB_INC2 (see	
	equation DPLL-28)	

Specification

²⁾Note: The values PDT_24 to PDT_31 in RAM1b are not available for all devices. Please refer to appendix B.

18.11.4 RAM Region 1c map description

Memory name	Description	Details in section
RDT_S[i] (i:063)	Part of RAM1c1. Reciprocal value of the corresponding successive increment i, for each true nominal increment.	18.12.88
TSF_S[i] (i:063)	Part of RAM1c2. Time stamp field for state events, for each true nominal increment plus each virtual increment.	18.12.89
ADT_S[i] (i:063)	Part of RAM1c3. Adapt values for the current STATE increment, for each true nominal increment.	18.12.90
DT_S[i] (i:063)	Part of RAM1c4. Uncorrected last increment value of STATE for full scale, for each true nominal increment.	18.12.91

18.11.5 Register Region EXT description

Register name Description	Details in
---------------------------	------------

Revision 3.1.5.1

((日))

DPLL_TSAC[z] (z:0NOAC- 1)	DPLL calculated action time stamps for action z	18.12.92
DPLL_PSAC[z] (z:0NOAC- 1)	-	18.12.93
DPLL_ACB_[z] (z:0(NOAC/4)-1)	DPLL control bits for actions ((4*z)(4*z)+3)	18.12.94
DPLL_CTRL_11	DPLL control register	18.12.95
DPLL_THVAL2	DPLL immediate THVAL value	18.12.96
DPLL_TIDEL	DPLL additional TRIGGER input delay	
DPLL_SIDEL	DPLL additional STATE input delay	18.12.98
DPLL_CTN_MIN	CDT_T_NOM minimum value	18.12.99
DPLL_CTN_MAX	CDT_T_NOM maximum value	18.12.100
DPLL_CSN_MIN	CDT_S_NOM minimum value	18.12.101
DPLL_CSN_MAX	CDT_S_NOM maximum value	18.12.102
DPLL_STA	DPLL state machine status information	
DPLL_INCF1_OFFSET	DPLL ADD_IN_ADDER1 offset for fast pulse generation	18.12.104
DPLL_INCF2_OFFSET	DPLL ADD_IN_ADDER2 offset for fast pulse generation	18.12.105
DPLL_DT_T_START	DPLL first value of DPLL_DT_T_ACT for the first increment after setting SIP1 from 0 to 1.	18.12.106
DPLL_DT_S_START	DPLL first value of DPLL_DT_S_ACT for the first increment after setting SIP2 from 0 to 1.	
DPLL_STA_MASK	DPLL trigger masks for signals DPLL_STA_T and DPLL_STA_S	
DPLL_STA_FLAG	DPLL STA_T/S and INC_CNT1/2 flags	18.12.109
DPLL_INC_CNT1_MASK	mask	18.12.110
DPLL_INC_CNT2_MASK	DPLL INC_CNT2 trigger mask	18.12.111

GTM-IP	Specification	Revision 3.1.5.1
DPLL_NUSC_EXT1	Extension register number 1 for DPLL_NUSC ⁴⁾	18.12.112
DPLL_NUSC_EXT2	Extension register number 2 for DPLL_NUSC ⁴⁾	18.12.113
DPLL_APS_EXT	Extension register for DPLL_APS ⁴⁾	18.12.114
DPLL_APS_1C3_EXT	Extension register for DPLL_APS_1C3 ⁽⁴⁾	18.12.115
DPLL_APS_SYNC_EXT	Extension register for DPLL_APS_SYNC ⁴⁾	18.12.116
DPLL_CTRL_EXT	Extension register for DPLL_CTRL ⁴⁾	18.12.117

⁴⁾ **Note:** These registers will return AEI_STATUS = b#10 if DPLL_CTRL_11.STATE_EXT is not set.

18.11.6 RAM Region 2 map description

Memory name	Description	Details in section
RDT_T[i] (i:0AOSV_2B/4-1)	Region 2a. Reciprocal value of the corresponding successive increment i, for each true nominal increment.	18.14.1
TSF_T[i] (i:0AOSV_2B/4-1)	Region 2b. Time Stamp Field for TRIGGER event i, for each true nominal increment plus each virtual increment.	18.14.2
ADT_T[i] (i:0AOSV_2B/4-1)	Region 2c. Adapt values for the current TRIGGER increment i, for each true nominal increment.	18.14.3
DT_T[i] (i:0AOSV_2B/4- 1)	Region 2d. Uncorrected last increment value of TRIGGER i, for each true nominal increment.	18.14.4

Note: For each of the regions, the maximum number of entries is restricted to a value corresponding to the OSS value in the DPLL_OSW register.

The description of registers is beginning at the register DPLL_CTRL_0. The description of RAM regions is beginning at RAM 1a (see below):

Specification

Bits 31 down to 24 in each RAM region are not implemented and therefore always read as zero (reserved). Other bits which are declared as reserved are not protected against writing. Reserved address regions are not protected against writing.

The description of the memory region RAM 1a begins with memory element PSA[i]: The RAM region 1a is writeable only for DEN=0 (see DPLL_CTRL_1 register).

The description of memory region RAM1b begins with memory element TS_T. The description of memory region RAM1c begins with memory element RDT_S. The description of register region EXT begins with the register DPLL_TSAC[z]: This is an extension of the normal register region above in order to allow up to 32 action calculations and later specification modifications.

The description of the memory region RAM 2 begins with memory element RDT_T.

18.12 DPLL Register and Memory description

Address Offset:	s	see Appendix B														Initial Valu					ie:	e: 0x003B_BA57										
	31	0E	29	28	72	26	25	54	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	e	2	7	0
Bit	RMO	TEN	SEN	IDT	IDS	AMT	AMS		ÛN F									SNU FP									T IM					
Mode	RW	RW	RW	RW	RW	RW	RW		R P&								RPw RPw			RW												
Initial Value	0	0	0	0	0	0	0		0x03B								0x17				0	0x257										

18.12.1 Register DPLL_CTRL_0

Control Register 0

Bit 9:0 **MLT ¹⁾: multiplier for TRIGGER;** MLT+1 is number of *SUB_INC1* pulses between two *TRIGGER* events in normal mode (1...1024);

Note: For emergency mode the number of *SUB_INC1* pulses between two *STATE* events is calculated by the CPU using the formula MLS1=(MLT+1)* (TNU+1) / (SNU+1) in order to get the same number of *SUB_INC1* pulses for FULL_SCALE. This value is stored in RAM at 0x05C0. Change of MLT by the CPU must result in the corresponding change of MLS1 by the CPU for SMC=0.

GTM-IP	Specification	Revision 3.1.5.1
	Note: The number of MLT events is the binary value MLT+1 is replaced by MLS1 in the cas DPLL_CTRL_1 register) for all relevant calculated on the calculate	e of SMC=1 (see
Bit 10	 IFP ^{1),2),4}: Input filter position; value contains position. 0 = TRIGGER_FT and STATE_FT mean time relate the number of time stamp clocks 1 = TRIGGER_FT and STATE_FT mean position means the number of SUB_INC1 (or SUB 	d values, that means related values, that
Bit 15:11	SMC=1) pulses respectively SNU³⁾: STATE number; SNU+1 is number of nomi HALF_SCALE (132). Note: The number of nominal <i>STATE</i> events is the o	nal <i>STATE</i> events in decimal value plus 1.
	This value can only be written when (RMO DEN=0. To make sure that this signal is not cha change RMO=0 means that the status of RM before and during writing to the register. Set SSL=00 before changing this value and set FULL_SCALE with SSL>0.	anged during a mode 10=0 must be given
	Note: This register can only be DPLL_CTRL_11.STATE_EXT is n DPLL_CTRL_11.STATE_EXT is set, the signative the read value is zero.	ot set. If
Bit 24:16	 TNU³⁾: TRIGGER number; TNU+1 is number of events in HALF_SCALE (1512). Note: The number of nominal <i>TRIGGER</i> events is the 1.This value can only be written when (RMO DEN=0. To make sure that this signal is not changed dur RMO=0 means that the status of RMO=0 must during writing to the register. Set TSL=00 before changing this value and set FULL_SCALE with TSL>0. 	ne decimal value plus D=1 and SMC=0) or ing a mode change be given before and
Bit 25	 AMS ²): Adapt mode STATE; Use of adaptation information is used for STATE 1 = Immediate adapting mode; the values for physic ADT_S[i] are considered to calculate SU emergency mode (SMC=0) or SUB_INC2 puls 	<i>TE</i> al deviation PD_S of JB_INC1 pulses in
Bit 26	AMT ¹⁾ : Adapt mode TRIGGER; Use of adapt <i>TRIGGER</i> . 0 = No adaptation information for <i>TRIGGER</i> is	

Confidential

	Crocolfication	Revision 3.1.5.1
GTM-IP	Specification	Revision 3.1.5.1
	1 = Immediate adapting mode; the values for ADT_T[i] are considered to calculate the normal mode and for SMC=1	
Bit 27	IDS ²⁾: Input delay STATE; Use of input delay FT part of the <i>STATE</i> signal. 0 = Delay information is not used	information transmitted in
	1 = Up to 24 bits of the FT part contain the delay concerning the corresponding edge	v value of the input signal,
Bit 28	IDT ¹⁾: Input delay TRIGGER; use of input dela in FT part of the <i>TRIGGER</i> signal. 0 = Delay information is not used	ay information transmitted
	1 = Up to 24 bits of the FT part contain the delay concerning the corresponding edge	value of the input signal,
Bit 29	SEN: STATE enable . 0 = STATE signal is not enabled (no signa 1 = STATE signal is enabled	al considered)
Bit 30	TEN: <i>TRIGGER</i> enable. 0 = <i>TRIGGER</i> signal is not enabled (no signal of	considered)
Bit 31	1 = TRIGGER signal is enabled RMO ^{1),2)} : Reference mode ; selection of the re generation of SUB INC1.	levant the input signal for
	0 = Normal mode; the signal <i>TRIGGER</i> is SUB_INC1 signals	s used to generate the
	1 = Emergency mode for SMC=0; signal STAT SUB_INC1 signals ; Double synchronous TRIGGER is used to generate the SUB_I is used to generate the SUB_INC2 signals	mode for SMC=1: signal <i>INC1</i> signals and <i>STATE</i>
	Note: for SMC=0: <i>TRIGGER</i> and <i>STATE</i> and SUB_INC1. The RMO bit gives a decision used. For changing from normal mode to following TRIGGER slope (according to shadow register) ¹⁾ the PSSC value is calc + correction value (forward direction) or PS value (backward direction) with the correc nmb_t. For changing from emergency mo following STATE slope (according to the F register) ²⁾ the PSTC value is calculate correction value (forward direction) or PS value (backward direction) with the correc nmb_s. In case no further TRIGGER or ST	on only, which of them is emergency mode at the the RMO value in the ulated by PSSC = PSSM SSC = PSSM - correction ection value = inc_cnt1 - de to normal mode at the RMO value in the shadow d by PSTC = PSTM + STC = PSTM - correction ection value = inc_cnt1 -

¹⁾ stored in an independent shadow register for an active *TRIGGER* event and for DEN = 1.

to perform the above corrections.

²⁾ stored in an independent shadow register for an active *STATE* event and for DEN = 1.

³⁾ the time between two active *STATE* or *TRIGGER* events must be always greater then 23,4 μ s; in addition the TS_CLK and the resolution must be chosen such that for each nominal increment the time stamps at the beginning and the end of the increment differ at least in the value of 257

⁴⁾ for IFP=1 the time between two active *TRIGGER* or *STATE* events must be always greater then 2,34 ms and the value x of MLT, MLS1 or MLS2 must be chosen such that the number of time stamp pulses between two SUB_INC events must be less than 65536. This is fulfilled when x is greater than 256.

Address Offset:	S	ee	A	pp	er	ndi	ix	В									In	iti	al	Va	alı	ie:			02	хB	00	00_	_0	000			
	31	0E	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	2	9	9	4	ε	2	1	0	
Bit	TSI	I JL	SCI	JJL	SMC	TS0_HRT	TS0_HRS	SYSF	SWR	LCD									SYN_NS			PCM2	DLM2	SGE2	PCM1	DLM1	SGE1	PIT	COA	IDDS	DEN	DMO	
Mode	DDw		00,00		RPw	RPw	RPw	RPw	RAw	RPw			1	אד ג					RPw			RW	RW	RW	RW	RW	RW	RW	RW	RPw	RW	RW	
Initial Value	~~~		2.20	cxn	0	0	0	0	0×0	0×0			:	nnxn					00×00			0	0	0	0	0	0	0	0	0	0	0	

18.12.2 Register DPLL_CTRL_1

Control Register 1

Bit 0

DMO ^{1), 2)}: DPLL mode select.

- 0 = **Automatic end mode**; if the number of pulses for an increment is reached, no further pulse is generated until the next active *TRIGGER/STATE* is received; in the case of getting a new active *TRIGGER/STATE* before the defined number of pulses is reached, the pulse frequency is changed according to the conditions described below **(COA)**.
- 1 = **Continuous mode**; in this mode a difference between the predefined number of pulses and the actual number of generated pulses can influence the pulse frequency by writing a corresponding pulse number into CNT_NUM_1 or CNT_NUM_2 respectively in RAM region 1b.

Bit 1 **DEN: DPLL enable**.

0 = The DPLL is not enabled; Disabling the DPLL will result in a reset state of the DPLL_STATUS register which remains in this state until DEN=1. No DPLL related interrupt will be generated in that case.

- 1 = The DPLL is enabled.
- **Note:** The bits 31 down to 0 of the DPLL_STATUS register are cleared, when the DPLL is disabled. Some bits of the control registers can be set only when DEN=0. The protected bits in the DPLL_CTRL_1 register cannot be written when simultaneously DEN is set to 1.

Bit 2 **IDDS: Input direction detection strategy in the case of SMC=0**

- 0 = The input direction is detected comparing the THMI value with the duration between active and inactive slope of TRIGGER.
- 1 = The input direction is detected using TDIR input signal also in the case SMC=0.
- **Note:** This bit can only be written when the DPLL is disabled and be fixed to zero, when not needed for an implementation. Independent of the value of IDDS is the direction information for TRIGGER in the case SMC=0 always considered at the moment when the inactive slope appears.

Bit 3 **COA**^{1), 2)}: Correction strategy in automatic end mode (DMO=0).

- 0 = The pulse frequency of the CMU_CLK0 will be used to make up for missing pulses from last increment; the output of the calculated new pulses will start after resetting the FFs in the pulse generation unit. The frequency of CMU_CLK0 should not exceed half the frequency of the system clock (see 18.8.3.1)
- 1 = missing pulses of the last increment are distributed evenly to the next increment, calculations are done when the next active input event appears. The number of missing sub-pulses will be determined by the pulse counter difference between the last two active *TRIGGER/STATE* events respectively; the FFs in the pulse generation unit are not reset before sending new pulses.

	Note: For SMC=RMO=1: COA is used for SUB_INC1 and SUB_INC2
Bit 4	PIT ¹: Plausibility value PVT to next active TRIGGER is time related
	0 = the plausibility value is position related (PVT contains the number of SUB_INC1 pulses)
	1 = the plausibility value is time related (the PVT value is to be multiplied with the duration of the last increment DT_T_ACT and divided by 1024)
Bit 5	SGE1 ^{1), 2)} : SUB_INC1 generator enable. 0 = The SUB INC1 generator is not enabled

- 1 = The SUB INC1 generator is enabled
- I = The SUB_INCL generator is enabled
- Bit 6 **DLM1**^{1),2)}: Direct Load Mode for SUB_INC1 generation

		BUSCH
GTM-IP	Specification	Revision 3.1.5.1
	 0 = the DPLL uses the calculated ADD_IN_CAL value generation 1 = the ADD_IN_LD value is used for the SUB_INC provided by the CPU; the value remains valid u a new one; the calculated ADD_IN value ADD_IN_CAL in the RAM at different location emergency mode 	1 generation and is until the CPU writes es are stored as
Bit 7	PCM1 ^{1),2),3)} : Pulse Correction Mode for SUB_INC2 0 = the DPLL does not use the correction value store 1 = the DPLL uses the correction value stored in MP ¹ emergency mode	ed in MPVAL1
Bit 8	SGE2 ²⁾ : SUB_INC2 generator enable. 0 = The SUB_INC2 generator is not enabled. 1 = The SUB_INC2 generator is enabled	
Bit 9	 DLM2 ²): Direct Load Mode for SUB_INC2 generation 0 = the DPLL uses the calculated ADD_IN_CAL value generation. 	
	1 = the ADD_IN_LD value is used for the SUB_INC provided by the CPU; the value remains valid u a new one; the calculated ADD_IN value ADD_IN_CAL in the RAM at different locatio emergency mode	until the CPU writes es are stored as
Bit 10	PCM2 ^{2),3)} : Pulse Correction Mode for SUB_INC2 at 0 = the DPLL does not use the correction value store 1 = the DPLL uses the correction value stored in MP ²	ed in MPVAL2.
Bit 15:11	SYN_NS: Synchronization number of STATE; sun virtual increments in HALF_SCALE sum of all systematic missing <i>STATE</i> events in SYSF=0) or FULL SCALE (for SYSF=1); the <i>STATES</i> can be divided up to an arbitrary num pattern of events and missing events in FULL_ RAM region 1c3 as value NS in addition to the a number of stored increments in FULL_SCALE 2*(SNU+1-SYN_NS) for SYSF=0 or 2*(SN SYSF=1. This pattern is written by the CPU be reference point (maybe beginning of the FULL_S relation to the actual increment is established profile RAM pointer APS_1C3 in an appropriate pointer APS of the actual increment by the CPU	HALF_SCALE (for e SYN_NS missing nber of blocks. The SCALE is shown in adapted values. The E must be equal to IU+1)-SYN_NS for ginning from a fixed SCALE region). The d by setting of the relation to the RAM

Note: This value can only be written when (RMO=0 and SMC=0) or DEN=0. Set SSL=00 before changing this value and set RMO=1

Specification

only after FULL_SCALE with SSL>0. To make shure that this signal is not changed during a mode change SMC=0 means that the status of SMC=0 must be given before and during writing to the register.

- **Note:** This register can only be written when DPLL_CTRL_11.STATE_EXT is not set. If DPLL_CTRL_11.STATE_EXT is set, the signal cannot be written, the read value is zero.
- Bit 21:16 SYN_NT: Synchronization number of *TRIGGER*; summarized number of virtual increments in HALF_SCALE
 - sum of all systematic missing *TRIGGER* events in HALF_SCALE; the SYN_NT missing *TRIGGER* can be divided up to an arbitrary number of blocks. The pattern of events and missing events in FULL_SCALE is shown in RAM region 2c as value NT in addition to the adapted values. The number of stored increments in FULL_SCALE must be equal to 2*(TNU-SYN_NT). This pattern is written by the CPU beginning from a fixed reference point (maybe beginning of the FULL_SCALE region). The relation to the actual increment is established by setting of the profile RAM pointer APT_2C in an appropriate relation to the RAM pointer APT of the actual increment by the CPU.
 - **Note:** This value can only be written when (RMO=1 and SMC=0) or DEN=0. Set TSL=00 before changing this value and set RMO=0 only after FULL_SCALE with TSL>0. To make shure that this signal is not changed during a mode change SMC=0 means that the status of SMC=0 must be given before and during writing to the register.
- Bit 22 LCD: Locking condition definition
 - 0 = locking condition definition is one times missing TRIGGERs as expected by the profile in HALF_SCALE (one gap).
 - 1 = locking condition definition is n-1 times missing TRIGGERs as expected by the profile in HALF_SCALE (one additional tooth)

Note: This bit can only be written when the DPLL is disabled and be fixed to zero, when not needed for an implementation.

Bit 23 SWR: Software reset

resets all register and internal states of the DPLL

- 0 = no software reset enabled
- 1 = software reset enabled
- **Note:** Setting the SWR bit results only in a software reset when the DPLL is not enabled (DEN=0).

Bit 24 SYSF: SYN_NS for FULL_SCALE

Specification

the value SYN_NS does mean the sum of all systematic missing STATE events in HALF_SCALE (for SYSF=0) or FULL SCALE (for SYSF=1).

- 0 = the SYN_NS value is valid for HALF_SCALE
- 1 = the SYN_NS value is valid for FULL_SCALE

Note: This value can only be written when (RMO=0 and SMC=0) or DEN=0. Set SSL=00 before changing this value and set RMO=1 only after FULL_SCALE with SSL>0. To make shure that this signal is not changed during a mode change SMC=0 means that the status of SMC=0 must be given before and during writing to the register.

Bit 25	0 = the res STA7 1 = the ST	Time stamp high resolution STATE solution of the used DPLL input TBU_TS0 bits <i>E</i> input time stamp resolution A <i>TE</i> input time stamps have a 8 times higher re TS0 DPLL input	
Bit 26	TS0_HRT: 0 = the res <i>TRIG</i> 1 = the <i>TR</i>	bit can only be written when the DPLL is disal Time stamp high resolution TRIGGER solution of the used DPLL input TBU_TS0 bits <i>GER</i> input time stamp resolution <i>IGGER</i> input time stamps have a 8 times high BU_TS0 input	s is equal to the
Bit 27	SMC: Syn 0 = TRIGG 1 = the TR in the	bit can only be written when the DPLL is disal chronous Motor Control ER and STATE inputs are used for a control d IGGER input reflects a combined sensor sign case of RMO=1 also STATE reflects a diffe or signal	ifferent to SMC. al for SMC and
Bit 29:28	SSL: STA each active	bit can only be written when the DPLL is disal TE slope select; Definition of active slope fo e slope is an event defined by SNU. Set by DE	r signal STATE
		TATUS.FSD = '1' sitive after detection of first <i>STATE</i> input signa	l"
	0b00 =	No slope of STATE will be used; this val sense in normal mode	ue makes only
	0b01 =	Low high slope will be used as active slope, a signal value of "1" will be considered	only inputs with
	0b10 =	High low slope will be used as active slope, a signal value of "0" will be considered	only inputs with
	0b11 =	Both slopes will be used as active slopes	
Robert Bosch	GmbH	615/868	24.03.2016

Specification

If DPLL_STATUS.FSD = '0' "level sensitive for first *STATE* input signal edge"

0b00 =	No input signal of STATE will be used; this value makes
	only sense in normal mode
0b01 =	"high" input signal level will be used as active slope, only
	inputs with a signal value of "1" will be considered
0b10 =	"low" input signal level will be used as active slope, only
	inputs with a signal value of "0" will be considered

- 0b11 = Both input signal levels will be used as active slopes
- **Note:** This value can only be written when (RMO=0 and SMC=0) or DEN=0. To make shure that this signal is not changed during a mode change SMC=0 means that the status of SMC=0 must be given before and during writing to the register.
- Bit 31:30 **TSL: TRIGGER slope select;** Definition of active slope for signal *TRIGGER* each active slope is an event defined by TNU. Set by DEN=0 only.

If DPLL_STATUS.FTD = '1'

"slope sensitive after detection of first *TRIGGER* input signal"

- 0b00 = No slope of *TRIGGER* will be used; this value makes only sense in emergency mode
- 0b01 = Low high slope will be used as active slope, only inputs with a signal value of "1" will be considered
- 0b10 = High low slope will be used as active slope, only inputs with a signal value of "0" will be considered
- 0b11 = Both slopes will be used as active slopes

If DPLL_STATUS.FTD = '0' "level sensitive for first *TRIGGER* input signal edge"

- 0b00 = No input signal of *TRIGGER* will be used; this value makes only sense in normal mode
- 0b01 = "high" input signal level will be used as active slope, only inputs with a signal value of "1" will be considered
- 0b10 = "low" input signal level will be used as active slope, only inputs with a signal value of "0" will be considered
- 0b11 = Both input signal levels will be used as active slopes

Specification

Note: This value can only be written when (RMO=1 and SMC=0) or DEN=0. To make shure that this signal is not changed during a mode change SMC=0 means that the status of SMC=0 must be given before and during writing to the register.

¹⁾ stored in an independent shadow register for an active *TRIGGER* event and for DEN = 1.

²⁾ stored in an independent shadow register for an active *STATE* event and for DEN = 1.

³⁾ Bit is cleared, when transmitted to shadow register

Address Offset:	S	See Appendix B													In	iti	al	Va	alu	ie:			0x0000_0000										
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	9	5	, ,	4	з	2	1	0
Bit				Doctoriod					WAD7	907M	MAD5	WAD4	WAD3	WAD2	WAD1	WAD0	AEN7	AENG	AEN5	AEN4	AEN3	AEN2	AEN1	AENO	Reserved								
Mode				۵	2				RAw	RPw	RPw					£																	
Initial Value																																	
	Action Enable Register																																
Bit 7:0	Reserved																																
Bit 8	Note: Read as zero, should be written as zero. AENO ¹ : ACTION_0 enable. 0 = the corresponding action is not enabled 1 = the corresponding action is enabled																																
Bit 9	A	E	N1	1)	:		-			-					CI	iai																	
Bit 10	A	E	N2	it 8 2 1) it 8	:	AC	CT	0	N_	2	en	ab	le.	•																			
Bit 11	A	E	N3	; 1) it 8	:	AC	CT	0	N_	3	en	ab	le	•																			
Bit 12	A	E	N4	it 8	:	AC	T	0	Ν_	4	en	ab	le.	•																			
Bit 13	-			; 1)		AC	CT	0	Ν_	5	en	ab	le.	•																			

18.12.3 Register DPLL_CTRL_2

GTM-IP	Specification	Revision 3.1.5.1
	see bit 8	
Bit 14	AEN6 ¹⁾ : ACTION_6 enable.	
	see bit 8	
Bit 15	AEN7 ¹⁾ : ACTION_7 enable.	
	see bit 8	
Bit 16	WAD0: Write control bit of Action_0.	
	0 = the corresponding AENi bit is not writeable	
	1 = the corresponding AENi bit is writeable	
Bit 17	WAD1: Write control bit of Action_1.	
	see bit 16	
Bit 18	WAD2: Write control bit of Action_2.	
	see bit 16	
Bit 19	WAD3: Write control bit of Action_3.	
	see bit 16	
Bit 20	WAD4: Write control bit of Action_4.	
D'1 01	see bit 16	
Bit 21	WAD5: Write control bit of Action_5.	
D# 00	see bit 16	
Bit 22	WAD6: Write control bit of Action_6. see bit 16	
Bit 23	WAD7: Write control bit of Action 7.	
DIL 23	see bit 16	
Bit 31:24	Reserved	
DIL 01.24	Note: Read as zero, should be written as zero.	

Note: Read as zero, should be written as zero.

¹⁾ **Note**: This bit can be written only if the correspondent WADi Bit is set in the same access. It can be set for debug purposes by CPU also, when DPLL is disabled. The enable bit becomes active only when the DPLL is in operation (DEN=1).

Note: For WADi =1 only the corresponding AENi bits are writable. The AENi bits remain unchanged when the corresponding WADi=0.

18.12.4 Register DPLL_CTRL_3

Specification

Revision 3.1.5.1

Address Offset:	see Appendix B				Initial Value:								0x0000_0000					
	31 30 29 28 28 27 26 25 25	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7 6 7 3 3 3 2 1 1
Bit	Reserved	WAD15	WAD14	WAD13	WAD12	WAD11	WAD10	WAD9	WAD8	AEN15	AEN14	AEN13	AEN12	AEN11	AEN10	AEN9	AEN8	Reserved
Mode	Ľ	RAw	RAw	RAw	RAw	RAw	RAw	RAw	RAw	RPw	RPw	RPw	RPw	RPw	RPw	RPw	RPw	œ
Initial Value	00×0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00×0
Action Enab Bit 7:0	le Register Reserved																	
		ero	. s	ho	ulo	d b	e	wr	itte	en	as	5 Z	ere	o.				
Bit 8	Note: Read as zero, should be written as zero. AEN8 ¹ : ACTION_8 enable.																	
Bit 9	0 = the corresponding action is not enabled 1 = the corresponding action is enabled AEN9 ¹⁾ : ACTION_9 enable see bit 8																	
Bit 10	AEN10 ¹⁾ : ACTION_10enable.																	
Bit 11	AEN10 ¹ : ACTION_10enable. see bit 8 AEN11 ¹ : ACTION_11 enable. see bit 8																	
Bit 12	AEN12 1): ACTIC)N	_1:	2 e	ena	abl	le.											
Bit 13	see bit 8 AEN13 ¹): ACTIO	DN	_1:	3 е	ena	abl	le.											
Bit 14	see bit 8 AEN14 ¹⁾ : ACTIO	DN	_14	4 e	ena	abl	e.											
Bit 15	see bit 8 AEN15 ¹ : ACTIO)N	_1!	5 e	ena	abl	le.											
Bit 16	see bit 8 WAD8: Write cor 0 = the correspon	ndi	ng	A	E١	li k	oit	is	no	ot v				le				
Bit 17	1 = the correspondence of the correspondence		-								eat	ble	•					
Bit 18	see bit 16 WAD10: Write co	ont	rol	bi	t c	of A	\cl	tior	<u>ו</u> _	10	•							
Bit 19	see bit 16 WAD11: Write co	ont	rol	bi	t c	of A	\ct	tior	<u>ו</u> _	11	•							
Bit 20	see bit 16 WAD12: Write co	ont	rol	bi	t c	of A	\ci	tior	٦_	12	•							
Bit 21	see bit 16 WAD13: Write co see bit 16	ont	rol	bi	t c	of A	\ci	tior	٦_	13	•							
Bit 22	WAD14: Write co	ont	rol	bi	t c	of A	\cl	tior	<u>ו</u>	14	•							

Specification

	see bit 16
Bit 23	WAD15: Write control bit of Action_15.
	see bit 16
Bit 31:24	Reserved
	Note: Read as zero, should be written as zero.

¹⁾ **Note**: This bit can be written only if the correspondent WADi Bit is set in the same access. It can be set for debug purposes by CPU also, when DPLL is disabled. The enable bit becomes active only when the DPLL is in operation (DEN=1).

Note: For WADi =1 only the corresponding AENi bits are writable. The AENi bits remain unchanged when the corresponding WADi=0.

18.12.5 Register DPLL_CTRL_4

Address Offset:	see Appendix B						Initial Value:				ie:		0x0000_0000					
	31 30 29 28 27 26 25 25	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7 6 5 4 3 3 2 1 1 0
Bit	Reserved	WAD23	WAD22	WAD21	WAD20	WAD19	WAD18	WAD17	WAD16	AEN23	AEN22	AEN21	AEN20	AEN19	AEN18	AEN17	AEN16	Reserved
Mode	٣	RAw	RAw	RAw	RAw	RAw	RAw	RAw	RAw	RPw	RPw	RPw	RPw	RPw	RPw	RPw	RPw	Ľ
Initial Value	00×0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00×00

Action Enable Register

Bit 7:0	Reserved
	Note: Read as zero, should be written as zero.
Bit 8	AEN16 ¹): ACTION_16 enable.
	0 = the corresponding action is not enabled
	1 = the corresponding action is enabled
Bit 9	AEN17 ¹⁾ : ACTION_17 enable
	see bit 8
Bit 10	AEN18 ¹⁾ : ACTION_18 enable.
	see bit 8
Bit 11	AEN19 ¹⁾ : ACTION_19 enable.
	see bit 8
Bit 12	AEN20 ¹⁾ : ACTION_20 enable.
	see bit 8
Bit 13	AEN21 ¹⁾ : ACTION_21 enable.
	see bit 8
Bit 14	AEN22 ¹⁾ : ACTION_22 enable.
	see bit 8

GTM-IP	Specification	Revision 3.1.5.1
Bit 15	AEN23 ¹⁾ : ACTION_23 enable. see bit 8	
Bit 16	WAD16: Write control bit of Action_16. 0 = the corresponding AENi bit is not writeable 1 = the corresponding AENi bit is writeable	
Bit 17	WAD17: Write control bit of Action_17. see bit 16	
Bit 18	WAD18: Write control bit of Action_18. see bit 16	
Bit 19	WAD19: Write control bit of Action_19. see bit 16	
Bit 20	WAD20: Write control bit of Action_20. see bit 16	
Bit 21	WAD21: Write control bit of Action_21. see bit 16	
Bit 22	WAD22: Write control bit of Action_22. see bit 16	
Bit 23	WAD23: Write control bit of Action_23. see bit 16	
Bit 31:24	Reserved	

Note: Read as zero, should be written as zero.

¹⁾ **Note**: This bit can be written only if the correspondent WADi Bit is set in the same access. It can be set for debug purposes by CPU also, when DPLL is disabled. The enable bit becomes active only when the DPLL is in operation (DEN=1).

Note: For WADi =1 only the corresponding AENi bits are writable. The AENi bits remain unchanged when the corresponding WADi=0.

18.12.6 Register DPLL_CTRL_5

Address Offset:	see Appendix B		Initial Value:	0x0000_0000
	31 30 29 28 27 26 25 25	23 22 21 21 20 19 18 17 17 16	15 14 13 13 12 11 10 9 8	7 6 5 4 4 3 3 2 2 1 1
Bit	Reserved	WAD31 WAD30 WAD29 WAD28 WAD28 WAD26 WAD26 WAD25	AEN31 AEN30 AEN29 AEN28 AEN27 AEN26 AEN25 AEN24	Reserved
Mode	۲	RAw RAw RAw RAw RAw RAw RAw RAw	RPW RPW RPW RPW RPW RPW RPW	Ľ
Initial Value	00×0	o o o o o o o o	o o o o o o o	0×00
Action Enab	le Register	<u></u>		•

Bit 7:0 **Reserved**

GTM-IP	Specification	Revision 3.1.5.1
	Note: Read as zero, should be written as zero.	
Bit 8	AEN24 ¹ : ACTION_24 enable.	
	0 = the corresponding action is not enabled	
	1 = the corresponding action is enabled	
Bit 9	AEN25 ¹): ACTION_25 enable	
	see bit 8	
Bit 10	AEN26 ¹⁾ : ACTION_26 enable.	
	see bit 8	
Bit 11	AEN27 ¹⁾ : ACTION_27 enable.	
D:+ 1 0		
Bit 12	AEN28 ¹): ACTION_28 enable. see bit 8	
Bit 13	AEN29 ¹⁾ : ACTION_29 enable.	
DIT 13	see bit 8	
Bit 14	AEN30 ¹ : ACTION 30 enable.	
2.02.	see bit 8	
Bit 15	AEN31 ¹ : ACTION_31 enable.	
	see bit 8	
Bit 16	WAD24: Write control bit of Action_24.	
	0 = the corresponding AENi bit is not writeable	
	1 = the corresponding AENi bit is writeable	
Bit 17	WAD25: Write control bit of Action_25.	
	see bit 16	
Bit 18	WAD26: Write control bit of Action_26.	
	see bit 16	
Bit 19	WAD27: Write control bit of Action_27.	
D:+ 00	see bit 16	
Bit 20	WAD28: Write control bit of Action_28.	
Bit 21	see bit 16 WAD29: Write control bit of Action 29.	
	see bit 16	
Bit 22	WAD30: Write control bit of Action 30.	
DICLE	see bit 16	
Bit 23	WAD31: Write control bit of Action 31.	
	see bit 16	
Bit 31:24	Reserved	
_	Note: Read as zero, should be written as zero.	

¹⁾ **Note**: This bit can be written only if the correspondent WADi Bit is set in the same access. It can be set for debug purposes by CPU also, when DPLL is disabled. The enable bit becomes active only when the DPLL is in operation (DEN=1).

Note: For WADi =1 only the corresponding AENi bits are writable. The AENi bits remain unchanged when the corresponding WADi=0.

Specification

18.12.7 Register DPLL_ACT_STA

Address Offset:	see Appendix B	Initial Value:	0x0000_0000				
	31 30 29 27 28 27 26 25 25 23 23 23 23 23 23 21 21 21 19 118 16	15 14 13 12 11 11 10 9 8	7666333333				
Bit	ACT_N						
Mode	a A M						
Initial Value	000000000000000000000000000000000000000	8					

Action Status Register including Shadow Register

- Bit 31:0 ACT_N[i],(i=0...NOAC-1): New output data values concerning to action i provided
 - 0 = no new output data available after a recent PMT request or actual event value is in the past or invalid.
 - 1 = either new PMTR data received or calculation is repeated to be more precise by taking into account new *TRIGGER* or *STATE* values

Note: ACT_N[i] is .

- set (for AENi=1 and a new valid PMTR), that means when new action data are to be calculated for the correspondent action. After each calculation of the new actions values the ACT_N[i] bit updates the corresponding bit in the connected shadow register. The status of the ACT_N[i] bits in the shadow register is reflected by the corresponding DPLL output signal ACT_V (valid bit).
- reset together with the corresponding shadow register bit for AENi=0;
- reset without the corresponding shadow register bit when the calculated event is in the past (the shadow register bit is set, when it was not set before in that case)
- the corresponding shadow register bit is reset, when new PMTR data are written or when the provided action data are read (blocking read)
- writeable for debugging purposes together with the corresponding shadow register when DEN=0

Note: These bits can only be written for test purposes when the DPLL is disabled.

18.12.8 Register DPLL_OSW

Bit 0

Specification

Address Offset:	see Appendix B Initial Values	:	0x0000_0200	
	31 33 33 33 33 33 34 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 36 37 36 36 36 37 36 36 36 37 36 36 36 37 36 36 36 36 36 36 36 36 36 36 36 36 36	6 8	7 5 4 3 3 3	1 0
Bit	Reserved	SSO	Reserved	SWON_T SWON_S
Mode	۵	RPw	۲	ж ж
Initial Value	0 00 00 00 00	10	00×0	0 0

Offset and Switch old/new Address Register

- SWON_S: Switch of new STATE; Switch bit for LSB address of *STATE*. This bit is changed for each write access to TS_S/TS_S_OLD. Using this unchanged address bit SWON_S for any access to TS_S results always in an access to TS_S_OLD. For writing to this address the former old (TS_S_OLD_old) value is overwritten by the new one while the SWON_S bit changes. Thus the former new one is now the old one and the next access is after changing SWON_S directed to this place. Therefore write to TS_S first and after that immediately to FTV_S and PSSM, always before a new TS_S value is to be written.
 - **Note:** After writing TS_S, FTV_S and PSSM in this order the address pointer AP with LSB(AP)=SWON_S shows for the corresponding address to TS_S_OLD, FTV_S and PSSM while LSB(AP)=/SWON_S results in an access to TS_S, FTV_S_old and PSSM_OLD respectively. The value can be read only. This bit is reset when disabling the DPLL (DEN=0).
- Bit 1 SWON_T: Switch of new TRIGGER; Switch bit for LSB address of *TRIGGER*.
 This bit is changed for each write access to TS_T/TS_T_OLD. Using this unchanged address bit SWON_T for any access to TS_T results always in an access to TS_T_OLD. For writing to this address the former old (TS_T_OLD_old) value is overwritten by the new one while the SWON_T bit changes. Thus the former new one is now the old one and the next access is after changing SWON_T directed to this place. Therefore write to TS_T first and after that immediately to FTV_T and PSTM, always before a new TS_T value is to be written.
 - **Note:** After writing TS_T, FTV_T and PSTM in this order the address pointer AP with LSB(AP)=SWON_T shows for the corresponding

Bit 9:8

Specification

address to TS_T_OLD, FTV_T and PSTM while LSB(AP)=/SWON_T results in an access to TS_T, FTV_T_old and PSTM_OLD respectively. The value can be read only. This bit is reset when disabling the DPLL (DEN=0).

Bit 7:2 Reserved

Note: Read as zero, should be written as zero.

OSS: Offset size of RAM region 2

0x0 = Offset size 128 of RAM region 2.

- 0x1 = Offset size 256 of RAM region 2.
- 0x2 = Offset size 512 of RAM region 2.
- 0x3 = Offset size 1024 of RAM region 2.
 - **Note:** At least 128 and at most 1024 values can be stored in each of the RAM 2 regions a to d accordingly. The value can be set only for DEN=0. The change of the OSS value results in an automatic change of the offset values in the DPLL_AOSV_2 register

Note: This value can only be written when the DPLL is disabled.

Bit 31:10 Reserved

Note: Read as zero, should be written as zero.

Address Offset:	see Appendix B		Initial Value:	0x1810_0800
	31 30 29 28 27 26 25 25 24 23 23	22 21 20 19 18 17 17 16	15 14 13 13 12 11 10 9 8	7 5 7 4 4 2 2 1 1 0
Bit	AOSV_2D	AOSV_2C	AOSV_2B	AOSV_2A
Mode	٣	£	с	Ľ
Initial Value	0x18	0×10	0×08	00 ×0

18.12.9 Register DPLL_AOSV_2

Address Offset Register of RAM 2 Regions

Bit 7:0 **AOSV_2A: Address offset value** of the RAM **2A** region.

The value in this field is to be multiplied by 256 (shift left 8 Bits) and added with the start address of the RAM in order to get the start address

Specification

of RAM region 2a. When the APT value is added to this start address, the current RAM cell RDT_Tx is addressed.

value is set automatically when OSS in the PPLL_OSW register ist set:

OSS=0x0: AOSV_2A= 0x00 OSS=0x1: AOSV_2A= 0x00 OSS=0x2: AOSV_2A= 0x00 OSS=0x3: AOSV_2A= 0x00

Bit 15:8 **AOSV_2B: Address offset value** of the RAM **2B** region.

The value in this field is to be multiplied by 256 (shift left 8 Bits) and added with the start address of the RAM in order to get the start address of RAM region 2b. When the APT value is added to this start address, the current RAM cell TSF_Tx is addressed.

value is set automatically when OSS in the PPLL_OSW register ist set:

OSS=0x0: AOSV_2B= 0x02 OSS=0x1: AOSV_2B= 0x04 OSS=0x2: AOSV_2B= 0x08 OSS=0x3: AOSV_2B= 0x10

Bit 23:16 **AOSV_2C: Address offset value** of the RAM **2C** region.

The value in this field is to be multiplied by 256 (shift left 8 Bits) and added with the start address of the RAM in order to get the start address of RAM region 2c. When the APT value is added to this start address, the current RAM cell ADT_Tx is addressed. value is set automatically when OSS in the PPLL OSW register ist set:

OSS=0x0: AOSV_2C= 0x04 OSS=0x1: AOSV_2C= 0x08 OSS=0x2: AOSV_2C= 0x10 OSS=0x3: AOSV_2C= 0x20

Bit 31:24 AOSV_2D: Address offset value of the RAM 2D region.

The value in this field is to be multiplied by 256 (shift left 8 Bits) and added with the start address of the RAM in order to get the start address of RAM region 2d. When the APT value is added to this start address, the current RAM cell DT_Tx is addressed.

value is set automatically when OSS in the PPLL_OSW register ist set:

Confidential

Specification

OSS=0x0: AOSV_2D= 0x06 OSS=0x1: AOSV_2D= 0x0C OSS=0x2: AOSV_2D= 0x18 OSS=0x3: AOSV_2D= 0x30

Note: The offset values are needed to support a scalable RAM size of region 2 from 1,5 Kbytes to 12 Kbytes. The values above must be in correlation with the offset size defined in the OSW register. All offset values are set automatically in accordance to the OSS value in the DPLL_OSW register. This value can be set only for DEN=0.

18.12.10 Register DPLL_APT

Address Offset:	see Appendix B	I	Initial Value:	0x0000_0000		
	31 30 29 28 27 26 25 25	23 22 21 21 20 19 19 18 18 17 17 16	15 14 13 13 12 11 11 10 9 8	6 7 1 2 3 1 2 2		
Bit	Reserved	APT_2B	WAPT_2B Reserved	APT WAPT Reserved		
Mode	۲	RPw	RAw R	RPw RAw R		
Initial Value	00×0	00000	0 0	0 0 0		
Actual RAM Pointer Address for TRIGGER Bit 0 Reserved Note: Read as zero, should be written as zero. Bit 1 WAPT: Write bit for address pointer APT, read as zero. 0 = the APT is not writeable 1 = the APT is writeable						
Bit 11:2	 1 = the APT is writeable APT: Address pointer TRIGGER; Actual RAM pointer address value offset for DT_T[i] and RDT_T[i] in FULL_SCALE for 2*(TNU+1-SYN_NT) TRIGGER events. this pointer is used for the RAM region 2 subsections 2a and 2d. The pointer APT is incremented for each active <i>TRIGGER</i> event (simultaneously with APT_2B, APT_2C) for DIR1=0. For DIR1=1 the APT is decremented. The APT offset value is added in the above shown bit position with the subsection address offset of the corresponding RAM region 					

Note: The APT pointer value is directed to the RAM position, in which the data values are to be written, which corresponds to the last increment. The APT value is not to be changed, when the direction (shown by DIR1) changes, because it points always to a storage place after the considered increment. Changing of DIR1 takes place always after an active *TRIGGER* event and the resulting increment/decrement.

Note: This value can only be written when the WAPT bit is set.

Bit 12 Reserved

Note: Read as zero, should be written as zero.

- Bit 13 **WAPT_2B:** Write bit for address pointer APT_2B, read as zero.
 - 0 = the APT_2B is not writeable
 - 1 = the APT 2B is writeable
- Bit 23:14 APT_2B: Address pointer TRIGGER for RAM region 2b; Actual RAM pointer address value for TSF_T[i]
 - Actual RAM pointer address of *TRIGGER* events in FULL_SCALE for 2*(TNU+1) *TRIGGER* periods; this pointer is used for the RAM region 2b. The RAM pointer is initially set to zero.
 - For SYT=1: The pointer APT_2B is incremented by SYN_T_OLD for each active *TRIGGER* event (simultaneously with APT and APT_2C) for DIR1=0 when an active *TRIGGER* input appears. For DIR1=1 (backwards) the APT is decremented by SYN_T_OLD.

For SYT=0: APT_2B is incremented or decremented by 1.

In addition when the APT_2C value is written by the CPU - in order to synchronize the DPLL- with the next active *TRIGGER* event the APT_2B_EXT value is added/subtracted (while APT_2B_STATUS is one; see DPLL_APT_SYNC register at chapter 18.12.24).

Note: This value can only be written when the WAPT_2B bit is set.

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

18.12.11 Register DPLL_APS

Specification

Revision 3	3.1.5.1
------------	---------

Address Offset:	see Appendix B	Init	Initial Value: 0x0000_0000							
	31 30 29 28 28 26 26 25 25 25 23 23 23 23 23	19 18 17 16 16 15 14	14 13 12 11 10 9 8	7 6 7 3 3 3 2 2 1 1						
Bit	Reserved	APS_1C2	WAPS_1C2 Reserved	APS WAPS Reserved						
Mode	œ	RPw	RAw R	RPw RAw R						
Initial Value	000×0	00×0	0 0	00×00 0						

Actual RAM Pointer Address for STATE

Bit 0 Reserved

Note: Read as zero, should be written as zero.

- Bit 1 **WAPS:** Write bit for address pointer APS, read as zero.
 - 0 = the APS is not writeable
 - 1 = the APS is writeable
- Bit 7:2 **APS: Address pointer STATE;** Actual RAM pointer address value for DT_S[i] and RDT_S[i]
 - Actual RAM pointer and synchronization position/value of *STATE* events in FULL_SCALE for up to 64 *STATE* events but limited to 2*(SNU+1-SYN_NS) in normal and emergency mode for SYSF=0 or to 2*(SNU+1)-SYN_NS for SYSF=1 respectively; this pointer is used for the RAM region 1c1 and 1c4.
 - APS is incremented (decremented) by one for each active *STATE* event and DIR2=0 DIR2=1). The APS offset value is added in the above shown bit position with the subsection offset of the RAM region.
 - **Note:** The APS pointer value is directed to the RAM position, in which the data values are to be written, which correspond to the last increment. The APS value is not to be changed, when the direction (shown by DIR2) changes, because it points always to a storage place after the considered increment. Changing of DIR2 takes place always after an active *STATE* event and the resulting increment/decrement.

Note: This value can only be written when the WAPS bit is set.

Bit 12:8 Reserved

- **Note:** Read as zero, should be written as zero.
- Bit 13 **WAPS_1C2:** Write bit for address pointer APS_1C2, read as zero.
 - 0 = the APS_1C2 is not writeable
 - 1 = the APS_1C2 is writeable
- Bit 19:14 **APS_1C2: Address pointer STATE for RAM region 1c2;** Actual RAM pointer address value for TSF_S[i].

Initial value: zero (0x00). Actual RAM pointer and synchronization position/value of *STATE* events in FULL_SCALE for up to 64 *STATE* events but limited to 2*(SNU+1) in normal and emergency mode; this pointer is used for the RAM region 1c2.

Specification

For SYS=1: APS_1C2 is incremented (decremented) by SYN_S_OLD for each active *STATE* event and DIR2=0 (DIR2=1).

For SYS=0: APT_1c2 is incremented or decremented by 1 respectively.

The APS_1C2 offset value is added in the above shown bit position with the subsection offset of the RAM region.

In addition when the APS_1C3 value is written by the CPU - in order to synchronize the DPLL- with the next active *STATE* event the APS_1C2_EXT value is added/subtracted (while APS_1C2_STATUS is one; see DPLL_APT_SYNC register at chapter 18.12.25).

Note: This value can only be written when the WAPS_1C2 bit is set

Bit 31:20 Reserved

Note: Read as zero, should be written as zero.

Note: This register is only used when DPLL_CTRL_11.STATE_EXT is not set. If DPLL_CTRL_11.STATE_EXT is set any read/write access to this register will return AEI_STATUS = 0b10.

18.12.12 Register DPLL_APT_2C

Address Offset:	see Appendix B Initia	Value: 0x0000_0000
	31 30 29 28 27 26 26 26 26 26 23 23 23 23 23 21 20 21 20 16 17 15 16 16	12 11 10 9 8 8 8 8 7 7 6 6 6 4 4 3 3 3 2 2 1
Bit	Reserved	APT_2C Reserved
Mode	Ľ	х Хи и
Initial Value	0 0000000	000000000000000000000000000000000000000

Actual RAM Pointer Address for Region 2c

Bit 1:0 Reserved

Note: Read as zero, should be written as zero.

Bit 11:2 **APT_2C: Address pointer TRIGGER for RAM region 2c;** Actual RAM pointer address value for ADT_T[i].

Actual RAM pointer address value of *TRIGGER* adapt events in FULL_SCALE for 2*(TNU+1-SYN_NT) *TRIGGER* periods depending on the size of the used RAM 2; this pointer is used for the RAM region 2 for the subsection 2c only. The RAM pointer is initially set to zero. The APT_2C value is set by the CPU when the synchronization condition was detected. Within the RAM region 2c initially the conditions for synchronization gaps and adapted values

Bit 31:12 Reserved

Note: Read as zero, should be written as zero.

are stored by the CPU.

- **Note:** The APT_2C pointer values are directed to the RAM position of the profile element in RAM region 2c, which correspond to the current increment. For DIR1=0 (DIR1=1) the pointers APT_2C_x are incremented (decremented) by one simultaneously with APT. For SMC=0 the change of DIR1 takes place always after an active *TRIGGER* event (by evaluation of the inactive slope) and the resulting increment/decrement. In the case SMC=1 the direction change is known before the input event is processed.
- The correction of the APT_2C pointer differs: for SMC=0 correct 4 times and for SMC=1 correct only 2 times.
- The APT_2C_x offset value is added in the above shown bit position with the subsection address offset of the corresponding RAM region.

Address Offset:	see Appendix B Initial Value: 0	0x0000_0000					
	31 30 29 27 27 26 26 26 26 25 22 22 23 23 23 23 21 19 10 10 11 11 11 11 12 12 13 13 13 14 11 12 13 13 13 13 13 13 13 13 13 13 13 13 13	- ⁵ 5 6 - ⁴	т 0				
Bit	Reserved	APS_1C3	Reserved				
Mode	٣	RW	н				
Initial Value	00 00 00 00	0000	00				

18.12.13 Register DPLL_APS_1C3

Actual RAM Pointer Address for RAM region 1c3

Bit 1:0 Reserved

Note: Read as zero, should be written as zero.

Bit 7:2 APS_1C3: Address pointer STATE for RAM region 1c3; Actual RAM pointer address value for ADT_S[i]

Initial value: zero (0x00). Actual RAM pointer and synchronization position/value of *STATE* events in FULL_SCALE for up to 64 *STATE* events but limited to 2*(SNU+1-SYN_NS) in normal and emergency mode for SYSF=0 or to 2*(SNU+1)-SYN_NS for SYSF=1 respectively; this pointer is used for the RAM region 1c3. The RAM pointer is set by the CPU accordingly, when the synchronization condition was detected.

Bit 31:8 Reserved

Note: Read as zero, should be written as zero.

- **Note:** The APS_1C3 pointer value is directed to the RAM position of the profile element in RAM region 1c2, which corresponds to the current increment. When changing the direction DIR1 or DIR2 respectively, this is always known before an active *STATE* event is processed. This is because of the pattern recognition in SPE (for PMSM) or because of the direction change recognition by TRIGGER. This direction change results in an automatic increment (forwards) or decrement (backwards) when the input event occurs in addition with a 2 times correction.
- The APS_1C3_x offset value is added in the above shown bit position with the subsection address offset of the corresponding RAM region.
- **Note:** This register is only used when DPLL_CTRL_11.STATE_EXT is not set. If DPLL_CTRL_11.STATE_EXT is set any read/write access to this register will return AEI_STATUS = 0b10.

Address Offset:	S	see Appendix B												Initial Value:						: 0x0001_2001												
	31	0E	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit	WVTN	NASW	WNUT		Doconiod			VTN SYN_T_OLD						SYN_T Reserved FST					NUTE													
Mode	RAw	RAw	RAw		۵					DDw	M 11				RPw			RPw		Я		RPw		Å Å								
Initial Value	0	0	0		0.00	000					0000				001			001		00		0		0×001								

18.12.14 Register DPLL_NUTC

Number of Recent TRIGGER Events used for Calculations

Confidential

- Bit 9:0 **NUTE:** Number of recent *TRIGGER* events used for SUB_INC1 and action calculations modulo 2*(TNU_{max}+1).
 - NUTE: number of last nominal increments to be considered for the calculations.
 - No gap is considered in that case for this value, but in the VTN value (see below):
 - This value is set by the CPU, but reset automatically to "1" by a change of direction or loss of LOCK. Each other value can be set by the CPU, maybe Full_SCALE, HALF_SCALE or parts of them. For FULL_SCALE set NUTE= 2*(TNU +1) and for HALF_SCALE NUTE= TNU +1. The relation values QDT_Tx are calculated using NUTE values in the past with its maximum value of 2*(TNU +1). The value zero (in combination with the value FST=1) does mean 2¹¹ values in the past.

Note: To prevent that inconsistencies between internal pointer in which NUTE is used and the case decision of different prediction method's for prediction of the next event and PMT(position minus time) occur, the NUTE value is stored internally at that point of time when the internal pointers are calculated for the next event cycle

0 = the NUTE v	alue is less then	FULL	SCALE
		_	

- 1 = the NUTE value is equal to FULL_SCALE
- This value is set by the CPU, but reset automatically to "0" by a change of direction or loss of LOCK.

Note: This value can only be written when the WNUT bit is set.

Bit 10 **FST: FULL_SCALE of TRIGGER;** this value is to be set, when NUTE is set to FULL_SCALE

Note: This value can only be written when the WNUT bit is set.

Bit 12:11 Reserved

- **Note:** Read as zero, should be written as zero.
- Bit 15:13 **SYN_T:** number of real and virtual events to be considered for the current increment.

This value reflects the NT value of the last valid increment, stored in ADT_T[i]; to be updated after all calculations in step 17 of Table 18.8.6.7.1.

- **Note:** This value can only be written when the WSYN bit in this register is set.
- Bit 18:16 **SYN_T_OLD:** number of real and virtual events to be considered for the last increment.

This value reflects the NT value of the last but one valid increment, stored in ADT_T[i]; is updated automatically when writing SYN_T.

Note: This value is updated by the SYN_T value when the WSYN bit in this register is set.

GTM-IP	Specification	Revision 3.1.5.1
Bit 24:19	VTN: Virtual TRIGGER number; number of virt current NUTE region	tual increments in the
	This value reflects the number of virtual increment region; for NUTE=1 this value is zero, when the a value > 1, it must also set VTN to the co NUTE is set to FULL_SCALE including NUTE the VTN is to be set to 2* SYN NT.	the CPU sets NUTE to rrespondent value; for
	The VTN value is subtracted from the NUTE val corresponding APT value for the past; the VT the APT_2B pointer.	•
	VTN is to be updated by the CPU when a new gap for NUTE or a gap is leaving the NUTE regio TINT values in the profile can be used to ge the CPU at the corresponding positions; no is necessary when NUTE is set to FULL_SC.	on; for this purpose the enerate an interrupt for further update of VTN
	Note: This value can only be written when the WV	′TN bit is set.
Bit 28:25	Reserved	
	Note: Read as zero, should be written as zero.	
Bit 29	WNUT: write control bit for NUTE and FST; read a	as zero.
	0 = the NUTE value is not writeable	
	1 = the NUTE value is writeable	
Bit 30	WSYN: write control bit for SYN_T and SYN_T_O	LD; read as zero.
	0 = the SYN_T value is not writeable 1 = the SYN_T value is writeable	
Bit 31	WVTN: write control bit for VTN; read as zero.	
DICOT	0 = the VTN value is not writeable	
	1 = the VTN value is writeable	
	Number of recent TRICCER events used for cale	ulations (mod 2*(TNU)

Note: DPLL Number of recent TRIGGER events used for calculations (mod 2*(TNU +1-SYN_NT)).

18.12.15 Register DPLL_NUSC

Specification

Revision 3.1.5.1

Address Offset:	S	ee	A	ppendix	В	Initial Value: 0x0000_2081					
	31	30	29	28 27 26 25	24 23 22 21 21 20 19	18 17 16	15 14 13	12 11 10 9 8	. 9	5 4 3 3 1 1 0	
Bit	WNSN	NASW	SUNW	Reserved	NS/		01N-0-0LD	SNYS	FSS	NUSE	
Mode	RAw	RAw	RAw	Я	RPw			RPw	RPw	RPw	
Initial Value	0	0	0	0×0	00×00	10.0	TOYO	0x01	0	0x01	

Number of Recent STATE Events used for Calculations

NUSE: Number of recent *STATE* events used for SUB_INCx calculations modulo 2*(SNU_{max}+1).

- No gap is considered in that case for this value, but in the VSN value (see below):
- This register is set by the CPU but reset automatically to "1" by a change of direction or loss of LOCK. Each other value can be set by the CPU, maybe Full_SCALE, HALF_SCALE or parts of them. The relation values QDT_Sx are calculated using NUSE values in the past with its maximum value of 2*SNU+1.

Note: To prevent that inconsistencies between internal pointer in which NUSE is used and the case decision of different prediction method's for prediction of the next event and PMT(position minus time) occur, the NUSE value is stored internally at that point of time when the internal pointers are calculated for the next event cycle.

	Note: This value can only be written when the WNUS bit is set.
Bit 6	FSS: FULL_SCALE of STATE; this value is to be set, when NUSE is set to FULL SCALE
	0 = the NUSE value is less then FULL_SCALE
	1 = the NUSE value is equal to FULL_SCALE
	This value is set by the CPU, but reset automatically to "0" by a change of direction or loss of LOCK.
	Note: This value can only be written when the WNUS bit is set.
Bit 12:7	SYN_S: number of real and virtual events to be considered for the current increment.
	This value reflects the NS value of the last valid increment, stored in ADT_S[i]; to be updated after all calculations in step 37 of Table 18.8.6.7.1.
	Note: This value can only be written when the WSYN bit in this register is set.

GT	M-IP	

Bit 5:0

Confidential

GTM-IP	Specification	Revision 3.1.5.1
Bit 18:13	SYN_S_OLD: number of real and virtual events to last increment.	
	This value reflects the NS value of the last but one in ADT_S[i]; is updated automatically when v	
	Note: This value is updated by the SYN_S value this register is set.	when the WSYN bit in
Bit 24:19	VSN: virtual STATE number; number of virtual s current NUSE region.	state increments in the
	This value reflects the number of virtual increment region; for NUSE=1 this value is zero, when t a value > 1 or zero(2 ⁷ modulo 2 ⁷), it must correspondent value;	the CPU sets NUSE to
	the VSN value is subtracted from the NUSE val corresponding APS value for the past; the \ for the APS_1C2 pointer.	0
	VSN is to be updated by the CPU when a new gap for NUSE or a gap is leaving the NUSE region SASI interrupt can be used; no further update when NUSE is set to FULL_SCALE	on; for this purpose the
Bit 28:25	Note: This value can only be written when the WV Reserved	/SN bit is set.
Dit 20.25	Note: Read as zero, should be written as zero.	
Bit 29	WNUS: write control bit for NUSE; read as zero. 0 = the NUSE value is not writeable	
Bit 30	1 = the NUSE value is writeable WSYN: write control bit for SYN S and SYN S O	I D. road as zoro
DIL 30	0 = the SYN_S value is not writeable 1 = the SYN S value is writeable	CD; leau as zelo.
Bit 31	WVSN: write control bit for VSN; read as zero.	
	0 = the VSN value is not writeable	
	1 = the VSN value is writeable	DI 11 STATE EVT in
	Note: This register is only used when DPLL_CTI not set. If DPLL_CTRL_11.STATE_EXT i access to this register will return AEI_STATU	s set any read/write
	access to this register will return AEI_STATE	

18.12.16 Register DPLL_NTI_CNT

Specification

Address Offset:	see Appendix B Initial Valu	ıe: 0x0000_0000
	31 30 29 27 27 27 26 25 25 25 23 23 25 21 21 19 11 11 15 11 11	10 9 8 7 7 6 6 5 3 3 3 3 3 2 2 2 1 1
Bit	Reserved	NTI_CNT
Mode	۲.	ж Х
Initial Value	0 00 00 00 00	000 00 00

Number of Active TRIGGER Events to Interrupt

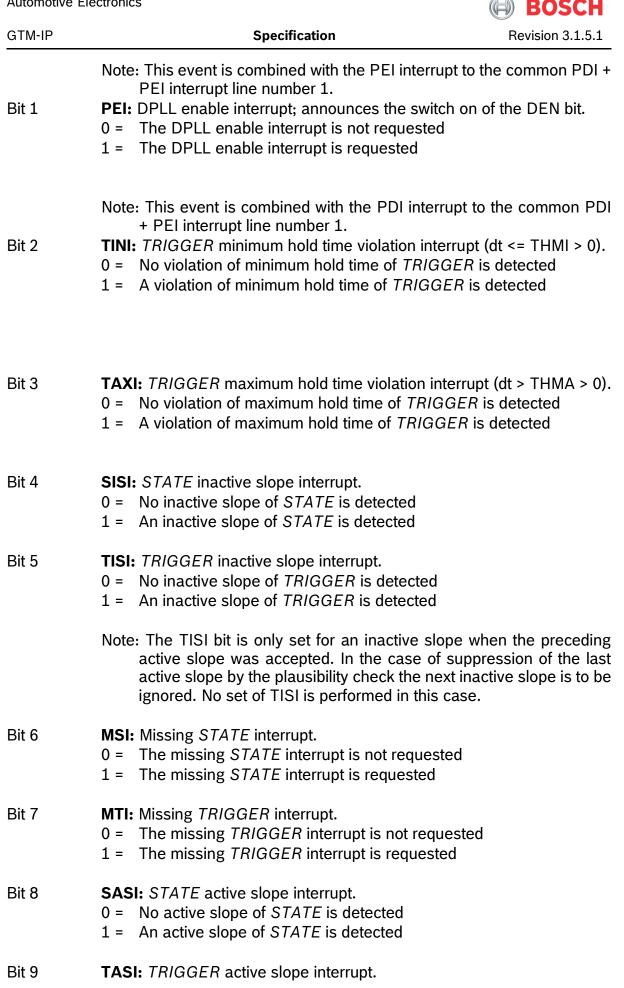
Bit 9:0 NTI_CNT: Number of TRIGGERs to interrupt; Number of active TRIGGER events to the next DPLL_CDTI interrupt. This value shows the remaining *TRIGGER* events until an active TRIGGER slope results in a DPLL_CDTI interrupt; the value is to be count down for each active *TRIGGER* event.

Bit 31:10 Reserved

Note: Read as zero, should be written as zero.

18.12.17 Register DPLL_IRQ_NOTIFY

Address Offset:	s	ee	A	pp	er	ndi	ix	В									In	iti	al	Va	alu	ie:			0	x0	00	0_	00)0()	
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	9	5	4	3	2	1	0
Bit		Recerved			DCGI	SORI	TORI	CDSI	CDTI	TE4I	TE3I	TE2I	TE1I	TEOI	LL2I	GL2I	EI		GL1I	W1I	W2I	PWI	TASI	SASI	MTI	MSI	TISI	SISI	TAXI	TINI	PEI	PDI
Mode		۵	1		RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw											
Initial Value		0×0			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0


Interrupt Register

Bit 0

PDI: DPLL disable interrupt; announces the switch off of the DEN bit.

0 = The DPLL disable interrupt is not requested

1 = The DPLL disable interrupt is requested

GTM-IP	Specification	Revision 3.1.
	0 = No active slope of <i>TRIGGER</i> is detected1 = An active slope of <i>TRIGGER</i> is detected	
Bit 10	PWI: Plausibility window (PVT) violation interrupt of 0 = The plausibility window is not violated 1 = The plausibility window is violated	TRIGGER.
Bit 11	 W2I: RAM write access to RAM region 2 interrupt. 0 = The RAM write access interrupt is not requested 1 = The RAM write access interrupt is requested 	ed
Bit 12	 W1I: Write access to RAM region 1b or 1c interrupt. 0 = The RAM write access interrupt is not requested 1 = The RAM write access interrupt is requested 	ed
Bit 13	GL1I: Get of lock interrupt, for SUB_INC1. 0 = The lock getting interrupt is not requested 1 = The lock getting interrupt is requested	
Bit 14	LL1I: Loss of lock interrupt for SUB_INC1. 0 = The lock loss interrupt is not requested 1 = The lock loss interrupt is requested	
Bit 15	 Error interrupt (see status register bit 31). 0 = The error interrupt is not requested 1 = The error interrupt is requested 	
Bit 16	 GL2I: Get of lock interrupt, for SUB_INC2. 0 = The lock getting interrupt is not requested 1 = The lock getting interrupt is requested 	
Bit 17	LL2I: Loss of lock interrupt for SUB_INC2. 0 = The lock loss interrupt is not requested 1 = The lock loss interrupt is requested	
Bit 18	 TE0I: TRIGGER event interrupt 0. 0 = No Interrupt on <i>TRIGGER</i> event 0 requested 1 = Interrupt on <i>TRIGGER</i> event 0 requested 	
Bit 19	TE1I: TRIGGER event interrupt 1. 0 = No Interrupt on <i>TRIGGER</i> event 1 requested 1 = Interrupt on <i>TRIGGER</i> event 1 requested	
Bit 20	TE2I: TRIGGER event interrupt 2. 0 = No Interrupt on <i>TRIGGER</i> event 2 requested 1 = Interrupt on <i>TRIGGER</i> event 2 requested	

GTM-IP	Specification	Revision 3.1.5.1
Bit 21	TE3I: TRIGGER event interrupt 3. 0 = No Interrupt on <i>TRIGGER</i> event 3 requested 1 = Interrupt on <i>TRIGGER</i> event 3 requested	
Bit 22	 TE4I: TRIGGER event interrupt 4. 0 = No Interrupt on <i>TRIGGER</i> event 4 requested 1 = Interrupt on <i>TRIGGER</i> event 4 requested 	
Bit 23	 CDTI: Calculation of TRIGGER duration done, on zero. 0 = No Interrupt on calculated TRIGGER dur NTI_CNT is not zero 1 = Interrupt on calculated TRIGGER duratio NTI_CNT is zero 	ation requested or
Bit 24	CDSI: Calculation of STATE duration done 0 = No Interrupt on calculated <i>STATE</i> duration rec 1 = Interrupt on calculated <i>STATE</i> duration reques	
Bit 25	 TORI: TRIGGER out of range interrupt 0 = TRIGGER is not out of range 1 = TRIGGER is out of range, the TOR bit in register is set to 1 	the DPLL_STATUS
Bit 26	 SORI: STATE out of range 0 = STATE is not out of range 1 = STATE is out of range, the SOR bit in the DPI is set to 1 	LL_STATUS register
	0 = No direction change of <i>TRIGGER</i> is detected1 = Direction change of <i>TRIGGER</i> is detected	
Bit 27 Bit 31:28	Note: The interrupt occurs at line number 0. DCGI: Direction change interrupt Reserved Note: Read as zero, should be written as zero.	

Note: All bits in the DPLL_IRQ_NOTIFY register are set permanently until writing a one bit value is performed to the corresponding bit.

18.12.18 Register DPLL_IRQ_EN

Specification

Revision 3.1.5.1

Address Offset:	see A	ee Appendix B											In	iti	al	Va	alu	ie:			03	k 0	00	0_	00)0()		
	31 30	28	27	26 21	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	6	5	4	з	2	t-	0
Bit	Reserved		IRO	a la	CDSI IRQ EN	IRQ	TE41_IRQ_EN	TE31_IRQ_EN	TE21_IRQ_EN	TE11_IRQ_EN	TE01_IRQ_EN	LL21_IRQ_EN	GL21_IRQ_EN	ELIRQEN	LL11_IRQ_EN	GL11_IRQ_EN	W11_IRQ_EN	W21_IRQ_EN	PWI_IRQ_EN	TASI_IRQ_EN	SASI_IRQ_EN	MTI_IRQ_EN	MSI_IRQ_EN		SISI_IRQ_EN	TAXI_IRQ_EN	TINI_IRQ_EN	PEL IRQ EN	PDI IRQ EN
Mode	æ		RW	NN I	N N	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW
Initial Value	0x0				0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Interrupt Ena Bit 0	PDI_ bit. 0 =	0	2_E e D	PL	.L c	lisa	abl	e i	inte	err	up	ot i	s r	not	t e	na	ble		he	n :	sw	vitc	h (off	of	[:] th	e l	DE	N
Bit 1	PEI_ bit. 0 = 1 =	The The	– e D	PL	Le.	ena	ble	e i	nte	err	up	t is	s n	not	er	na	ble		he	n s	SW	itc	h (on	of	^t th	e l	DE	N
Bit 2	TINI_ bit. 0 = 1 =	_ IR (Mir The	nim	un	ו ho	old	tin	ne	vi	ola	atio	on	of	T	RI	G	GE	R	int	ter	ru	pt	is	no	t e	ena	abl	ed	
Bit 3	TAXI bit. 0 = 1 =	I _IR Ma The	xin	nur	n h	olc	l ti	me	e v	iol	ati	ior	n o	f 7	R.	IG	GI	ER	in	te	rru	ıpt	is	n	ot	en	ab	leo	d
Bit 4	SISI_ 0 = 1 =	IR The The	e in	te	rrup	ot a	at t	he	in	ac	tiv	e :	slo	ope	e c	of S	ST	AT	ΓΕ	is	nc	ot e	en		le	d			
Bit 5	TISI_ 0 = 1 =		e in	te	rup	ot a	at t	he	in	ac	tiv	e	slo	ope	e c	of 7	TR	IG	G	ER	? is	s n	ot	er			ed		
Bit 6	MSI_	IRC	3 [_] E	EN	: M	iss	ing	g S	ST,	47	Е	int	ter	ru	pt	en	ak	ole	•										

GTM-IP	Specification	Revision 3.1.5.1
	0 = The missing STATE interrupt is not enabled1 = The missing STATE interrupt is enabled	
Bit 7	MTI_IRQ_EN: Missing <i>TRIGGER</i> interrupt enable. 0 = The missing <i>TRIGGER</i> interrupt is not enabled 1 = The missing <i>TRIGGER</i> interrupt is enabled	
Bit 8	 SASI_IRQ_EN: STATE active slope interrupt enable. 0 = The active slope STATE interrupt is not enabled. 1 = The active slope STATE interrupt is enabled 	
Bit 9	TASI_IRQ_EN: <i>TRIGGER</i> active slope interrupt enab 0 = The active slope <i>TRIGGER</i> interrupt is not enabl 1 = The active slope <i>TRIGGER</i> interrupt is enabled	
Bit 10	 PWI_IRQ_EN: Plausibility window (PVT) violation interenable. 0 = The plausibility violation interrupt is not enabled 1 = The plausibility violation interrupt is enabled 	errupt of <i>TRIGGER</i>
Bit 11	W2I_IRQ_EN: RAM write access to RAM region 2 inte 0 = The RAM write access interrupt is not enabled 1 = The RAM write access interrupt is enabled	errupt enable.
Bit 12	W1I_IRQ_EN: Write access to RAM region 1b or 1c ir 0 = The RAM write access interrupt is not enabled 1 = The RAM write access interrupt is enabled.	nterrupt.
Bit 13	GL1I_IRQ_EN: Get of lock interrupt enable, when loc 0 = The lock getting interrupt is not enabled 1 = The lock getting interrupt is enabled	k arises.
Bit 14	LL1I_IRQ_EN: Loss of lock interrupt enable. 0 = The lock loss interrupt is not enabled 1 = The lock loss interrupt is enabled	
Bit 15	EI_IRQ_EN: Error interrupt enable (see status registe 0 = The error interrupt is not enabled 1 = The error interrupt is enabled	r).
Bit 16	GL2I_IRQ_EN: Get of lock interrupt enable for SUB_I 0 = The lock getting interrupt is not requested 1 = The lock getting interrupt is requested	NC2.
Bit 17	LL2I_IRQ_EN: Loss of lock interrupt enable for SUB_ 0 = The lock loss interrupt is not requested 1 = The lock loss interrupt is requested	INC2.

Confidential

GTM-IP	Specification	Revision 3.1.5.1
Bit 18	TE0I_IRQ_EN: TRIGGER event interrupt 0 enable. 0 = No Interrupt on <i>TRIGGER</i> event 0 enabled 1 = Interrupt on <i>TRIGGER</i> event 0 enabled	
Bit 19	TE1I_IRQ_EN: TRIGGER event interrupt 1 enable. 0 = No Interrupt on <i>TRIGGER</i> event 1 enabled 1 = Interrupt on <i>TRIGGER</i> event 1 enabled	
Bit 20	TE2I_IRQ_EN: TRIGGER event interrupt 2 enable. 0 = No Interrupt on <i>TRIGGER</i> event 2 enabled 1 = Interrupt on <i>TRIGGER</i> event 2 enabled	
Bit 21	TE3I_IRQ_EN: TRIGGER event interrupt 3 enable. 0 = No Interrupt on <i>TRIGGER</i> event 3 enabled 1 = Interrupt on <i>TRIGGER</i> event 3 enabled	
Bit 22	TE4I_IRQ_EN: TRIGGER event interrupt 4 enable. 0 = No Interrupt on <i>TRIGGER</i> event 4 enabled 1 = Interrupt on <i>TRIGGER</i> event 4 enabled	
Bit 23	CDTI_IRQ_EN: Enable interrupt when calculation of done 0 = No Interrupt on calculated <i>TRIGGER</i> duration er 1 = Interrupt on calculated <i>TRIGGER</i> duration enabl	abled
Bit 24	CDSI_IRQ_EN: Enable interrupt when calculation of ⁻ done 0 = No Interrupt on calculated <i>STATE</i> duration enab	
Bit 25	 1 = Interrupt on calculated STATE duration enabled TORI_IRQ_EN: TRIGGER out of range interrupt 0 = No Interrupt when TRIGGER is out of range enabled 1 = Interrupt when TRIGGER is out of range enabled 	bled
Bit 26	SORI_IRQ_EN: STATE out of range 0 = No Interrupt when <i>STATE</i> is out of range enable 1 = Interrupt when <i>STATE</i> is out of range enabled	d
Bit 27	DCGI_IRQ_EN: Direction change interrupt 0 = No Interrupt when a direction change of <i>TRIGGE</i> 1 = Interrupt when a direction change of <i>TRIGGER</i> is	
Bit 31:28	Reserved	

18.12.19 Register DPLL_IRQ_FORCINT

Address Offset:	see App	en	di	хB									In	iti	al	Va	alu	ie:	;		02	x0	00	0_	00)0()	
011000	31 30 29 28	27	26	25 24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	6	5	4	3	2	1	0
					-																							
Bit	Reserved	TRG_DCGI	TRG_SORI	TRG_TORI	TRG_CDTI	TRG_TE4I	TRG_TE3I	TRG_TE2I	TRG_TE11	TRG_TE0I	TRG_LL2I	TRG_GL21	TRG_EI	TRG_LL1I	TRG_GL1I	TRG_W1I	TRG_W2I	TRG_PWI	TRG_TASI	TRG_SASI	TRG_MTI	TRG_MSI	TRG_TISI	TRG_SISI	TRG_TAXI	TRG_TINI	TRG_PEI	TRG PDI
Mode	Я	RAw	RAw	RAw RAw	RAw	RAw	RAw	RAw	RAw	RAw	RAw	RAw	RAw	RAw	RAw	RAw	RAw	RAw	RAw	RAw	RAw	RAw	RAw	RAw	RAw	RAw	RAw	RAw
Initial Value	0×0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit 0	TRG_PI 0 = the o 1 = the o Note: Th Note: Th	corr corr nis l	res res bit	spoi spoi	ndi ndi clea	ng ng are	in in ed	ter ter au	ru ru toi	pt pt ma	is atio	fo cal	rce Ily	ed afi	fo ter	r c w	rite	e.			gis	te	r G	άT	M_	_C	TR	۲L
Bit 1		Note: This bit is write protected by bit RF_PROT of register GTM_CTRL TRG_PEI: Force Interrupt PEI																										
Bit 2	TRG_TINI: Force Interrupt TINI see bit 0																											
Bit 3	see bit 0 TRG_TAXI: Force Interrupt TAXI see bit 0																											
Bit 4	TRG_SI	SI:	F	orce	e Ir	nte	rru	ıpt	SI	IS	I																	
Bit 5	see bit (TRG_TI	SI:	F	orce	e Ir	ntei	rru	ıpt	ΤI	SI																		
Bit 6	see bit (TRG_M see bit (SI:	Fo	orce	e In	ter	ru	pt	M	SI																		
Bit 7	TRG_M see bit (TI:	Fo	orce	ln	ter	ru	pt	M	ΤI																		
Bit 8	TRG_S see bit (ASI	:	Ford	:e	Inte	err	up	t S	5A	SI																	
Bit 9	TRG_T/	ASI	: F	Ford	e l	nte	err	up	t T	Ā	SI																	
Bit 10	see bit 0 TRG_PWI: Force Interrupt PWI																											
Bit 11	see bit 0 TRG_W2I: Force Interrupt W2IF																											
Bit 12	see bit (TRG_W	11:	Fo	orce	e In	ter	ru	pt	W	11																		
	see bit ()	_	_																								

GTM-IP	Specification	Revision 3.1.5.1
	see bit 0	
Bit 14	TRG_LL1I: Force Interrupt LL1I	
	see bit 0	
Bit 15	TRG_EI: Force Interrupt EI	
	see bit 0	
Bit 16	TRG_GL2I: Force Interrupt GL2I	
	see bit 0	
Bit 17	TRG_LL2I: Force Interrupt LL2I	
	see bit 0	
Bit 18	TRG_TE0I: Force Interrupt TE0I	
DH 10		
Bit 19	TRG_TE1I: Force Interrupt TE1I see bit 0	
Bit 20	TRG_TE2I: Force Interrupt TE2I	
Dit 20	see bit 0	
Bit 21	TRG TE3I: Force Interrupt TE3I	
DREI	see bit 0	
Bit 22	TRG_TE4I: Force Interrupt TE4I	
	see bit 0	
Bit 23	TRG_CDTI: Force Interrupt CDTI	
	see bit 0	
Bit 24	TRG_CDSI: Force Interrupt CDSI	
	see bit 0	
Bit 25	TRG_TORI: Force Interrupt TORI	
	see bit 0	
Bit 26	TRG_SORI: Force Interrupt SORI	
	see bit 0	
Bit 27	TRG_DCGI: Force interrupt DCGI	
Bit 31:28	see bit 0 Reserved	
DIL 31:20	Note: Read as zero, should be written as zero.	
	Note, nead as zero, should be written as zero.	

18.12.20 Register DPLL_IRQ_MODE

Confidential

2.5.

Specification

Revision 3.1.5.1

Address Offset:	see Appendix B	Initial Value:	0x0000_000	x
	31 31 30 29 27 27 26 26 25 25 24 25 22 23 23 23 21 19 11 11 11	15 14 13 13 13 11 10 9	2 3 4 5 6 7 8	1 0
Bit	Reserved			IRQ_MODE
Mode	<u>د</u>			RW
Initial Value	0000 0000 VO			XX

Interrupt Request Mode

Bit 1:0	IRQ_MODE: IRQ mode selection
	0b00 = Level mode
	0b01 = Pulse mode
	0b10 = Pulse-Notify mode
	0b11 = Single-Pulse mode
	Note: The interrupt modes are described in chapter
Bit 31:2	Reserved
	Note: Read as zero, should be written as zero

18.12.21 Register DPLL_EIRQ_EN

Address Offset:	s	ee	A	pp	er	ndi	ix	В									In	iti	al	Va	alu	ie:			03	x 0	00	0_	00)0()	
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	3	2	Ч	0
Bit		Becerved	116361 460		DCGI_EIRQ_EN	SORI_EIRQ_EN	TORI_EIRQ_EN	CDSI_EIRQ_EN	CDTI_EIRQ_EN	TE41_EIRQ_EN	TE31_EIRQ_EN		TE11_EIRQ_EN	TE01_EIRQ_EN	LL21_EIRQ_EN	GL21_EIRQ_EN	ELEIRQEN	LL11_EIRQ_EN	GL11_EIRQ_EN	W11_EIRQ_EN	W21_EIRQ_EN	PWI_EIRQ_EN	TASI_EIRQ_EN	SASI_EIRQ_EN	MTI_EIRQ_EN	MSI_EIRQ_EN	TISI_EIRQ_EN	SISI_EIRQ_EN	TAXI_EIRQ_EN	TINI_EIRQ_EN	PELEIRQEN	PDI EIRQ EN
Mode		۵	_		RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW						
Initial Value		0.00	020		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Error Interrupt Enable Register

PDI_EIRQ_EN: DPLL disable interrupt enable, when switch off of the DEN bit.

0 = The DPLL disable interrupt is not enabled

1 = The DPLL disable interrupt is enabled

Bit 0

BOSCH Revision 3.1.5.1

GTM-IP	Specification	Revision 3.1.5.1
Bit 1	PEI_EIRQ_EN: DPLL enable interrupt enable, who DEN bit. 0 = The DPLL enable interrupt is not enabled 1 = The DPLL enable interrupt is enabled	en switch on of the
Bit 2	TINI_EIRQ_EN: <i>TRIGGER</i> minimum hold time viola bit. 0 = Minimum hold time violation of <i>TRIGGER</i> inter 1 = The minimum hold time violation of <i>TRIGGER</i> i	rupt is not enabled
Bit 3	TAXI_EIRQ_EN: <i>TRIGGER</i> maximum hold time enable bit. 0 = Maximum hold time violation of <i>TRIGGER</i> inter 1 = The maximum hold time violation of <i>TRIGGER</i>	rrupt is not enabled
Bit 4	SISI_EIRQ_EN: <i>STATE</i> inactive slope interrupt enal 0 = The interrupt at the inactive slope of <i>STATE</i> is 1 = The interrupt at the inactive slope of <i>STATE</i> is	not enabled
Bit 5	TISI_EIRQ_EN: <i>TRIGGER</i> inactive slope interrupt e 0 = The interrupt at the inactive slope of <i>TRIGGER</i> 1 = The interrupt at the inactive slope of <i>TRIGGER</i>	is not enabled
Bit 6	MSI_EIRQ_EN: Missing <i>STATE</i> interrupt enable. 0 = The missing <i>STATE</i> interrupt is not enabled 1 = The missing <i>STATE</i> interrupt is enabled	
Bit 7	MTI_EIRQ_EN: Missing <i>TRIGGER</i> interrupt enable. 0 = The missing <i>TRIGGER</i> interrupt is not enabled 1 = The missing <i>TRIGGER</i> interrupt is enabled	
Bit 8	SASI_EIRQ_EN: <i>STATE</i> active slope interrupt enable 0 = The active slope <i>STATE</i> interrupt is not enable 1 = The active slope <i>STATE</i> interrupt is enabled	
Bit 9	TASI_EIRQ_EN: <i>TRIGGER</i> active slope interrupt er 0 = The active slope <i>TRIGGER</i> interrupt is not ena 1 = The active slope <i>TRIGGER</i> interrupt is enabled	bled
Bit 10	PWI_EIRQ_EN: Plausibility window (PVT) vio <i>TRIGGER</i> enable. 0 = The plausibility violation interrupt is not enabled 1 = The plausibility violation interrupt is enabled	

GTM-IP	Specification	Revision 3.1.5.1
Bit 11	W2I_EIRQ_EN: RAM write access to RAM region 0 = The RAM write access interrupt is not enable 1 = The RAM write access interrupt is enabled	-
Bit 12	W1I_EIRQ_EN: Write access to RAM region 1b o 0 = The RAM write access interrupt is not enable 1 = The RAM write access interrupt is enabled.	ed
Bit 13	GL1I_EIRQ_EN: Get of lock interrupt enable, when 0 = The lock getting interrupt is not enabled 1 = The lock getting interrupt is enabled	en lock arises.
Bit 14	LL1I_EIRQ_EN: Loss of lock interrupt enable. 0 = The lock loss interrupt is not enabled 1 = The lock loss interrupt is enabled	
Bit 15	EI_EIRQ_EN: Error interrupt enable (see status re 0 = The error interrupt is not enabled 1 = The error interrupt is enabled	egister).
Bit 16	GL2I_EIRQ_EN: Get of lock interrupt enable for S 0 = The lock getting interrupt is not requested 1 = The lock getting interrupt is requested	SUB_INC2.
Bit 17	LL2I_EIRQ_EN: Loss of lock interrupt enable for 0 = The lock loss interrupt is not requested 1 = The lock loss interrupt is requested	SUB_INC2.
Bit 18	TEOI_EIRQ_EN: TRIGGER event interrupt 0 enabled 0 = No Interrupt on <i>TRIGGER</i> event 0 enabled 1 = Interrupt on <i>TRIGGER</i> event 0 enabled	ole.
Bit 19	TE1I_EIRQ_EN: TRIGGER event interrupt 1 enabled 0 = No Interrupt on <i>TRIGGER</i> event 1 enabled 1 = Interrupt on <i>TRIGGER</i> event 1 enabled	ole.
Bit 20	TE2I_EIRQ_EN: TRIGGER event interrupt 2 enabled 0 = No Interrupt on <i>TRIGGER</i> event 2 enabled 1 = Interrupt on <i>TRIGGER</i> event 2 enabled	ole.
Bit 21	TE3I_EIRQ_EN: TRIGGER event interrupt 3 enabled 0 = No Interrupt on <i>TRIGGER</i> event 3 enabled 1 = Interrupt on <i>TRIGGER</i> event 3 enabled	ole.
Bit 22	TE4I_EIRQ_EN: TRIGGER event interrupt 4 enabled 0 = No Interrupt on <i>TRIGGER</i> event 4 enabled	ole.

Confidential

GTM-IP	Specification	Revision 3.1.5.1						
	1 = Interrupt on <i>TRIGGER</i> event 4 enabled							
Bit 23	CDTI_EIRQ_EN: Enable interrupt when calculation duration done 0 = No Interrupt on calculated <i>TRIGGER</i> duration enabled 1 = Interrupt on calculated <i>TRIGGER</i> duration enabled	bled						
Bit 24	CDSI_EIRQ_EN: Enable interrupt when calculation duration done 0 = No Interrupt on calculated <i>STATE</i> duration enabled 1 = Interrupt on calculated <i>STATE</i> duration enabled							
Bit 25	TORI_EIRQ_EN: TRIGGER out of range interrupt 0 = No Interrupt when <i>TRIGGER</i> is out of range enable 1 = Interrupt when <i>TRIGGER</i> is out of range enabled	ed						
Bit 26	<pre>SORI_EIRQ_EN: STATE out of range 0 = No Interrupt when STATE is out of range enabled 1 = Interrupt when STATE is out of range enabled</pre>							
Bit 27	 DCGI_EIRQ_EN: Direction change interrupt 0 = No Interrupt when a direction change of <i>TRIGGER</i> 1 = Interrupt when a direction change of <i>TRIGGER</i> is a 							
Bit 31:28	Reserved Note: Read as zero, should be written as zero.							

18.12.22 Register DPLL_INC_CNT1

Specification

Address Offset:	see Appendix B		Initial Value:	0x0000_0000							
	31 30 29 28 27 26 25 25	23 22 21 21 20 19 18 17 17	15 14 13 13 12 11 10 9 8	7 5 6 4 4 3 3 3 3 2 2 1 1							
Bit	Reserved		INC_CNT1								
Mode	٣	Ω ₹									
Initial Value	00×0	00000 X0									

Counter Value of Sent SUB_INC1 Pulses

Bit 23:0 **INC_CNT1:** Actual number of pulses to be still sent out at the current increment until the next active input signal in automatic end mode;

Automatic addition of the number of demanded pulses MLT/MLS1 when getting an active *TRIGGER/STATE* input in

normal or emergency mode respectively **when SGE1=1**;

writeable only for test purposes when DEN=0

In the case of a change of the direction the wrong number of pulses is corrected twice:

Add the difference between NMB_T and INC_CNT1 twice to INC_CNT1 before sending out the correction pulses.

Note: This value can only be written when the DPLL is disabled.

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

18.12.23 Register DPLL_INC_CNT2

Confidential

Specification

Address Offset:	see Appendix B		Initial Value:	0x0000_0000					
	31 30 29 28 27 26 25 25 25	23 22 21 21 20 19 18 17 17	15 14 13 13 12 11 10 9	8 7 6 6 7 8 7 3 3 3 3 2 2 1 1					
Bit	Reserved		INC_CNT2						
Mode	۲		с С С						
Initial Value	00×0	0000 0000 0000							

Counter Value of sent SUB_INC2 values (for SMC=1 and RMO=1)

Bit 23:0 **INC_CNT2:** Actual number of pulses to be still sent out at the current increment until the next active input signal in automatic end mode;

Automatic addition of the number of demanded pulses MLS2 when getting an active *TRIGGER/STATE* input in normal or emergency mode respectively **when SGE2=1**;

writeable only for test purposes when DEN=0

In the case of a change of the direction the wrong number of pulses is corrected twice:

Add the difference between NMB_S and INC_CNT2 twice to INC_CNT2 before sending out the correction pulses.

Note: This value can only be written when the DPLL is disabled.

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

18.12.24 Register DPLL_APT_SYNC

Confidential

Specification

Address Offset:	see Appendix B	1	Initial Value: 0	0x0000_0000
	31 30 29 28 27 26 25 25	23 22 21 21 20 19 18 18 17 17	15 14 13 13 12 11 10 9 8 8	6 6 6 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Bit	Reserved	APT_2B_OLD	Reserved	APT_2B_STATUS APT_2B_EXT
Mode	۲	RV	۲	RW W
Initial Value	00×0	000 X0	0	0 000×0

TRIGGER Time Stamp Field Offset at Synchronization Time

- Bit 5:0 **APT_2B_EXT: Address pointer 2b extension;** this offset value determines, by which value the APT_2B is changed at the synchronization time; set by CPU before the synchronization is performed.
 - This offset value is the number of virtual increments to be inserted in the TSF for an imminent intended synchronization; the CPU sets its value dependent on the gaps until the synchronization time taking into account the considered NUTE value to be set and including the next future increment (when SYN_T_OLD is still 1). When the synchronization takes place, this value is to be added to the APT_2B address pointer (for forward direction, DIR1=0) and the APT_2B_STATUS bit is cleared after it. For backward direction subtract APT_2B_EXT accordingly. This correction is done after updating the RAM TSF with the last TS_T value.
 - **Note:** When the synchronization is intended and the NUTE value is to be set to FULL_SCALE after it, the APT_2B_EXT value must be set to 2*SYN_NT in order to be able to fill all gaps in the extended TSF_T with the corresponding values by the CPU.
 - When still not all values for FULL_SCALE are available, the APT_2B_EXT value considers only a share according to the corresponding NUTE value to be set after the synchronization.
- Bit 6APT_2B_STATUS: Address pointer 2b status; set by CPU before the
synchronization is performed. The value is cleared when the
APT_2B_OLD value is written.
0 = APT_2B_EXT is not to be considered.
1 = APT_2B_EXT has to be considered for time stamp field extension.Bit 13:7Reserved
Note: Read as zero, should be written as zero.Bit 23:14APT_2B_OLD: Address pointer TRIGGER for RAM region 2b at

GTM-IP	Specification	Revision 3.1.5.1
	when the synchronization takes place for the first a after writing APT_2C but before adding the offse (that means: when APT_2B_STATUS=1). Address pointer APT_2B value at the moment of s the offset value is added, that means the p points to the last value before the additional i	et value APT_2B_EXT ynchronization, before pointer with this value
Bit 31:24	Reserved	

Note: Read as zero, should be written as zero.

18.12.25 Register DPLL_APS_SYNC

Address Offset:	see Appendix B	Initi	ial Value: 0>	x0000_0000						
	31 30 29 28 28 28 26 25 25 25 24 23 23 23 23 23	19 18 17 16 15 14	13 12 11 11 10 9 8 8	6 5 4 3 3 3 1 0						
Bit	Reserved	APS_1C2_OLD	Reserved	APS_1C2_STATU APS_1C2_EXT						
Mode	œ	Я Х	٣	RW W						
Initial Value	00 00 00 00	0000	0	0 00x0						

STATE Time Stamp Field Offset at Synchronization Time

Bit 5:0 **APS_1C2_EXT: Address pointer 1c2 extension;** this offset value determines, by which value the APS_1C2 is changed at the synchronization time; set by CPU before the synchronization is performed.

This offset value is the number of virtual increments to be inserted in the TSF for an imminent intended synchronization; the CPU sets its value dependent on the gaps until the synchronization time taking into account the considered NUSE value to be set and including the next future increment (when SYN_S_OLD is still 1). When the synchronization takes place, this value is to be added to the APS_1C2 address pointer (for forward direction, DIR2=0) and the APT_1c2_status bit is cleared after it. For backward direction subtract APS_1C2_EXT accordingly.

Note: When the synchronization is intended and the NUSE value is to be set to FULL_SCALE after it, the APS_1C2_EXT value must be set to SYN_NS (for SYSF=1) or 2*SYN_NS (for SYSF=0) in order to be able to fill all gaps in the extended TSF_S with the corresponding values by the CPU.

- When still not all values for FULL_SCALE are available, the APS_1C2_EXT value considers only a share according to the NUSE value to be set after the synchronization.
- Bit 6 **APS_1C2_STATUS: Address pointer 1c2 status;** set by CPU before the synchronization is performed. The value is cleared automatically when the APS_1C2_OLD value is written.

0 = APS_1C2_EXT is not to be considered.

1 = APS_1C2_EXT has to be considered for time stamp field extension.

Bit 13:7 Reserved

Note: Read as zero, should be written as zero.

- Bit 19:14 **APS_1C2_OLD: Address pointer STATE for RAM region 1c2 at synchronization time;** this value is set by the current APS_1C2 value when the synchronization takes place for the first active STATE event after writing APS_1C3 but before adding the offset value APS_1C2_EXT (that means: when APS_1C2_STATUS=1).
 - Address pointer APS_1C2 value at the moment of synchronization, before the offset value is added, that means the pointer with this value points to the last value before the additional inserted gap

Bit 31:20 Reserved

Note: Read as zero, should be written as zero.

Note: This register is only used when DPLL_CTRL_11.STATE_EXT is not set. If DPLL_CTRL_11.STATE_EXT is set any read/write access to this register will return AEI_STATUS = 0b10.

18.12.26 Register DPLL_TBU_TS0_T

Address Offset:	see Appendix B		Initial Value:	0x0000_0000					
	31 30 29 28 27 26 25 25 25	23 22 21 21 20 19 18 17 17	15 14 13 12 11 10 9 8	7 6 7 3 3 3 2 2 1 1					
Bit	Reserved		TBU_TS0_T						
Mode	٣		R P &						
Initial Value	00000		000000						

Time Stamp Value for the last active TRIGGER

Bit 23:0 **TBU_TS0_T:** value of TBU_TS0 at the last TRIGGER event; for each T_valid the value of TBU_TS0 is stored in this register;

Specification

the register is writeable only for test purposes when DEN=0.

Note: This value can only be written when the DPLL is disabled.Bit 31:24Reserved
Note: Read as zero, should be written as zero.

18.12.27 Register DPLL_TBU_TS0_S

Address Offset:	see Appendix B Initial Value: 0x0000_0000
	31 33 30 29 27 28 26 25 25 25 25 25 23 23 23 23 23 23 23 13 11 11 11 11 11 11 11 11 11 11 11 11
Bit	Reserved TBU_TS0_S
Mode	R WA
Initial Value	00 00 00 00 00 00 00 00 00 00 00 00 00

Time Stamp Value for the last active STATE

Bit 23:0 **TBU_TS0_S:** value of TBU_TS0 at the last STATE event; for each S_VALID the value of TBU_TS0 is stored in this register; the register is writeable only for test purposes when DEN=0.

Note: This value can only be written when the DPLL is disabled.

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

18.12.28 Register DPLL_ADD_IN_LD1

Confidential

Specification

Address Offset:	see Appendix B	Initial	Initial Value: 0x0000_0									
	31 30 29 28 28 26 25 25 24 24 24 23 22 22 22 22 22	19 18 17 16 16 15 14 13	12 11 10 9 8	7 6 7 3 3 3 2 2 1 1								
Bit	Reserved		ADD_IN_LD1									
Mode	œ	RX										
Initial Value	00×0	00 00 X0										

ADD_IN Value in Direct Load Mode for TRIGGER

Bit 23:0 **ADD_IN_LD_1:** Input value for SUB_INC1 generation, given by CPU. This value can be used in normal und emergency mode (SMC=0) as well as for SMC=1.

For **DLM1** = 1:

- **Note:** The value is loaded by the CPU but used by the DPLL only for DLM1=1 (see DPLL_CTRL_1 register). When switching DLM1 to 1, the value in the register is used for the SUB_INC1 generation beginning from the next active *TRIGGER* or *STATE* event respectively independently if new values are written by the CPU or not.
- **Note:** When a new value is written the output frequency changes according to the given value beginning immediately from the moment of writing. Do not wait for performing step 10 in the state machine for ADD_IN calculations.
- **Note:** If the ADD_IN_LD1 value is zero all pulses are sent with the highest possible frequency.

For **DLM1** = **0**:

- **Note:** The value loaded by the CPU is stored directly in the internal add_in register which is used to control the sub increment pulse generator directly (see DPLL_CTRL_1 register, DLM1 = 0).
- **Note:** When a new ADD_IN_LD1 value is written the output frequency is immediately changed from the moment of writing. The ADD_IN values calculated internally of the DPLL are written to the internal ADD_IN register as well. In the moment when the internal calculation of the ADD_IN values is writing the results into the internal ADD_IN register of the pulse generator the internally calculated ADD_IN values does always have higher priority compared to the values written via the ADD_IN_LD1 register.
- **Note:** If the ADD_IN_LD1 value is zero all pulses are sent with the highest possible frequency.

Specification

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

18.12.29 Register DPLL_ADD_IN_LD2

Address Offset:	see Appendix B		Initial Value:	0x0000_0000						
	31 30 29 28 27 26 26 25 24	23 22 21 20 20 19 18 17 17	15 14 13 12 11 10 9 8	7 5 3 3 3 2 2 1 1						
Bit	Reserved		ADD_IN_LD2							
Mode	٣	RX								
Initial Value	00×0	000000								

ADD_IN Value in Direct Load Mode for STATE

Bit 23:0 **ADD_IN_LD_2:** Input value for SUB_INC2 generation, given by CPU. This value can be used for SMC=1 while RMO=1.

For DLM2 = 1:

- **Note:** The value is loaded by the CPU but used by the DPLL only for DLM2=1 (see DPLL_CTRL_1 register). When switching DLM2 to 1, the value in the register is used for the SUB_INC2 generation beginning from the next *STATE* event respectively independently if new values are written by the CPU or not.
- **Note:** When a new value is written the output frequency changes according to the given value beginning immediately from the moment of writing. Do not wait for performing step 30 in the state machine for ADD_IN calculations.
- **Note:** If the ADD_IN_LD2 value is zero all pulses are sent with the highest possible frequency.

For DLM2 = 0:

- **Note:** The value loaded by the CPU is stored directly in the internal add_in register which is used to control the sub increment pulse generator directly (see DPLL_CTRL_1 register, DLM2 = 0).
- **Note:** When a new ADD_IN_LD2 value is written the output frequency is immediately changed from the moment of writing. The ADD_IN values calculated internally of the DPLL are written to the internal ADD_IN register as well. In the moment when the internal calculation of the ADD_IN values is writing the results into the

internal ADD_IN register of the pulse generator the internally calculated ADD_IN values does always have higher priority compared to the values written via the ADD_IN_LD2 register.

Note: If the ADD_IN_LD2 value is zero all pulses are sent with the highest possible frequency.

Bit 31:24 **Reserved**

Note: Read as zero, should be written as zero.

Specification

18.12.30 Register DPLL_STATUS

Address Offset:	see Appendix B Ir									Initial Value: 0x0000_								0000														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit	ERR	LOCK1	FTD	FSD	SYT	SYS	LOCK2	Reserved	BWD1	BWD2	ITN	ISN	CAIP1	CAIP2	CSVT	CSVS	LOW_RES	poracco	neselveu	RAM2_ERR	MT	TOR	MS	SOR	PSE	RCT	RCS	CRO	CTO	Reserved	CSO	FPCE
Mode	ж	R	Я	Я	٣	Я	Я	Я	Я	Я	Я	Я	Я	Я	Я	Я	Я	٥	C	RCw	RCw	RCw	RCw	RCw	Я	Я	Я	RCw	RCw	Я	RCw	RCw
Initial Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0000	0,200	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit 0 Bit 1	 FPCE: Fast pulse correction error 0 = No error at fast pulse correction detected 1 = negative value of MPVAL1/2 used for fast pulse correction mode CSO: Calculated STATE duration overflow; Bit is set when equations DPLL-10a or DPLL-10b lead to an overflow 0 = No overflow at equation DPLL-10a or b 											าร																				
Bit 2 Bit 3	R N C 0 1 N	lot T(qu = lot	se: e: 0: iat	rv R ior No ov V col	ed ea Cal ns o or erf Vh	DF vei lov en ain	as J la rflo w a o s t	ze Ite L-! ow at o one	ero d 5a at eq e c e m	, s T or t e ua of	ho RI qu tio the	oul G(PL ati on e a	d k GE L Ior DF ab m	be S R SSI PLI ov va	wr dole)Pl L-5 e lue	itte lur LL 5a bit e 0	en rat d t -5a or cs)xF	a: io o a b is F	s z n an or k Se FF	ov ov ov et FF	/er	flo e	co	rre	esp	oor	ndi	ing	g r	eg	vhe	er
Bit 4												-											to							en	th	ıe

	 0 = No overflow at any reciprocal calculation 1 = overflow for at least one reciprocal calculation Note: An overflow in calculation of reciprocal values can occur, when the condition of Note ³⁾ to the DPLL_CTRL_0 register is violated (see chapter 18.12.1). Such an overflow can occur according to the calculations in equations (DPLL-1c) or (DPLL-6c). The overflow is detected when after the calculation and shifting left 32 bits at least one of the bits 31 to 24 is not zero. In that case the corresponding register is set to 0xFFFFFF.
Bit 5	RCS: Resolution conflict STATE . 0 = No resolution conflict detected 1 = the TS0_HRS value is set to 1 while LOW_RES=0
Bit 6	RCT: Resolution conflict TRIGGER . 0 = No resolution conflict detected
Bit 7	 1 = the TS0_HRT value is set to 1 while LOW_RES=0 PSE: Prediction space configuration error 0 = No prediction space error detected 1 = Configured offset value of RAM2 is too small in order to store all TNU+1 values twice in FULL_SCALE
Bit 8	SOR ⁷ : STATE out of range 0 = all STATE signal events appear within SLR interval or a direction change was detected 1 = at least one STATE signal event is out of SLR;
Bit 9	 MS: Missing STATE detected according to SOV. 0 = No missing STATE detected or a new active STATE slope occurred 1 = At least one missing STATE detected after the last active slope
Bit 10	 TOR⁸⁾: TRIGGER out of range 0 = all TRIGGER signal events appear within TLR interval or a direction change was detected 1 = at least one TRIGGER signal event is out of TLR;
Bit 11	 MT: Missing TRIGGER detected according to TOV 0 = No missing TRIGGER detected or a new active TRIGGER slope occurred 1 = At least one missing TRIGGER detected after the last active slope
Bit 12	RAM2_ERR : DPLL internal access to not configured RAM2 memory space 0 = No access to not configured RAM2 memory space

Automotive E	Electronics	BOSCH
GTM-IP	Specification	Revision 3.1.5.1
	1 = access to not configured RAM2 memory space	
Bit 14:13	Reserved Note: Read as zero, should be written as zero.	
Bit 15	LOW_RES: low resolution of TBU_TS0 is used f value reflects the input signal LOW_RES 0 = the lower 24 Bits of TBU_TS0 are used as inpu 1 = the higher 24 Bits of TBU_TS0 are used as inpu	t for the DPLL
Bit 16	CSVS: Current signal value STATE 0 = the last STATE_S value was 0 1 = the last STATE_S value was 1	
Bit 17	CSVT: Current signal value TRIGGER 0 = the last TRIGGER_S value was 0 1 = the last TRIGGER_S value was 1	
Bit 18	CAIP2: Calculation of upper half actions in progr 0 = currently no action calculation, new data reques 1 = action calculation in progress, no new data requ	sts possible
Bit 19	CAIP1: Calculation of lower half actions in progr 0 = currently no action calculation, new data reques 1 = action calculation in progress, no new data requ	sts possible
Bit 20	 ISN: Increment number of STATE is not plausible; number of STATES is different to profile 0 = the number of STATE events between sync plausible, a direction change is detected or the unittee 	hronization gaps is
	written 1 = after setting LOCK1 in emergency mode (SMC LOCK2 for SMC=RMO=1 missing or additio detected; bit is cleared when a direction chang APS_1C3 is written	nal STATE signals
Bit 21	 ITN: Increment number of TRIGGER is not plausible number of TRIGGERS is different to profile 0 = the number of <i>TRIGGER</i> events between sync plausible, a direction change is detected or t APT_2C is written 1 = after setting LOCK1 in normal mode (for SMC emergency mode (only for SMC=0) for mise 	chronization gaps is the address pointer =0 or SMC=1) or in ssing or additional
	TRIGGER signals detected; bit is cleared wher is detected or the APT_2C is written	a direction change
Bit 22	BWD2: Backwards drive of SUB_INC2 0 = forward direction 1 = backward direction	

Bit 23 BWD1: Backwards drive of SUB_INC1 Note: see bit 22

GTM-IP	Specification	Revision 3.1.5.1
Bit 24 Bit 25	 Reserved Note: Read as zero, should be written as zero. LOCK2: DPLL Lock status concerning SUB_IN 0 = The DPLL is not locked concerning STATE 1 = The DPLL is locked concerning STATE for Note: Locking of SUB_INC2 appears for RMO=SMC=1: Bit is set, when SYS is set ar between two missing STATEs is as expected 	F for SMC=1 SMC=1 nd the number of events
	Note: LOCK2 is set for SMC=RMO=1: for an active STATE event when SYS is set and or when SYS is set and the profile stored in the once between two gaps. LOCK2 is reset: for SMC=RMO=1 - when a missing STATE event occurs while SYI an unexpected missing STATE.	e ADT_Si field matches N_S=1. This does mean
Bit 26	 when the corresponding input signal STATE is a SYS: Synchronization condition of STATE fixed 	
	This bit is set when the CPU writes to the APS_1	
Bit 27	SYT: Synchronizatio n condition of TRIGGER fi This bit is set when the CPU writes to the APT_2	
Bit 28	 FSD: First STATE detected. 0 = Still no active STATE event was detected a 1 = At least one active STATE event was detected 	•
	Note: No change of FSD for switching from norr or vice versa.	mal to emergency mode
Bit 29	 FTD: First TRIGGER detected. 0 = No active TRIGGER event was detected af 1 = At least one active TRIGGER event was DPLL 	_
	Note: No change of FTD for switching from norr or vice versa.	mal to emergency mode
D# 20		104

Bit 30 LOCK1: DPLL Lock status concerning SUB_INC1

(\mathbf{A})	BOSCH
Re	evision 3.1.5.1

Specification

0 = The DPLL is not locked for *TRIGGER* (while SMC=RMO=0 or SMC=1) or for *STATE* (while SMC=0 and RMO=1) 1 = The DPLL is locked for *TRIGGER* (while SMC=RMO=0 or SMC=1) or for *STATE* (while SMC=0 and RMO=1)

Note: LOCK1 is set :

- in normal mode (for RMO=SMC=0, LCD=0): Bit is set for an active TRIGGER event when SYT is set and the number of events between two gaps is as expected by the profile (NT values in the ADT_T[i] field) or when SYN_NT=0 and SYT=1.
- in normal mode (for RMO=SMC=0, LCD=1): Bit is set for an active TRIGGER event when SYT is set and the number of events between two increments without missing TRIGGER (no gap) is as expected by the profile (NT values in the ADT_T[i] field).
- in emergency mode (for RMO=1 and SMC=0): Bit is set for an active STATE event, when SYS is set and the received events are in correspondence to the profile (NS values in the ADT_S[i] field) for at least two expected missing STATE events or when SYN_NS=0.
- for SMC=1: Bit is set for an active TRIGGER even when SYT is set and SYN_NT=0 or when SYT is set and the profile stored in the ADT_T[i] field matches once between two gaps.

LOCK1 is reset

for RMO=SMC=0:

- when a corresponding missing TRIGGER event occurs while SYN_T=1. This does mean an unexpected missing TRIGGER.
- when the corresponding input signal TRIGGER is out of locking range TLR,
- when a corresponding direction change is detected

for RMO=1 and SMC=0:

- when a corresponding missing STATE event occurs while SYN_S=1. This does mean an unexpected missing STATE.

- when the corresponding input signal STATE is out of locking range TLR for SMC=1:

- when a corresponding missing TRIGGER event occurs while SYN_T=1. This does mean an unexpected missing TRIGGER.
- when the corresponding input signal TRIGGER is out of locking range TLR,
- when a corresponding direction change is detected

GTM-IP	Specification	Revision 3.1.5.1
Bit 31	ERR: Error during configuration or operation resulting values. 0 = when all bits in position 8 to 0 and 10 and 12 are zet	

1 = when at least one bit in position 8 to 0 or 10 or 12 is one

⁷⁾ The SOR bit is set, when the time to the next active *STATE* slope exceeds the value of the last nominal *STATE* duration multiplied with the value of the SLR register (see chapter 18.12.73) and is reset, when at the current or last active input event a direction change was detected. The SYS bit is not influenced by setting the SOR bit.

⁸⁾ The TOR bit is set, when the time to the next active *TRIGGER* slope exceeds the value of the last nominal *TRIGGER* duration multiplied with the value of the TLR register (see chapter 18.12.72) and is reset, when at the current or last active input event a direction change was detected. The SYT bit is not influenced by setting the TOR bit

The DPLL_STATUS register is reset, when the DPLL is disabled (switching DEN from 1 to 0).

Address Offset:	see Appendix B Ini	itial Value: 0x0000_01FE
	31 30 29 27 26 26 26 25 25 25 23 23 23 23 23 21 21 21 13 117 15	14 13 12 11 10 9 8 8 8 8 8 7 7 5 5 5 1 4 4 2 3 3 3 0
Bit	Reserved	ID_PMTR_X
Mode	۲	RPw
Initial Value	000000 00	OXIFE

18.12.31 Register DPLL_ID_PMTR_[z] (z:0...NOAC-1)

ID Information for Input Signal PMTR[z] (Position minus Time Request), $z=0...NOAC-1^{1)}$

Bit 8:0 **ID_PMTR_X:** ID information to the input signal PMTR[i] from the ARU. **Note:** This value can only be written when the action [i] is disabled by the correspondent bit AENi=0 of the registers DPLL_CTRL_2, ...5 respectively

or when the DPLL is disabled (DEN=0).

Bit 31:9 Reserved

Note: Read as zero, should be written as zero.

18.12.32 Register DPLL_CTRL_0_SHADOW_TRIGGER

Address Offset:	see Appendix B				Initial Value: 0x0000_02						
	31 30	29 28	27	26	25 24 23 23 23 22 21 22 20 19 10 17 17 16	15 14 13 13 12 11	10	9 8 7	6 5	0 1 2 3 4	
Bit	RMO Reserved	ΤCI	Reserved	AMT	Reserved		IFP	WLT			
Mode	ж ж	۵	: r	Я	۲		£		٣		
Initial Value	0 00	0	0	0	0000×0		0	0x257			
Shadow Register of DPLL_CTRL_0 controlled by an active TRIGGER Slope Bit 9:0 MLT ¹ : multiplier for TRIGGER; MLT+1 is number of <i>SUB_INC1</i> pulses between two <i>TRIGGER</i> events in normal mode (11024);											
Bit 10	IFP ¹ : Input filter position; value contains position or time related information.										
Bit 25:11	reserved										
Bit 26	Note: Read as zero, should be written as zero. Bit 26 AMT ¹: Adapt mode TRIGGER; Use of adaptation information of <i>TRIGGER</i> .										
Bit 27	reserved Note: Read as zero, should be written as zero.										
Bit 28											
Bit 30:29	rese	erve	ed.		C C						
Bit 31	Note: Read as zero, should be written as zero. RMO ¹ : Reference mode; selection of the relevant the input signal for generation of SUB INC1.										
Note: Only t					racterized by ¹⁾ are stor	red for an a	cti	ve TRI	GGER	slope. All	

Note: Only the values characterized by ¹⁾ are stored for an active TRIGGER slope. All other values remain 0. When DEN=0 the relevant bit values of the original register DPLL_CTRL_0 are transferred without any input event at the next system clock. This results in the above reset value.

18.12.33 Register DPLL_CTRL_0_SHADOW_STATE

Specification

Revision	3.1.5.1
----------	---------

Address Offset:	se	see Appendix B						Ini	iti	al	V	'al	ue	:		0	x0000_0000																
	31	30	29	28		17	20	25	24 23	22	22	77	20	19	18	17	16	15	14	13	12	77	11	OT 0	ກຜ	7	9	5	4	· ~	, ,	1	0
Bit	RMO		Reserved		20	- SUI	neserven	AMS							Reserved									Reserved									
Mode	щ		щ		c	r	c	R							щ								٥					ſ	r				
Initial Value	0		000		c		0	0							0×0000								c	5					0x000				
Shadow Register of DPLL_CTRL_0 controlled by an active STATE Slope																																	
Bit 9:0	re	es	er	ve	ed			-		_							-																
									zero																								
Bit 10						npı on.		f	ilte	r	po	si	itic	on	;	va	lue	e (со	nt	ai	ins	s p	00	sitio	on	0	r t	im	e	re	lat	ed
Bit 24:11				νe																													
									zero																								
Bit 25							ap	ot	mo	de	e S	5T	AT	Ē	; l	Js	e (of a	ac	la	pta	ati	on	ir	nfor	ma	ati	on	0	fS	SΤ,	4T	Ε.
Bit 26				ve							_						_																
									zero	-																					• • •		
Bit 27	IDS ²⁾ : Input delay STATE; Use of input delay information transmitted in FT part of the STATE signal.																																
Bit 30:28			-	νe								0																					
	Note: Read as zero, should be written as zero.																																
Bit 31									nc UB				•		ele						e					the			ut	si	gn	al t	or

Note: Only the values characterized by ²⁾ are stored for an active STATE slope. All other values remain 0. When DEN=0 the relevant bit values of the original register DPLL_CTRL_0 are transferred without any input event at the next system clock.

18.12.34 Register DPLL_CTRL_1_SHADOW_TRIGGER

Specification

Revision 3.1.5.1

Address Offset:	see Appendix B	Initial Value:	03	x0	00	00_0000				
	31 30 29 27 27 26 26 26 25 25 23 23 23 23 23 23 23 21 19 11 11	15 14 13 13 12 11 10 9 8	7	6	5	4	3	2 1	0	
Bit	Reserved		PCM1	DLM1	SGE1	PIT	COA	Reserved	DMO	
Mode	٣		R	R	R	R	R	R	Я	
Initial Value	0 ⁻ 000 000		0	0	0	0	0	00	0	

Shadow Register of DPLL_CTRL_1 controlled by an active TRIGGER Slope

- Bit 0 **DMO**¹: **DPLL mode select**.
- Bit 2:1 reserved

Note: Read as zero, should be written as zero.

- Bit 3 **COA**¹: Correction strategy in automatic end mode (DMO=0).
- Bit 4 **PIT ¹**: **Plausibility** value PVT to next active TRIGGER is **time related**
- Bit 5 SGE1 ¹: SUB_INC1 generator enable.
- Bit 6 **DLM1 ¹: Direct Load Mode** for SUB_INC1 generation
- Bit 7 **PCM1 ¹**: **Pulse Correction Mode** for SUB_INC1 generation.
- Bit 31:8 reserved

Note: Read as zero, should be written as zero.

Note: Only the values characterized by ¹⁾ are stored for an active TRIGGER slope. All other values remain 0. When DEN=0 the relevant bit values of the original register DPLL_CTRL_1 are transferred without any input event at the next system clock.

18.12.35 Register DPLL_CTRL_1_SHADOW_STATE

Address Offset:	see Appendix B	Initial Valu	ıe:		()x0	00	0_	00	000	
	31 30 29 27 26 26 26 25 25 23 23 23 23 23 21 20 19 10	15 14 13 12 11	10	9	8 1	6	5	4	3	2 1	0
Bit	Reserved		PCM2	DLM2	SGE2	DLM1	SGE1	Reserved	COA	Reserved	DMO
Mode	۲		Я	Я	сс (r 12	R	Я	R	R	ы
Initial Value	00000 0		0	0	0 0	0 0	0	0	0	00	0
DPLL Shade	ow Register of DPLL_CTRL_1 contro	lled by an a	cti	ve	ST	ΑT	E S	Slo	ppe	Э	

Bit 0 **DMO**²: **DPLL mode select**.

GTM-IP	Specification	Revision 3.1.5.1
Bit 2:1	reserved	
	Note: Read as zero, should be written as zero.	
Bit 3	COA ²⁾ : Correction strategy in automatic end mod	le (DMO=0).
Bit 4	reserved	
	Note: Read as zero, should be written as zero.	
Bit 5	SGE1 ²⁾ : SUB_INC1 generator enable.	
Bit 6	DLM1 ²⁾ : Direct Load Mode for SUB_INC1 generatio	n
Bit 7	PCM1 ²): Pulse Correction Mode for SUB_INC1 get	neration.
Bit 8	SGE2 ²⁾ : SUB_INC2 generator enable.	
Bit 9	DLM2 ²): Direct Load Mode for SUB_INC2 generation	on
Bit 10	PCM2 ²): Pulse Correction Mode for SUB_INC2 get	neration.
Bit 31:11	reserved	
	Note: Read as zero, should be written as zero.	

Note: Only the values characterized by ²⁾ are stored for an active STATE slope. All other values remain 0. When DEN=0 the relevant bit values of the original register DPLL_CTRL_1 are transferred without any input event at the next system clock.

18.12.36 Register DPLL_RAM_INI

Address Offset:	see Appendix B	Initial Value:	0x000	0x0000_000				
	31 30 29 28 28 28 26 25 25 23 23 23 23 23 23 21 21 19 11 11 11	15 14 13 13 12 11 10 9 8	7 6 5	4	ε	2	1 0	
Bit	Reserved			INIT_RAM	Reserved	INIT_2	INIT_1BC INIT_1A	
Mode	œ			RAw	ж	ж	r r	
Initial Value	0000 ⁻			0	0	0	0 0	
Register to o Bit 0	egister to control the RAM Initialization t 0 INIT_1A: RAM region 1a initialization in progress 0 = No initialization of considered RAM region in progress 1 = Initialization of considered RAM region in progress							
Bit 1	INIT_1BC: RAM region 1b and 1c in see bit 0	nitialization in prog	ress					
Bit 2	INIT_2: RAM region 2 initialization i see bit 0	in progress						
Bit 3	Reserved Note: Read as zero, should be writt	en as zero.						
Bit 4	INIT_RAM: RAM regions 1a, 1b an 0 = Do not start initialization of all	d 2 are to be initia	ized.					

BOSCH

GTM-IP	Specification	Revision 3.1.5.1
	1 = Start initialization of all RAM regions	
	Note: Setting the INIT_RAM bit results only in a RA DPLL is not enabled (DEN=0).	AM reset when the
	Note: Depending on the vendor configuration the	e connected RAM

- regions are initialized to zero in the case of a module HW reset or for setting the RST bit in the GTM_RST register.
- Note: In the case of no RAM initialization it must be ensured that all relevant parameters are configured correctly. Otherwise there is no guarantee to get a predictable behavior.

Bit 31:5 Reserved

Note: Read as zero, should be written as zero.

18.12.37 Memory DPLL_TS_T

Address Offset:	see Appendix B		Initial Value:	0x0000_0000
	31 30 29 28 27 26 25 25	23 22 21 20 20 19 18 17 17	15 14 13 12 11 11 10 9 8	7 6 5 4 4 3 3 2 2 1 1
Bit	Reserved		TRIGGER_TS	
Mode	٣		RW	
Initial Value	00000		00 00 00 00 00	

Actual TRIGGER Time Stamp Value

Bit 23:0 **TRIGGER_TS:** Time stamp value of the last active *TRIGGER* input. measured TRIGGER time stamp Note: The LSB address is determined using the SWON T value in the OSW register (see chapter 18.12.8).

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

18.12.38 Memory DPLL_TS_T_OLD

Specification

Revision	3.1.5

Address Offset:	see Appendix B		Initial Value:	0x0000_0000
	31 30 29 28 27 26 25 25	23 22 21 20 20 19 18 17 17	15 14 13 13 12 11 10 9 8	7 6 6 7 3 3 3 3 1 1 1 0
Bit	Reserved		TRIGGER_TS_OL	
Mode	٣		RW	
Initial Value	00×0		0000×0	

Previous TRIGGER Time Stamp Value

Bit 23:0 **TRIGGER_TS_OLD:** Time stamp value of the last but one active TR*IGGER* input.

previous measured TRIGGER time stamp

Note: The LSB address is determined using the SWON_T value in the OSW register (see chapter 18.12.8).

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

18.12.39 Memory DPLL_FTV_T

Address Offset:	see Appendix B		Initial Value:	0x0000_0000
	31 30 29 28 27 26 25 25	23 22 21 21 20 19 18 17 17	15 14 13 12 11 11 10 9 8	7 5 4 4 3 3 3 1 1 1 0
Bit	Reserved		TRIGGER_FT	
Mode	٣		RK	
Initial Value	00×0		0000×0	

Actual TRIGGER Filter value

Bit 23:0 **TRIGGER_FT:** Filter value of the last active *TRIGGER* input. transmitted filter value **Note:** The LSB address is determined using the SWON_T value in the OSW register (see chapter 18.12.8).

Specification

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

18.12.40 Memory DPLL_TS_S

Address Offset:	see Appendix B		Initial Value:	0x0000_0000
	31 30 29 28 27 26 25 25	23 22 21 20 20 19 18 17 17	15 14 13 13 12 11 10 8	7 6 6 7 7 1 4 7 3 3 3 3 3 0
Bit	Reserved		STATE_TS	
Mode	٣		RW	
Initial Value	00000		00 00 00	

Actual STATE Time Stamp Register

Bit 23:0 **STATE_TS:** Time stamp value of the last active *STATE* input. **Note:** The LSB address is determined using the SWON_S value in the OSW register (see chapter 18.12.8).

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

18.12.41 Memory DPLL_TS_S_OLD

Address Offset:	see Appendix B		Initial Value:	0x0000_0000		
	31 30 29 28 27 26 25 25	23 22 21 21 20 19 18 17 16	15 14 13 13 13 13 11 10 9 9	6 5 1 1 1 0		
Bit	Reserved	STATE_TS_OLD				
Mode	۲	RW				
Initial Value	00×0		0000000 00			

Previous STATE Time Stamp Register

Bit 23:0 **STATE_TS_OLD:** Time stamp value of the last active *STATE* input.

Specification

Note: The LSB address is determined using the SWON_S value in the OSW register (see chapter 18.12.8).

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

18.12.42 Memory DPLL_FTV_S

Address Offset:	see Appendix B		Initial Value:	0x0000_0000			
	31 30 29 28 27 26 25 25 25	23 22 21 21 20 19 18 17 17	15 14 13 12 11 10 9 8	7 6 7 4 4 3 3 3 2 2 1 1			
Bit	Reserved	STATE_FT					
Mode	۳	RX SR					
Initial Value	00×0		0000X0				

Actual STATE Filter Value

Bit 23:0 **STATE_FT:** Filter value of the last active *STATE* input. transmitted filter value **Note:** The LSB address is determined using the SWON_S value in the OSW register (see chapter 18.12.8).

Bit 31:24 **Reserved**

Note: Read as zero, should be written as zero.

18.12.43 Memory DPLL_THMI

Specification

Revision 3	3.1.5.1
------------	---------

Address Offset:	see Appendix B		Initial Value: 0x0000_0000					
	31 30 29 28 27 26 25 25	23 22 21 21 20 19 18 17 17	15 14 13 13 12 12 12 11 11 11 11 11 11 11 12 13 3 3 3 1 1					
Bit	Reserved	NOT_USED	MH T					
Mode	٣	RW						
Initial Value	00×0	00×0	00000X0					

TRIGGER Hold Time Min. Value

Bit 15:0 **THMI:** minimal time between active and inactive *TRIGGER* slope (uint16); the time value corresponds to the time stamp clock counts: this does mean the clock selected for the TBU_CH0_BASE (see TBU_CH0_CTRL register)

set min. value; generate the TINI interrupt in the case of a violation for THMI>0.

Note: Typical retention time values after an active slope can be e.g. between 45 μ s (forwards) and 90 μ s (backwards). When THMI is zero, consider always a THMI violation (forwards).

Bit 23:16 Not used

Note: must be written to zero.

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

Address Offset:	see Appendix B		Initial Value: 0x0000_0000						
	31 30 29 28 27 26 25 25	23 22 21 21 20 19 18 17 17	15 14 13 13 12 11 10 9 8	7 6 5 4 4 3 3 3 2 1 1					
Bit	Reserved	NOT_USED	ТНМА						
Mode	٣	RW	RW						
Initial Value	00×0	00×0		0000000					

18.12.44 Memory DPLL_THMA

Specification

TRIGGER Hold Time Max. Value

Bit 15:0 **THMA:** maximal time between active and inactive *TRIGGER* slope (uint16); the time value corresponds to the time stamp clock counts: this does mean the clock selected for the TBU_CH0_BASE (see TBU_CH0_CTRL register) max. value to be set; generate the TAX interrupt in the case of a violation for THMA>0.

Bit 23:16 Not used

Note: must be written to zero.

Bit 31:24 **Reserved**

Note: Read as zero, should be written as zero.

18.12.45 Memory DPLL_THVAL

Address Offset:	see Appendix B		Initial Value: 0x0000_0000					
	31 30 29 28 27 26 25 25	23 22 21 20 20 19 18 17 17	15 14 13 12 11 11 10 9 8	7 6 5 3 3 3 2 2 2 1 1				
Bit	Reserved		ТНУАГ					
Mode	٣	ж Х						
Initial Value	00×00		0000×0					

Measured TRIGGER Hold Time Value

Bit 23:0 **THVAL:** measured time from the last active slope to the next inactive *TRIGGER* slope in time stamp clock counts: this does mean the clock selected for the TBU_CH0_BASE (uint16);

The measured value considers all input slope filter delays. From the received input the corresponding filter delays are subtracted before the time stamp difference of active and inactive slope is calculated.

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

Note: In the case of LOW_RES=1 and TBU_HRT=0 the difference between the time stamps of active and inactive slope is multiplied by 8. The register contains this value.

18.12.46 Memory DPLL_TOV

Specification

Address Offset:	s	see Appendix B						In	iti	al	Va	alı	le	:		02	x0	00	0_	00	00										
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	с	2	1
Bit				Received					NOT_USED					TOV_DW					TOV_DB												
Mode		œ								RW							RW					RV									
Initial Value		00×00							0×00	0000						0×00					000 ×0										

Time Out Value of Active TRIGGER Slope (for missing TRIGGER generation)

- Bit 9:0 **DB:** Decision value (fractional part) for missing TRIGGER interrupt.
- Bit 15:10 **DW:** Decision value (integer part) for missing TRIGGER interrupt.
 - **TOV(15:0)** is to be multiplied with the duration of the last increment and divided by 1024 in order to get the time-out time value for a missing TRIGGER event
 - **Note:** For the case of LOW_RES=1 (see DPLL_STATUS register) consider for the calculation of the time out value the following cases: LOW RES=1 and DPLL CTRL 1/TS0 HRT=1:
 - multiply the TBU TS0 value by 8
 - LOW_RES=1 and DPLL_CTRL_1/TS0_HRT=0: multiply the TBU_TS0 value by 8 multiply the estimated time point value (using TS_T, dt_t_ACT and TOV) by 8
 - LOW_RES=0 and DPLL_CTRL_1/TS0_HRT=0: use TBU_TS0 and the estimated time point value unchanged.

Bit 23:16 Not used

Note: must be written to zero.

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

18.12.47 Memory DPLL_TOV_S

Specification

Address Offset:	see Appendix B		Initial Value: 0x0000_0000					
	31 30 29 28 28 27 26 26 26	23 23 22 21 20 20 19 18 17 17 16	15 14 13 13 12 11 10	9 8 8 8 1 4 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Bit	Reserved	NOT_USED	MQ					
Mode	Ľ	RW	RW	RW				
Initial Value	00×0	00×0	00×0	000×00				

Time Out Value of active STATE Slope (for missing STATE generation)

Bit 9:0 **DB:** Decision value (fractional part) for missing STATE interrupt.

- Bit 15:10 **DW:** Decision value (integer part) for missing STATE interrupt.
 - **TOV_S (15:0)** is to be multiplied with the duration of the last increment and divided by 1024 in order to get the time-out time value for a missing STATE event.
 - **Note:** For the case of LOW_RES=1 (see DPLL_STATUS register) consider for the calculation of the time out value the following cases:
 - LOW_RES=1 and DPLL_CTRL_1/TS0_HRS=1: multiply the TBU TS0 value by 8
 - LOW_RES=1 and DPLL_CTRL_1/TS0_HRS=0: multiply the TBU_TS0 value by 8 multiply the estimated time point value (using TS_T, dt_s_ACT and SOV) by 8
 - LOW_RES=0 and DPLL_CTRL_1/TS0_HRS=0: use TBU_TS0 and the estimated time point value unchanged.

Bit 23:16 Not used

Note: must be written to zero.

Bit 31:24 **Reserved** Note: Read as zero, should be written as zero.

18.12.48 Memory DPLL_ADD_IN_CAL1

Specification

Address Offset:	see Appendix B		Initial Value:	0x0000_0000			
	31 30 29 28 28 27 26 25 25	23 22 21 21 20 20 19 18 17 17	15 14 13 13 12 11 10 9 8	7 6 5 4 4 3 3 3 2 2 1 1			
Bit	Reserved		ADD_IN_CAL1				
Mode	Ľ		RW				
Initial Value	00×0		000000000000000000000000000000000000000				

Calculated ADD_IN Value for SUB_INC1 Generation

Bit 23:0 **ADD_IN_CAL_1:** Calculated input value for SUB_INC1 generation, calculated by the DPLL.

calculated value

The update of the ADD_IN value by the new calculated value ADD_IN_CAL1 is suppressed for one increment when an unexpected missing TRIGGER (SMC=1 or RMO=0) or an unexpected STATE (RMO=1 and SMC=0) is detected.

Bit 31:24 **Reserved**

Note: Read as zero, should be written as zero.

18.12.49 Memory DPLL_ADD_IN_CAL2

Address Offset:	see Appendix B Initial Va	llue: 0x0000_0000				
	31 30 29 28 28 28 26 27 26 27 25 26 27 27 21 23 21 16 117 117 117 117 117 117 117 117 117	11 10 9 8 8 8 6 6 6 6 7 7 7 3 3 3 3 3 2 2 2 0				
Bit	Reserved ADD IN CAL2	1				
Mode	ч <u></u>	RV				
Initial Value	000000000000000000000000000000000000000	3				

Calculated ADD_IN Value for SUB_INC2 Generation

Bit 23:0 **ADD_IN_CAL_2:** Input value for SUB_INC2 generation, calculated by the DPLL for SMC=RMO=1. calculated value

GTM-IP	Specification	Revision 3.1.5.1

The update of the ADD_IN value by the calculated value ADD_IN_CAL2 is suppressed for one increment when an unexpected missing STATE (RMO=SMC=1) is detected.

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

18.12.50 Memory DPLL_MPVAL1

Address Offset:	see Appendix B		Initial Value: 0x0000_0000					
	31 30 29 28 27 26 25 25	23 22 21 21 20 19 18 18 17 17	15 14 13 12 11 10 9 8	7 6 5 7 4 4 3 3 3 2 2 0				
Bit	Reserved	SIX1	MPVAL1					
Mode	Ľ	RW	RW					
Initial Value	00×0	00 X0	0000X0					

Missing Pulses to be Added or Subtracted Directly

Bit 15:0 **MPVAL1:** missing pulses for direct correction of SUB_INC1 pulses by the CPU (sint16);

used only for RMO=0 or SMC=1 for the case PCM1=1.

Add MPVAL1 once to INC_CNT1 and reset PCM1 after applying once

Bit 23:16	SIX1: sign extension for MPVAL1			
	0x00 =	MPVAL1 is a positive number		
	0xFF =	MPVAL1 is a negative number		
	Note: All bits	must be written to either all zeros or all ones.		
Bit 31:24	Reserved			
	Note: Read as zero, should be written as zero.			

Note: Do not provide negative values which exceed the amount of NT*(MLT+1) or MLS1 respectively; when considered negative PD values the sum of both (MPVAL1 + NT*PD) should not exceed the amount of NT*(MLT+1) or MLS1 respectively.

18.12.51 Memory DPLL_MPVAL2

BOSCH

Specification

1.5.1

Address Offset:	see Appendix B		Initial Value: 0x0000_0000
	31 30 29 28 28 26 25 25	23 22 21 21 20 19 18 17 17	15 15 13 13 13 12 10 9 9 8 8 8 8 8 8 8 8 7 7 6 6 6 5 5 10 10
Bit	Reserved	SIX2	MPVAL2
Mode	Ľ	RW	RW
Initial Value	00×0	00×0	00000×0

Missing Pulses to be Added or Subtracted Directly

Bit 15:0 **MPVAL2:** missing pulses for direct correction of SUB_INC2 pulses by the CPU (sint16);

used only for SMC=RMO=1 for the case PCM2=1. Add MPVAL2 once to INC_CNT2 and reset PCM2 after applying once

Note: Do not provide negative values which exceed the amount of MLS2; when considered negative PD_S values the sum of both (MPVAL2 + NS *PD_S) should not exceed the amount of MLS2.

Bit 23:16	SIX2: sign	SIX2: sign extension for MPVAL2			
	0x00 =	MPVAL2 is a positive number			
	0xFF =	MPVAL2 is a negative number			
	Note: All bi	its must be written to either all zeros or all ones.			
Bit 31:24	Reserved				
	Nata Daa				

Note: Read as zero, should be written as zero.

18.12.52 Memory DPLL_NMB_T_TAR

Confidential

Specification

Revision 3.1.5.1

Address Offset:	see Appendix B		Initial Value:	0x0000_0000
	31 30 29 28 28 27 26 25 25	23 22 21 21 20 19 18 17 17	15 14 13 13 12 11 10 9 8	6 5 7 3 3 3 1 1 1 0
Bit	Reserved	NOT_USED		NMB_T_TAR
Mode	£	RW		RW
Initial Value	00×0	00×0		000000000000000000000000000000000000000

Target Number of Pulses to be sent in Normal Mode

Bit 15:0 **NMB_T_TAR: Target Number of pulses for TRIGGER;** Calculated number of pulses in normal mode for the current *TRIGGER* increment without missing pulses.

calculated target pulse number

Note: The LSB address is determined using the SWON_T value in the OSW register (see chapter 18.12.8).

Bit 23:16 Not used

Note: must be written to zero.

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

18.12.53 Memory DPLL_NMB_T_TAR_OLD

Address Offset:	see Appendix B		Initial Value:	0x0000_0000
	31 30 29 28 27 26 25 25 25	23 22 21 20 20 19 18 17 17	15 14 13 13 12 11 10 9 8	6 5 7 7 6 6 7 7 0
Bit	Reserved	NOT_USED	NMB_T_TAR_OLD	
Mode	۲	RŴ	ж Х	
Initial Value	00 X0	00×00	00000×0	

Last but one Target Number of Pulses to be sent in Normal Mode

Bit 15:0 **NMB_T_TAR_OLD: Target Number of pulses for TRIGGER;** Calculated number of pulses in normal mode for the current *TRIGGER* increment without missing pulses.

GTM-IP	Specification	Revision 3.1.5.1
	calculated target pulse number Note: The LSB address is determined using the SWC OSW register (see chapter 18.12.8).	DN_T value in the
Bit 23:16	Not used	
Bit 31:24	Note: must be written to zero. Reserved	
DII 31:24	Note: Read as zero, should be written as zero.	

18.12.54 Memory DPLL_NMB_S_TAR

Address Offset:	see Appendix B			Initial Value:	0x0000_0000
	31 30 29 28 27 26 25 25	23 22 21 20	19 18 17 16	15 14 13 13 12 11 10 9 8	7 6 7 4 4 3 3 3 2 2 1 1
Bit	Reserved	NOT_USED		NMB_S_TAR	
Mode	۲	RV		R	
Initial Value	00×0	0×0		0000×0	

Target Number of Pulses to be sent in Emergency Mode

Bit 19:0 **NMB_S_TAR: Target Number of pulses for STATE;** Calculated number of pulses in emergency mode for the current *STATE* increment without missing pulses. calculated target pulse number

Note: The LSB address is determined using the SWON_S value in the OSW register (see chapter 18.12.8).

Bit 23:20 Not used

Note: must be written to zero.

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

18.12.55 Memory DPLL_NMB_S_TAR_OLD

BOSCH

Specification

Revision 3.1.5.1

Address Offset:	see Appendix B			Initial Value:	0x0000_0000
	31 30 29 28 27 26 25 25	23 22 21 20	19 18 17 16	15 14 13 13 12 11 11 10 9	8 6 6 7 8 8 8 3 3 3 3 3 3 2 2 2 0
Bit	Reserved	NOT_USED		NMB_S_TAR_OLD	
Mode	۲	RW		ж Х	
Initial Value	00×0	0×0		0 0000 0	

Last but one Target Number of Pulses to be sent in Emergency Mode

NMB S TAR OLD: Target Number of pulses for STATE; Calculated Bit 19:0 number of pulses in emergency mode for the current STATE increment without missing pulses.

calculated target pulse number

Note: The LSB address is determined using the SWON_S value in the OSW register (see chapter 18.12.8).

Bit 23:20 Not used

Note: must be written to zero.

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

18.12.56 Memory DPLL RCDT TX

Address Offset:	see Appendix B		Initial Value:	0x0000_0000
	31 30 29 28 27 26 25 25 25	23 22 21 21 20 19 18 18 17 16	15 14 13 13 12 11 11 10 9 8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Bit	Reserved		RCDT_TX	
Mode	٣		RW	
Initial Value	00×0		000000	

Reciprocal Value of the Expected Increment Duration of TRIGGER

RCDT TX: Reciprocal value of expected increment duration *2³² while Bit 23:0 only the lower 24 bits are used.

calculated value; when an overflow occurs in calculation the value is set to 0xFFFFFF.

Bit 31:24 **Reserved** Note: Read as zero, should be written as zero.

18.12.57 Memory DPLL_RCDT_SX

Address Offset:	see Appendix B		Initial Value:	0x0000_0000
	31 30 29 28 27 26 25 25 25	23 22 21 21 20 19 18 17 17	15 14 13 12 11 11 10 9 8	7 6 7 3 3 3 3 2 2 2 1 1
Bit	Reserved		RCDT_SX	
Mode	۲		RV	
Initial Value	00×0		0000×0	

Reciprocal Value of the Expected Increment Duration of STATE

Bit 23:0 **RCDT_SX:** Reciprocal value of expected increment duration *2³² while only the lower 24 bits are used. calculated value; when an overflow occurs in calculation the value is set to 0xFFFFFF.

Bit 31:24 **Reserved** Note: Read as zero, should be written as zero.

18.12.58 Memory DPLL_RCDT_TX_NOM

Address Offset:	see Appendix B		Initial Value:	0x0000_0000
	31 30 29 28 27 26 26 25 24 23 23	22 21 20 19 18 17 16	15 14 13 13 12 11 10 9 8	7 5 3 3 3 2 1 1
Bit	Reserved		RCDT_TX_NOM	
Mode	œ		RW	
Initial Value	00×0		0000X0	

BOSCH

GTM-IP	Specification	Revision 3.1.5.1
Reciprocal V Bit 23:0	Value of the Expected Nominal Increment Duration RCDT_TX_NOM: Reciprocal value of nominal i while only the lower 24 bits are used. calculated value; when an overflow occurs in calculated value; wh	ncrement duration *2 ³²

Bit 31:24 **Reserved** Note: Read as zero, should be written as zero.

18.12.59 Memory DPLL_RCDT_SX_NOM

Address Offset:	see Appendix B Initial Value: 0x0000_0000
	31 30 29 28 27 27 26 25 24 23 24 21 17 19 11 11 13 13 13 13 11 11 11 11 11 11 11
Bit	RCDT_SX_NOM
Mode	۲ <u>ک</u>
Initial Value	00×0 00×0

Reciprocal Value of the Expected Nominal Increment Duration of STATE

Bit 23:0 **RCDT_SX_NOM:** Reciprocal value of nominal increment duration *2³² while only the lower 24 bits are used.

calculated value; when an overflow occurs in calculation the value is set to 0xFFFFFF.

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

Note: RCDT_TX_NOM and RCDT_SX_NOM are calculated by the values RCDT_TX and RCDT_SX to be multiplied with SYN_T or SYN_S respectively.

18.12.60 Memory DPLL_RDT_T_ACT

BOSCH

Specification

Address Offset:	see Appendix B		Initial Value:	0x0000_0000
	31 30 29 28 27 26 25 25	23 22 21 20 20 19 18 17 17	15 14 13 12 11 11 10 9 8	6 5 4 3 3 3 1 1 1 0
Bit	Reserved		RDT_T_ACT	
Mode	٣		ж Х	
Initial Value	00×0		000000 00	

Reciprocal Value of the Last Increment of TRIGGER

Bit 23:0 **RDT_T_ACT:** Reciprocal value of last *TRIGGER* increment *2³², only the lower 24 bits are used; the LSB is rounded up when the next truncated bit is 1.

calculated value; when an overflow occurs in calculation the value is set to 0xFFFFFF and the CRO bit in the DPLL_STATUS register is set (see chapter 18.12.30).

Bit 31:24 **Reserved**

Note: Read as zero, should be written as zero.

18.12.61 Memory DPLL_RDT_S_ACT

Address Offset:	see Appendix B		Initial Value:	0x0000_0000
	31 30 29 28 27 26 25 25	23 22 21 20 20 19 18 17 17	15 14 13 13 12 11 10 9 8	7 6 7 4 4 3 3 3 1 1 1 0
Bit	Reserved		RDT_S_ACT	
Mode	۲		RK	
Initial Value	00×0		000000	

Reciprocal Value of the Last Increment of STATE

Bit 23:0 **RDT_S_ACT:** Reciprocal value of last *STATE* increment *2³², only the lower 24 bits are used; the LSB is rounded up when the next truncated bit is 1. calculated value; when an overflow occurs in calculation the value is set

to 0xFFFFFF and the CRO bit in the DPLL_STATUS register is set (see chapter 18.12.30).

Specification

Bit 31:24 **Reserved**

Note: Read as zero, should be written as zero.

18.12.62 Memory DPLL_DT_T_ACT

Address Offset:	see Appendix B		Initial Value:	0x0000_0000
	31 30 29 28 27 26 26 25 25 24	23 22 21 21 19 19 18 17 17	15 14 13 12 12 11 10 9 8	7 6 5 3 3 3 2 2 1 1
Bit	Reserved		DT_T_ACT	
Mode	۳		RW	
Initial Value	00×0		000000	

Duration of the Last TRIGGER Increment

Bit 23:0 **DT_T_ACT:** Calculated duration of the last *TRIGGER* increment. calculated duration of the last increment; Value will be written into the corresponding RAM field, when all calculations for the considered increment are done and APT is valid.

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

18.12.63 Memory DPLL_DT_S_ACT

Specification

Address Offset:	see Appendix B		Initial Value:	0x0000_0000
	31 30 29 28 27 26 25 25	23 22 21 21 20 19 18 17 17	15 14 13 12 11 11 10 9 8	7 6 7 4 4 3 3 3 2 2 1 1
Bit	Reserved		DT_S_ACT	
Mode	٣		RW	
Initial Value	00×0		000000 00	

Duration of the Last STATE Increment

Bit 23:0 **DT_S_ACT:** Calculated duration of the last *STATE* increment. Calculated increment duration Value will be written into the corresponding RAM field, when all calculations for the considered increment are done and APS is valid.

Bit 31:24 **Reserved**

Note: Read as zero, should be written as zero.

18.12.64 Memory DPLL_EDT_T

Address Offset:	ee Appendix B Initial Value: 0x0000_0000	
	30 29 29 20 27 26 26 25 25 26 22 22 23 23 23 23 21 17 11 11 11 11 11 11 11 11 11 11 11 11	1 0
Bit	Reserved EDT_T	
Mode	ч ≩	
Initial Value	00×0 00×0	

Difference of Prediction to Actual Value of the Last TRIGGER Increment

Bit 23:0 **EDT_T:** *Signed* difference between actual value and a simple prediction of the last *TRIGGER* increment: **sint24** calculated error value

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

18.12.65

Address Offset:	see Appendix B		Initial Value:	0x0000_0000
	31 30 29 28 27 26 25 25 25	23 22 21 20 20 19 18 17 17	15 14 13 12 11 11 10 9 8	7 6 7 3 3 3 3 2 2 2 1 1
Bit	Reserved		MEDT_T	
Mode	٣		RK	
Initial Value	00×0		000000	

Weighted Difference of Prediction Errors of TRIGGER

Memory DPLL_MEDT_T

Bit 23:0 **MEDT_T:** *Signed* middle weighted difference between actual value and prediction of the last *TRIGGER* increments: **sint24**; only calculated for SYT=1

calculated medium error value, see chapter 18.6.2.6

The value is calculated only after synchronization (SYT=1) and the update is suppressed for one increment when an unexpected missing TRIGGER is detected.

Bit 31:24 **Reserved**

Note: Read as zero, should be written as zero.

18.12.66 Memory DPLL_EDT_S

Address Offset:	see Appendix B		Initial Value:	0x0000_0000
	31 30 29 28 28 27 26 25 25	23 22 21 21 20 19 18 17 16	15 14 13 13 12 11 11 9 8	7 6 7 1 1 2 2 0
Bit	Reserved		EDT_S	
Mode	٣		R	
Initial Value	00×0		000000	

Difference of Prediction to Actual Value of the Last STATE Increment

GTM-IP		Specification	Revision 3.1.5.1
Bit 23:0	EDT_S: the last S7	Signed difference between actual va ATE increment: sint24	lue and prediction of
	calculated	error value, see chapter 18.6.3.5	
Bit 31:24	Reserved		
	Note: Rea	d as zero, should be written as zero.	

18.12.67 Memory DPLL_MEDT_S

Address Offset:	see Appendix B		Initial Value:	0x0000_0000
	31 30 29 28 27 26 26 25 25	23 22 21 20 20 19 18 17 17	15 14 13 12 11 10 9 8	7 5 3 3 3 2 1 1
Bit	Reserved		MEDT_S	
Mode	ы		RW	
Initial Value	00×00		000000	

Weighted Difference of Prediction Errors of STATE

Bit 23:0 **MEDT_S:** *Signed* middle weighted difference between actual value and prediction of the last *STATE* increments: **sint24**; only calculated for SYS=1

calculated medium error value, see chapter 18.6.3.6

The value is calculated only after synchronization (SYS=1) and the update is suppressed for one increment when an unexpected missing STATE is detected.

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

18.12.68 Memory DPLL_CDT_TX

BOSCH

Specification

Revision 3.1.5.1

Address Offset:	see Appendix B		Initial Value:	0x0000_0000
	31 30 29 28 27 26 25 25	23 22 21 20 20 19 18 17 17	15 14 13 13 12 11 10 9 8	7 6 7 3 3 3 3 2 2 1 1
Bit	Reserved		CDT_TX	
Mode	٣		RX	
Initial Value	00×0		000000	

Prediction of the Actual TRIGGER Increment Duration

Bit 23:0 **CDT_TX:** Calculated duration of the current *TRIGGER* increment. calculated value

Bit 31:24 **Reserved**

Note: Read as zero, should be written as zero.

18.12.69 Memory DPLL_CDT_SX

Address Offset:	see Appendix B		Initial Value:	0x0000_0000
	31 30 29 28 27 26 25 25 25	23 22 21 20 20 19 18 17 17	15 14 13 13 12 11 10 9 8	7 6 7 4 4 3 3 3 2 2 1 1
Bit	Reserved		CDT_SX	
Mode	œ		ж Х	
Initial Value	00×0		000000	

Prediction of the Actual STATE Increment Duration

Bit 23:0 **CDT_SX:** Calculated duration of the current *STATE* increment. calculated value

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

18.12.70 Memory DPLL_CDT_TX_NOM

Specification

Address				
Offset:	see Appendix B		Initial Value:	0x0000_0000
	31 30 29 28 27 26 25 25 25	23 22 21 20 20 19 18 17 17	15 14 13 13 12 11 10 9 8	6 5 7 1 1 1 0
Bit	Reserved		CDT_TX_NOM	
Mode	Ľ		RK	
Initial Value	00×0		000000	

Prediction of the Nominal TRIGGER Increment Duration

Bit 23:0 **CDT_TX_NOM:** Calculated duration of the current nominal *TRIGGER* event. calculated value

Bit 31:24 **Reserved** Note: Read as zero, should be written as zero.

18.12.71 Memory DPLL_CDT_SX_NOM

Address Offset:	see Appendix B		Initial Value:	0x0000_0000
	31 30 29 28 27 26 26 25 25	23 22 21 21 20 19 18 17 17	15 14 13 12 12 11 10 9 8	7 6 7 4 4 3 3 3 2 1 1
Bit	Reserved		CDT_SX_NOM	
Mode	Ľ		RW	
Initial Value	00×0		000000	

Prediction of the Nominal STATE Increment Duration

Bit 23:0 **CDT_SX_NOM:** Calculated duration of the current nominal *STATE* event. calculated value

Bit 31:24 **Reserved** Note: Read as zero, should be written as zero.

Specification

18.12.72 Memory DPLL_TLR

Address Offset:	see Appendix B		Initial Value:	0x0000_0000
	31 30 29 28 27 26 25 25	23 22 21 20 20 19 18 17 17	15 14 13 12 11 10 9 8	7 5 3 3 3 1 1 0
Bit	Reserved			TLR
Mode	۲	RV		RW
Initial Value	00×0			00×0

TRIGGER Locking Range

Bit 7:0 **TLR:** Value is to be multiplied with the last nominal TRIGGER duration in order to get the range for the next TRIGGER event without setting TOR in the DPLL_STATUS register

multiply value with the last nominal increment duration and check violation; when TLR = 0 don't perform the check

Bit 23:8 Not used

Note: must be written to zero.

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

18.12.73 Memory DPLL_SLR

Address Offset:	see Appendix B		Initial Value:	0x0000_0000
	31 30 29 28 28 27 26 25 24	23 22 21 21 20 19 18 17 16	15 14 13 13 12 11 11 9 8	7 5 7 3 3 3 1 1
Bit	Reserved	NOT_USED		SLR
Mode	٣	RW		RW
Initial Value	00×0			00×0

STATE Locking Range

(\mathbf{H})	BOSC	H
Re	evision 3.1	.5.1

GTM-IP	Specification	Revision 3.1.5.1
Bit 7:0	SLR: Value is to be multiplied with the last nomin order to get the range for the next STATE event w the DPLL_STATUS register multiply value with the last nominal increment violation; when SLR = 0 don't perform the che	vithout setting SOR in duration and check
Bit 23:8	Not used Note: must be written to zero.	

Bit 31:24 Reserved Note: Read as zero, should be written as zero.

18.12.74 Memory DPLL_PDT_[z] (z:0...NOAC-1)

Address Offset:	see Appendix B	Ir	nitial Value: 0x0000_0000
	31 30 29 28 27 26 25 25	23 22 21 21 20 19 18 17 16 15	11 13 13 11 11 10 9 8 8 8 8 8 8 8 8 7 6 6 5 5 3 3 3 2 2 2 2 2 0
Bit	Reserved	MG	Ë
Mode	٣	RW	ж Х
Initial Value	00×0	000×0	00000×0

Projected Increment Sum Relations for Action [z]

Bit 13:0 **DB:** Fractional part of relation between TRIGGER and STATE increments.

Bit 23:14 **DW:** Integer part of relation between *TRIGGER* and *STATE* increments. Definition of relation values between TRIGGER and STATE increments PDT[i] according to Equations DPLL-11 or DPLL-13 (z:0...NOAC-1)¹⁾

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

¹⁾ **Note:** The PDT[z] values for actions i=24...31 are not available for all devices. Please refer to appendix B.

18.12.75 Memory DPLL MLS1

Specification

Revision	3.1.5.1
----------	---------

Address Offset:	see Appendix B			Initial Value:	0x0000_0000
	31 30 29 28 27 26 25 25	23 22 21 21 20 19 18	17 16	15 14 13 13 12 11 10 9	8 6 6 3 3 3 2 2 0
Bit	Reserved	NOT_USED		MLS1	
Mode	٣	RW		RW	
Initial Value	00×0	00×0		000000000000000000000000000000000000000	5

Calculated Number of Sub-Pulses between two nominal STATE Events for SMC = 0

Bit 17:0 MLS1: number of pulses between two STATE events (to be set and updated by the CPU).

- For SMC=0 the value of MLS1 is calculated once by the CPU for fixed values in the DPLL CTRL 0 register by the formula MLS1 = ((MLT+1)*(TNU+1)/(SNU+1)) and set accordingly
- FOR SMC=1 the value of MLS1 represents the number of pulses between two nominal TRIGGER events (to be set and updated by the CPU)

Bit 23:18 Not used

Note: must be written to zero.

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

18.12.76 Memory DPLL_MLS2

Address Offset:	see Appendix B		Initial Value:	0x0000_0000
	31 30 29 28 27 26 25 25	23 22 21 21 20 19 18 18	15 14 13 13 13 11 10 9 8	7 5 4 4 3 3 3 1 1 1
Bit	Reserved	NOT_USED	MLS2	
Mode	٣	RW	RW	
Initial Value	00×0	00000	000000 0	

Specification

Calculated Number of Sub-Pulses between two nominal STATE Events for SMC=1 and RMO=1

- Bit 17:0 **MLS2:** number of pulses between two *STATE* events (to be set and updated by the CPU). Using adapt information and the missing *STATE* event information SYN_S, this value can be corrected for each increment automatically.
- Bit 23:18 Not used

Note: must be written to zero.

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

18.12.77 Memory DPLL_CNT_NUM_1

Address Offset:	see Appendix B		Initial Value:	0x0000_0000
	31 30 29 28 28 27 26 25 25	23 22 21 21 20 19 18 17 17	15 14 13 12 11 11 10 9 8	7 6 5 4 4 3 3 3 2 1 1
Bit	Reserved	CNT_NUM_1		
Mode	Ľ	RW		
Initial Value	00×0	00000 00 00		
Bit 23:0	CNT_NUM_1: Co	ounter for numbe	er of SUB INC1 p	ulses; Number of

Bit 23:0 **CNT_NUM_1: Counter for number of SUB_INC1 pulses;** Number of pulses in continuous mode for a nominal increment in normal and emergency mode for SUB_INC1, given and updated by CPU only. count value for continuous mode

Bit 31:24 **Reserved** Note: Read as zero, should be written as zero.

18.12.78 Memory DPLL_CNT_NUM_2

Specification

Address Offset:	see Appendix B		Initial Value:	0x0000_0000
	31 30 29 28 27 26 25 25 25	23 22 21 21 20 19 18 17 17	15 14 13 13 13 12 11 10 9	0 11 2 3 4 5 5 6 7 8
Bit	Reserved		CNT_NUM_2	
Mode	۳		RŴ	
Initial Value	00×0		000000 00	
Bit 23:0	pulses in contin	uous mode for a e for SUB_INC2, gi	nominal increm	pulses; Number of ent in normal and by CPU only.

Bit 31:24 **Reserved** Note: Read as zero, should be written as zero.

18.12.79 Memory DPLL_PVT

Address Offset:	see Appendix B		Initial Value:	0x0000_0000
	31 30 29 28 27 26 25 25	23 22 20 20 19 18 17 17	15 14 13 13 12 11 10 9 8	7 6 6 7 7 1 4 7 2 3 3 0
Bit	Reserved		PVT	
Mode	٣		R	
Initial Value	0000		000000	

Plausibility Value of Next TRIGGER Slope

PVT: Plausibility value of next active *TRIGGER* slope.

The meaning of the value depends on the value of the PIT value in the DPLL_CTRL_1 register.

For PIT=0: the number of SUB_INC1 pulses to be waited for until a next active *TRIGGER* event is accepted.

For PIT=1: PVT is to be multiplied with the **last nominal increment time DT_T_ACT** and divided by 1024 and reduced to a 24 bit value in order to get the time to be waited for until the next active *TRIGGER* event is accepted. The wait time must be exceeded for an active slope.

Bit 23:0

Note: When an active *TRIGGER* slope is detected while the wait condition is not fulfilled the interrupt PWI is generated. Please note, that the SGE1 must be set, when PIT=0 in order to provide the necessary SUB_INC1 pulses for checking. After an unexpected missing TRIGGER the plausibility check is suppressed for the following increment. In case of direction change the PVT value is automatically set to zero in order to deactivate the check.

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

18.12.80 Memory DPLL_PSTC

Address Offset:	see Appendix B Initial Value: 0x0000_0000
	31 33 30 29 27 28 26 25 25 25 25 25 25 25 23 23 23 23 23 17 11 11 11 11 11 11 11 11 11 11 11 11
Bit	Reserved
Mode	м <u>В</u>
Initial Value	000000 000000

Actual Calculated Position Stamp of TRIGGER

Bit 23:0 **PSTC:** calculated position stamp of last *TRIGGER* input;

value is set by the DPLL and can be updated by the CPU when filter values are to be considered for the exact position

(see **DPLL_STATUS** and **DPLL_CTRL** registers for explanation of the status and control bits used). For each active slope of *TRIGGER* in normal mode

when FTD=0: PSTC is set from actual position value, for the first active *TRIGGER* event (no filter delay considered) the CPU must update the value once, taking into account the filter value

when FTD=1: PSTC is incremented at each *TRIGGER* event by

SMC=0: ((MLT+1) +PD) * SYN_T;	while PD=0 for AMT=0
SMC=1: (MLS1 + PD)*(SYN_T);	while PD=0 for AMT=0

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

Specification

18.12.81 Memory DPLL_PSSC

Address Offset:	see Appendix B		Initial	Value:	0x0000_	0000
	31 30 29 28 27 26 25 25	23 22 21 20 20 19 18 17 17	15 14 13	12 11 10 9 8	7 6 5 4	3 1 0
Bit	Reserved			O SS L		
Mode	٣			RŴ		
Initial Value	00 X0			0000X0		

Actual Calculated Position Stamp of STATE

Bit 23:0 **PSSC:** calculated position stamp for the last *STATE* input; first value is set by the DPLL and can be updated by the CPU when the filter delay is to be considered. For each active slope of *STATE* in emergency mode

- when FSD=0: PSSC is set from actual position value(no filter delay considered), the CPU must update the value once, taking into account the filter value
- when FSD=1: at each active slope of STATE (PD_S_store=0 for AMS=0): SMC=0: add (MLS1 + PD_S_store)*(SYN_S); SMC=1: add (MLS2 + PD_S_store)*(SYN_S);

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

18.12.82 Memory DPLL_PSTM

Confidential

Specification

Address Offset:	see Appendix B		Initial Value	e: 0x0000_0000
	31 30 29 28 28 26 26 25 25	23 22 21 21 20 19 18 17 17	15 14 13 13 12 11	10 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 0 0
Bit	Reserved		PSTM	
Mode	К		RW	
Initial Value	00×0		00000 00	

Measured Position Stamp at Last TRIGGER Input

Bit 23:0 **PSTM: Position stamp of TRIGGER, measured;** Measured position stamp of last active *TRIGGER* input.

Store the value TBU_TS1 when an active TRIGGER event occurs. The value of PSTM is invalid for (RMO=1 and SMC=0).

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

Note: The LSB address is determined using the SWON_T value in the OSW register (see chapter 18.12.8).

18.12.83 Memory DPLL_PSTM_OLD

Address Offset:	see Appendix B Initial Value: 0x0000_0000
	31 33 30 29 27 28 26 25 25 25 25 25 24 25 23 23 23 23 23 13 11 11 11 11 11 11 11 11 11 11 20 20 21 20 21 20 21 20 21 20 25 25 20 26 26 26 26 26 26 26 26 26 26 26 26 26
Bit	Reserved
Mode	۲ <u>ک</u>
Initial Value	00000 000000

Measured Position Stamp at Last but one TRIGGER Input

Bit 23:0 **PSTM_OLD: Last but one position stamp of TRIGGER, measured;** Measured position stamp of last but one active *TRIGGER* input. last PSTM value: see explanation of PSTM

Specification

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

Note: The LSB address is determined using the SWON_T value in the OSW register (see chapter 18.12.8).

18.12.84 Memory DPLL_PSSM

Address Offset:	see Appendix B Initial Value: 0x0000_0000
	31 33 30 29 27 27 26 26 25 25 25 25 25 25 24 25 21 19 11 11 11 11 11 11 11 11 11 11 11 11
Bit	Beserved
Mode	м <u>В</u>
Initial Value	00x0 00x0

Measured Position Stamp at Last STATE Input

- Bit 23:0 **PSSM: Position stamp of STATE, measured;** Measured position stamp of last active *STATE* input.
 - Store the value TBU_TS1 or TBU_TS2 respectively at the moment when an active STATE event occurs. The value of PSSM is invalid for (RMO=0 and SMC=0).

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

Note: The LSB address is determined using the SWON_S value in the OSW register (see chapter 18.12.8).

18.12.85 Memory DPLL_PSSM_OLD

Confidential

Specification

Address Offset:	see Appendix B		Initial Value:	0x0000_0000
	31 30 29 28 27 26 25 25	23 22 21 21 20 19 18 17 16	15 14 13 13 12 11 10 9 8	6 5 6 4 4 4 2 3 3 0
Bit	Reserved		PSSM_OLD	
Mode	٣		RW	
Initial Value	00×0		000000000000000000000000000000000000000	

Measured Position Stamp at Last but one STATE Input

Bit 23:0 **PSSM_OLD: Last but one position stamp of STATE, measured;** Measured position stamp of last but one active *STATE* input. last PSSM value: see explanation of PSSM

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

Note: The LSB address is determined using the SWON_S value in the OSW register (see chapter 18.12.8).

18.12.86 Memory DPLL_NMB_T

Address Offset:	see Appendix B		Initial Value: 0x0000_0000
	31 30 29 28 27 26 25 25	23 22 21 21 20 19 18 17 17	15 14 13 13 12 10 9 9 8 8 8 8 8 8 6 6 5 5 3 3 3 3 3 0 0
Bit	Reserved	NOT_USED	L B W N
Mode	Ľ	RŴ	RW
Initial Value	00×0	00×0	00000×0

Number of Pulses to be sent in Normal Mode

Bit 15:0	NMB_T: Number of pulses for TRIGGER; Calculated number of pulses in normal mode for the current <i>TRIGGER</i> increment.
Bit 23:16	calculated pulse number Not used
Dit 20.10	Note: must be written to zero.

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

18.12.87 Memory DPLL_NMB_S

Address Offset:	see Appendix B		Initial Value:	0x0000_0000															
	31 30 29 28 27 26 25 25	23 22 21 20 20 19 18 17 17	15 14 13 12 11 10 9 8	7 6 7 3 3 3 2 2 2 1 1															
Bit	Reserved	NOT_USED	S B MN N																
Mode	٣	ж Х	≥ 2										R						
Initial Value	00×0	0×0	0000 0 0000																

Number of Pulses to be sent in Emergency Mode

Bit 19:0 **NMB_S: Number of pulses for STATE;** Calculated number of pulses in emergency mode for the current *STATE* increment. calculated pulse number

Bit 23:20 Not used

Note: must be written to zero.

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

18.12.88 Memory DPLL_RDT_S[i]

Address Offset:	see Appendix B		Initial Value:	0x0000_0000
	31 30 29 28 27 26 25 25 25	23 22 21 21 20 19 18 17 17	15 14 13 12 11 11 10 9 8	7 6 7 3 3 3 2 2 1 1
Bit	Reserved		RDT_S	
Mode	۲		ж Х	
Initial Value	00×0		000000	

Reciprocal Values of the Nominal STATE Increment Duration in FULL_SCALE

GTM-IP	Specification	Revision 3.1.5.1
Bit 23:0	RDT_S: Reciprocal difference time of STA value of the number of time stamp clocks measur increment *2 ³² while only the lower 24 bits are us The LSB is rounded up when the next truncated Note: There are 2*(SNU+1-SYN_NS) entries for SYN_NS entries for SYSF=1 respectively.	red in the corresponding sed; no gap considered. bit is 1.
Bit 31:24	Reserved	

Note: Read as zero, should be written as zero.

Note: If DPLL CTRL 11.STATE EXT is set, this memory range is not used by the DPLL, but emulated outside the DPLL. The DPLL will access the MCS to DPLL interface 18.15 and will expect data to be correctly stored there. This means in fact, that the handling of the RDT S values has to be done outside, in the MCS integrated in the same cluster.

18.12.89 Memory DPLL_TSF_S[i]

Address Offset:	see Appendix B	Initia	ial Value:	0x0000_0000									
	31 30 29 27 28 26 26 26 25 24 24 23 23 23	20 19 18 17 16 15 14	13 12 11 10 9 8	7 5 3 3 3 3 1 1 0									
Bit	Reserved		TSFS										
Mode	۳	2 2 2											
Initial Value	00000	00 00 00 00 00											

Time Stamp Values of the Nominal STATE Events in FULL SCALE

TSF S: Time stamp field of STATE; Time stamp value of each active Bit 23:0 STATE event.

Note: There are 2* (SNU+1) entries.

Reserved Bit 31:24

Note: Read as zero, should be written as zero.

Note: If DPLL CTRL 11.STATE EXT is set, this memory range is not used by the DPLL, but emulated outside the DPLL. The DPLL will access the MCS to DPLL interface 18.15 and will expect data to be correctly stored there. This means in fact, that the handling of the TSF S values has to be done outside, in the MCS integrated in the same cluster.

Memory DPLL_ADT_S[i] 18.12.90

BOSCH

Specification

Address Offset:	see Appendix B			Initial Value:	0x0000_0000
	31 30 29 28 27 26 25 25	23 22	21 20 19 18 17 16	15 14 13 13 11 11 10 9 8	7 6 5 4 4 3 3 3 2 2 1 1
Bit	Reserved	NOT_USED	ທ ຊ		S Gd
Mode	К	RW	RW		WN W
Initial Value	00×0	0×0	00×0		

Adapt and Profile Values of the STATE Increments in FULL_SCALE

- This value represents the number of pulses to be added to the correspondent nominal increment. The absolute value of a negative PD_S must not exceed MLS1 or MLS2 respectively. The PD value does mean the number of SUB_INC1 pulses per nominal tooth to be added to NS*((MLS1/2+1) + PD_S);
- Bit 21:16 **NS: Number of STATEs;** number of nominal *STATE* parts in the corresponding increment.

Note: There are 2*(SNU+1-SYN_NS) entries for SYSF=0 or 2*(SNU+1)-SYN_NS entries for SYSF=1 respectively.

Bit 23:22 Not used

Note: must be written to zero.

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

Note: If DPLL_CTRL_11.STATE_EXT is set, this memory range is not used by the DPLL, but emulated outside the DPLL. The DPLL will access the MCS to DPLL interface 18.15 and will expect data to be correctly stored there. This means in fact, that the handling of the ADT_S values has to be done outside, in the MCS integrated in the same cluster.

18.12.91 Memory DPLL_DT_S[i]

Bit 15:0 **PD_S: Physical deviation of STATE;** Adapt values for each *nominal STATE* increment in FULL_SCALE (sint16);

Specification

Address Offset:	see Appendix B		Initial	Value:	0x0000_0000
	31 30 29 28 27 26 25 25 25	23 22 21 21 20 19 18 17 17	15 14 13	12 11 10 9	0 1 2 3 3 4 4 0 0
Bit	Reserved			DT_S	
Mode	۲			RW	
Initial Value	00×0			0000×0	

Nominal STATE Increment Duration in FULL_SCALE

Bit 23:0 **DT_S: Difference time of STATE;** nominal increment duration values for each *STATE* increment in FULL_SCALE (considering no gap). **Note:** There are 2*(SNU+1-SYN_NS) entries for SYSF=0 or 2*(SNU+1)-SYN NS entries for SYSF=1 respectively.

Bit 31:24 **Reserved**

Note: Read as zero, should be written as zero.

Note: If DPLL_CTRL_11.STATE_EXT is set, this memory range is not used by the DPLL, but emulated outside the DPLL. The DPLL will access the MCS to DPLL interface 18.15 and will expect data to be correctly stored there. This means in fact, that the handling of the DT_S values has to be done outside, in the MCS integrated in the same cluster.

18.12.92 Register DPLL_TSAC[z] z:(0...NOAC-1)

Address Offset:	see Appendix B		Initial Value:	0x007F_FFFF								
	31 30 29 28 27 26 25 25 25	23 22 21 21 20 19 18 17 17	15 14 13 13 12 11 11 10 9 8	6 6 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								
Bit	Reserved		TSAC									
Mode	۲		RPw									
Initial Value	00×0		0x7FFF FF									
Calculated 1	Time Value to start	Action z										
Bit 23:0	TSAC calculated time stamp for ACTION z (z = $0NOAC-1$) ¹⁾											
	Note: This value can only be written when the DPLL is disabled.											

Bit 31:24 Reserved

Specification

Note: Read as zero, should be written as zero.

18.12.93 Register DPLL_PSAC[z] z:(0...NOAC-1)

Address Offset:	see Appendix B		Initial Value:	0x007F_FFFF
	31 30 29 28 27 26 25 25	23 22 20 20 19 18 17 17	15 14 13 13 12 11 10 9 8	7 6 6 7 7 1 7 0
Bit	Reserved		PSAC	
Mode	٣		RPW	
Initial Value	00×0		0x7FFF FF	

Calculated Position Value to start Action z

Bit 23:0 **PSAC:** Calculated position value for the start of ACTION z in normal or emergency mode according to equations DPLL-17 or DPLL-20 respectively (z = 0...NOAC-1).

Note: This value can only be written when the DPLL is disabled.

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

18.12.94 Register DPLL_ACB_[z]

see Appendix B										Initial Value: 0x00								00	00_0000												
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	6	5	4	3	2	1	0
	Reserved				ACB_3				Reserved			ACB_2				Reserved		Reserved			ACB_1						ACB_0				
	œ				RPw				с				RPw				œ				RPw				٣				RPw		
	0×0				00000			0				00000					0				00000				0				00000		
		R Reserved 30	R Reserved 30 29	Reserved 30 29 28	R Reserved 30 29 28 27	R Reserved 30 29 27 27 26 27 26	R Reserved 30 29 28 28 28 27 25 25	R Reserved 30 29 28 28 28 28 27 27 27 27 26 24	R Reserved 30 29 20 20 20 20 20 20 20 21 23 23 23 23 23 23 23 23 23 23 25 23 23 26 23 22 27 23 26 23 20 22 22 23 20 22 23 20 20 20 20 20 20 20 20 20 20 20 20 20	R Reserved 30 28 29 27 27 28 28 28 28 28 28 28 23 27 27 27 27 28 28 28 22 22 23 27 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	R Reserved 30 29 20 21 20 20 20 20 21 23 24 24 23 25 24 23 23 26 23 26 23 27 26 23 27 27 27 28 27 27 28 28 20 20 20 20 20 20 20 20 20 20 20 20 20	R Reserved 30 RPW ACB_3 28 23 R Reserved 20 22 21 23 20 21 21 21 21 22 22 23 26 23 21 22 23 20 21 22 23 20 22 23 20 22 23 20 22 23 20 22 23 20 22 23 20 22 20 20 20 20 20 20 20 20 20 20 20	R Reserved 30 RPW ACB_3 28 23 R Reserved 20 22 21 23 26 23 26 21 21 21 21 21 21 21 21 21 21 21 22 23 26 21 21 22 21 22 23 26 21 21 21 21 21 21 21 21 21 21 21 21 21	R Reserved 31 RPw ACB_3 28 RPw ACB_3 26 R Reserved 23 R Reserved 23 R Reserved 23 R ACB_3 26 19 21	R Reserved 30 RPw ACB_3 28 23 24 23 23 23 24 23 23 23 24 23 23 23 24 23 23 24 23 23 26 21 28 28 23 27 28 28 28 28 28 28 28 28 28 28	R Reserved 31 RPw ACB_3 29 RPw ACB_3 26 RPw ACB_3 23 RPw ACB_3 23 RPw ACB_13 26 RPw ACB_13 26 RPw ACB_2 21 19 16 16	R Reserved 31 RPw ACB_3 29 RPw ACB_3 23 RPw ACB_3 23 RPw ACB_3 23 RPw ACB_1 23 RPw ACB_1 21 11 11 15 15	R Reserved 31 RPw ACB_3 29 RPw ACB_3 26 RPw ACB_1 23 RPw ACB_2 21 RPw ACB_2 19 R ACB_2 11 R ACB_2 14	R Reserved 31 RPw ACB_3 29 RPw ACB_3 26 RPw ACB_3 25 RPw ACB_3 26 RPw ACB_3 21 RPw ACB_2 18 RPw ACB_2 16 R Reserved 15 R Reserved 14	R Reserved 31 RPw ACB_3 29 RPw ACB_3 26 RPw ACB_1 23 R Reserved 23 R Reserved 23 R ACB_2 11 R Reserved 21 R Reserved 21 11 16 113 13	R Reserved 31 RPw ACB_3 29 RPw ACB_3 23 RPw ACB_3 23 RPw ACB_3 23 RPw ACB_13 26 RPw ACB_2 11 R Reserved 23 11 11	R Reserved 31 RPw ACB_3 29 RPw ACB_3 26 RPw ACB_3 23 RPw ACB_3 26 RPw ACB_1 23 RPw ACB_1 23 RPw ACB_2 13 RPw ACB_2 13 RPw ACB_2 14 RPw ACB_1 11 ACB_1 10 12	R Reserved 31 RPw ACB_3 29 RPw ACB_3 26 RPw ACB_1 23 RPw ACB_2 11 RPw ACB_2 13 RPw ACB_1 23 RPw ACB_2 13 RPw ACB_2 13 RPw ACB_1 11 RPw ACB_1 13 ACB_1 11 12 ACB_1 10 11	R Reserved 31 RPw ACB_3 29 RPw ACB_3 26 RPw ACB_3 26 RPw ACB_3 26 RPw ACB_13 26 R Reserved 21 R Reserved 11 RPw ACB_12 18 RPw ACB_12 18 R Reserved 11 RPw ACB_13 11 RPw ACB_14 11	R Reserved 31 RPw ACB_3 29 RPw ACB_3 26 RPw ACB_3 26 RPw ACB_2 11 RPw ACB_2 18 RPw ACB_1 21 R Reserved 23 RPw ACB_2 18 RPw ACB_2 18 R Reserved 11 R ACB_1 11 RPw ACB_1 11 R ACB_1 10	R Reserved 31 RPw ACB_3 29 RPw ACB_3 23 RPw ACB_3 23 RPw ACB_1 23 RPw ACB_2 11 RPw ACB_1 21 R Reserved 23 RPw ACB_2 11 RPw ACB_1 11 R Reserved 11 R ACB_1 11 R ACB_1 11 R Reserved 14 R Reserved 13 R Reserved 14 R Reserved 13	R Reserved 31 RPw ACB_3 29 RPw ACB_3 28 RPw ACB_3 26 RPw ACB_1 23 RPw ACB_2 13 RPw ACB_2 14 RPw ACB_2 16 R Reserved 11 R ACB_1 11 R Reserved 13 R Reserved 13 R Reserved 14 R Reserved 16 R Reserved 13	R Reserved 31 RPw ACB_3 29 RPw ACB_3 28 RPw ACB_3 26 RPw ACB_1 23 RPw ACB_2 11 RPw ACB_2 13 RPw ACB_1 11 RPw ACB_2 13 RPw ACB_2 14 R Reserved 14 R Reserved 11 R Reserved 14 R Reserved 16 R Reserved 16 R Reserved 17 R Reserved 16 R Reserved 17 R Reserved 16 R Reserved 16 R Reserved 17	R Reserved 31 RPw ACB_3 29 RPw ACB_3 26 RPw ACB_1 23 RPw ACB_2 11 RPw ACB_1 11 R Reserved 11 R Reserved 11 R Reserved 12 R Reserved 13 1 1 10 R Reserved 1	R Reserved 31 RPw ACB_3 29 RPw ACB_3 26 RPw ACB_1 23 RPw ACB_2 11 RPw ACB_1 11 RPw ACB_1 11 RPw ACB_1 11 RPw ACB_2 13 RPw ACB_1 11 RPw ACB_1 13 RPw ACB_1 11 RPw ACB_1 13 RPw ACB_1 13 RPw ACB_1 12 RPw ACB_1 13 RPw ACB_1 2	R Reserved 31 RPw ACB_3 22 RPw ACB_3 28 22 23 26 23 23 26 24 23 26 25 23 26 26 23 26 27 11 23 11 11 10 12 11 9 13 ACB_0 21 14 11 9 15 11 9 16 1 17 9 18 ACB_0 19 11 11 11 11 11 12 11 13 3 14 11 15 1 16 1 17 1 18 8 19 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1

Control Bits for up to 32 Actions

Bit 4:0ACB_0: Action Control Bits of ACTION_i, reflects ACT_D[i](52:48), i=4*zBit 7:5Reserved

GTM-IP	Specification Revision 3.1.5.1
Bit 12:8	 Note: Read as zero, should be written as zero. ACB_1: Action Control Bits of ACTION_(i + 1) , reflects ACT_D[i+1](52:48), i=4*z Note: When DPLL_CTRL_11.ACBU = '0': ACB_1[4:0] are taken as received by ARU interface and are transmitted unchanged as result of action (PMT) calculation.
	 When DPLL_CTRL_11.ACBU = '1': ACB_1[4:2] are taken as received by ARU interface and are transmitted unchanged as result of action (PMT) calculation. ACB_1[1]= '1' is used as input signal to control if "action in past" shall be checked based on position information. ACB_1[1] is written to '1' if action channel has reached "action in past" condition after action has been calculated, written to '0' if action has not reached "past" so far. ACB_1[0] is used as input signal to control if "action in past" shall be checked based on time information. ACB_1[0] is written to '1' if action channel has reached "action in past" condition after action has been calculated, written to '0' if action has not reached "past" so far.
	Note: This value can only be written via AEI-interface when the DPLL is disabled.
Bit 15:13 Bit 20:16	Reserved Note: Read as zero, should be written as zero. ACB 2: Action Control Bits of ACTION (i + 2), reflects

Bit 20:16 **ACB_2:** Action Control Bits of ACTION_(i + 2), reflects ACT_D[i+2](52:48), i=4*z

Note:

- When DPLL_CTRL_11.ACBU = '0': ACB_2[4:0] are taken as received by ARU interface and are transmitted unchanged as result of action (PMT) calculation.
- When DPLL_CTRL_11.ACBU = '1': ACB_2[4:2] are taken as received by ARU interface and are transmitted unchanged as result of action (PMT) calculation.
- ACB_2[1]= '1' is used as input signal to control if "action in past" shall be checked based on position information. ACB_2[1] is written to '1' if action channel has reached "action in past" condition after action has been calculated, written to '0' if action has not reached "past" so far.
- ACB_2[0] is used as input signal to control if "action in past" shall be checked based on time information. ACB_2[0] is written to '1' if action channel has reached "action in past" condition after action has been calculated, written to '0' if action has not reached "past" so far.

Note: This value can only be written via AEI-interface when the DPLL is disabled.

Bit 23:21 Reserved

Note: Read as zero, should be written as zero.

Bit 28:24 ACB_3: Action Control Bits of ACTION_(i + 3), reflects ACT_D[i+3](52:48), i=4*z

Note:

- When DPLL_CTRL_11.ACBU = '0': ACB_3[4:0] are taken as received by ARU interface and are transmitted unchanged as result of action (PMT) calculation.
- When DPLL_CTRL_11.ACBU = '1': ACB_3[4:2] are taken as received by ARU interface and are transmitted unchanged as result of action (PMT) calculation.
- ACB_3[1]= '1' is used as input signal to control if "action in past" shall be checked based on position information. ACB_3[1] is written to '1' if action channel has reached "action in past" condition after action has been calculated, written to '0' if action has not reached "past" so far.
- ACB_3[0] is used as input signal to control if "action in past" shall be checked based on time information. ACB_3[0] is written to '1' if action channel has reached "action in past" condition after action has been calculated, written to '0' if action has not reached "past" so far.
- **Note:** This value can only be written via AEI-interface when the DPLL is disabled.

Bit 31:29 Reserved

Note: Read as zero, should be written as zero.

Note:

When DPLL_CTRL_11.ACBU = '0': ACB_0[4:0] are taken as received by ARU interface and are transmitted unchanged as result of action (PMT) calculation.

When DPLL_CTRL_11.ACBU = '1': ACB_0[4:2] are taken as received by ARU interface and are transmitted unchanged as result of action (PMT) calculation.

ACB_0[1]= '1' is used as input signal to control if "action in past" shall be checked based on position information. ACB_0[1] is written to '1' if action channel has reached "action in past" condition after action has been calculated, written to '0' if action has not reached "past" so far.

ACB_0[0] is used as input signal to control if "action in past" shall be checked based on time information. ACB_0[0] is written to '1' if action channel has reached "action in past" condition after action has been calculated, written to '0' if action has not reached "past" so far.

Note: This value can only be written via AEI-interface when the DPLL is disabled.

18.12.95 Register DPLL_CTRL_11

Address Offset:	S	see Appendix B									Initial Value:								0x0000_0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	3	2	1	0
Bit	WACBU	WSTATE_EXT	WPCMF2_INCCNT	WINCF2	WFSYL2	WPCMF2	WERZ2	WSIP2	WADS	WADT	WPCMF1_INCCNT	WINCF1	WFSYL1	WPCMF1	WERZ1	WSIP1	ACBU	STATE_EXT	PCMF2_INCCNT_	INCF2	FSYL2	PCMF2	ERZ2	SIP2	ADS	ADT	PCMF1_INCCNT_	INCF1	FSYL1	PCMF1	ERZ1	SIP1
Mode	RAw	RAw	RAw	RAw	RAw	RAw	RAw	RAw	RAw	RAw	RAw	RAw	RAw	RAw	RAw	RAw	RPw	RPw	RPw	RPw	RAw	RPw	RPw	RPw	RPw	RPw	RPw	RPw	RAw	RPw	RPw	RPw
Initial Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Control Register 11

Bit 0

SIP1: simplified increment prediction in normal mode and for the first engine in the case SMC=1.

- 0 = **Increment prediction calculation**; the current increment duration CDT_TX is calculated using the relation between increment duration in the past like explained by the corresponding equations.
- 1 = **Increment prediction continuation**; in this mode for the increment prediction value calculation of CDT_TX the value of QDT_T is replaced by 1 for all calculations when **NUTE-VTN=1**; in the other case the value of SIP1 is ignored and the calculation is performed like for SIP1=0.
- For the first increment after setting SIP1 from 0 to 1 the value of DT_T_ACT is replaced by the value of the DT_T_START register. This results in a CDT_TX value which is equal to DT_T_START. Please notice that this DT_T_Start value must be always > 256.
- **Note:** The value of SIP1 influences only the increment prediction CDT_TX and when NUTE-VTN=1. The calculation of QDT_T itself is not influenced by the SIP1 bit. The value of SIP1 can be only written when WSIP1=1.
- When SIP1= 1 is set the first pulses of the subincrement genrator are not generated with highest frequency for the first increment (DPLL_STATUS.ftd = 0, DPLL_CTRL_1.SGE1 = 1).

Note: When SIP1= 1 is set the first pulses of the subincrement generator are not generated with highest frequency for the first increment (DPLL_STATUS.ftd = 0, DPLL_CTRL_1.SGE1 = 1).

- Bit 1 **ERZ1: Error is assumed as zero** in normal mode and for the first engine for SMC=1.
 - 0 = The MEDT_T value is considered as provided in the corresponding equations.
 - 1 = Instead of using MEDT_T the value "0" is used in the corresponding equations.
 - **Note:** The calculation of EDT_T and MEDT_T is performed independently from the ERZ1 value in all modes without any influence to the MEDT_T value itself. The ERZ1 value influences the use of MEDT_T in normal mode and for SMC=1. The value of ERZ1 can be only written when WERZ1=1.

Bit 2 **PCMF1: Pulse correction mode fast** for INC_CNT1

- 0 = No fast update of pulses, provided by MPVAL1.
- 1 = When PCM1 is set while PCMF1=1, the pulses provided by MPVAL1 are sent using the rapid pulse generator RPCUx without waiting for a new input event.
- **Note:** The fast pulse generation is performed immediately within the current increment.
- MPVAL1 must be positive integers for the fast pulse correction mode in the case of negative values the correction is suppressed and the FPCE (fast pulse correction error) bit in the DPLL_STATUS register is set, causing the EI (error interrupt) when enabled.
- The setting of PCMF1 prevents the transfer of control bits PCM1 to the corresponding shadow registers with an active input event and prevents therefore the distribution of the MPVAL1 values over the current or next increment. The MPVAL1 pulses are sent with the fast clock CMU_CLK0 by the rapid pulse generator RPCUx (see chapter 18.8.3.6 of specification v3.0) triggered in the state 6/26 or 18/38 of the state machines (see chapters 18.8.6.1 and 18.8.6.7 of specification v2.1.0) respectively. The INC_CNT1 is incremented by MPVAL1 respectively.
- When taken the MPVAL1 value to RPCUx and INC_CNT1 the PCM1 bit is reset immediately and after that also the PCMF1 bit. The value of PCMF1 can be only written when WPCMF1=1.
- Be careful when using the fast pulse correction during a direction change. Because of sending the correction pulses before, during or after the direction change recognition the result is typically unpredictable. No automatic correction of the fast correction pulses is provided. The

G	т	٨	/-	۰ı	Р
S					

necessary corrections must be performed on responsibility of the user.

Bit 3 FSYL1: Force Synchronization Loss of LOCK1. 0 = no force of synchronization loss. 1 = Reset LOCK1, and reset SYT (in normal mode and for SMC=1) or reset SYS (in emergency mode) Note: The synchronization loss resets SYT/SYS and prevents the use of profiles respectively. The above described effect for FSYL1=1 is only active when WFSYL1=1 simultaneously. Bit 4 **INCF1: INC CNT1 fast correction** 0 = the calculation of a new INC CNT1 is performed after an active slope was detected and the plausibility check was performed. 1 = the calculation of a new INC CNT1 is prepared before an active slope is detected; the plausibility check is supported by an additional HW checker in order to get the decision earlier and after this decision the pulse generator for SUB INC1 starts immediately sending out pulses The calculation of ADD IN for the SUB INC generation is performed without adding the 0.5 value to NMB T/S in equations DPLL 25 ff. The Signal RESET SIGx of the pulse generator (see chapter 18.8.3.6) is activated for each new active input slope in order to reset the register values. **Note:** The INCF1 value can be only written when WINCF1=1. The INCF1 bit should only be written when DPLL CTRL 1.DEN = '0' (DPLL disabled) to prevent generation of wrong number of sub increments. Bit 5 PCMF1 INCCNT B: no increment of INC CNT1 when PCMF1 active (automatic end mode). 0 = Add MPVAL1 value is as well to the INC CNT1 when fast pulse correction is done by PCM1 or PCMF1. 1 = Do not add MPVAL1 value to the INC CNT1 register when fast pulse correction is done by PCM1 or PCMF1. This means that just fast pulses are done by decrementing current content of INC CNT1 register as long as INC CNT1 is not zero (automatic end mode). The number of pulses (MPVAL1) shall be sufficiently smaller than INC CNT1 when MPVAL1 is written.

GTM-IP	Specification Revision 3.1.5.1
Bit 6	 Note: The PCMF1_INCCNT_B value can be only written when WPCMF1_INCCNT_B =1. ADT: correction of DT_T_ACTUAL, CDT_TX_nom_corr by PD_T 0 = No correction of DT_T_ACTUAL, CDT_TX_nom_corr by physical deviation (PD_T) defined in profile of TRIGGER processing unit. 1 = Correction of DT_T_ACTUAL, CDT_TX_nom_corr by physical deviation (PD_T) defined in profile of TRIGGER processing unit.
Bit 7	ADS: correction of DT_S_ACTUAL, CDT_SX_nom_corr by PD_S
	 0 = No correction of DT_S_ACTUAL, CDT_SX_nom_corr by physical deviation (PD_S) defined in profile of STATE processing unit. 1 = Correction of DT_S_ACTUAL, CDT_SX_nom_corr by physical deviation (PD_S) defined in profile of STATE processing unit.
Bit 8	 SIP2: simplified increment prediction in emergency mode and for the second engine in the case RMO=1. 0 = Increment prediction calculation; the current increment duration CDT_SX is calculated using the relation between increments duration in the past like explained by the corresponding equations.
	 1 = Increment prediction continuation; in this mode for the increment prediction value calculation CDT_SX the value of QDT_S is replaced by 1 for all calculations when NUSE-VSN=1; in the other case the value of SIP2 is ignored and the calculation is performed like for SIP2=0. For the first increment after setting SIP2 from 0 to 1 the value of DT_S_ACT is replaced by the value of the DT_S_START register. This results in a CDT_SX value which is equal to DT_S_START. Please notice that this DT_S_START value must be always > 256.
	Note: The value of SIP2 influences only the increment prediction and error accumulation when NUSE-VSN=1. The calculation of QDT_S itself is not influenced by the SIP2 bit. The value of SIP2 can be only written when WSIP2=1.
Bit 9	 ERZ2: Error is assumed as zero in emergency mode and for the second engine for SMC=1. 0 = The MEDT_S value is considered as provided in the corresponding equations. 1 = Instead of using MEDT_S the value "0" is used in the corresponding equations.

Note: The calculation of EDT_S and MEDT_S is performed independently from the ERZ2 value in all modes without any influence to the MEDT_S value itself. The ERZ2 value influences

GTM-IP	Specification	Revision 3.1.5.1
	the use of MEDT_S in emergency mode RMO=1. The value of ERZ2 can be only wri	
Bit 10	 PCMF2: Pulse correction mode fast for INC_C 0 = No fast update of pulses, provided by MPVAL 1 = When PCM2 is set while PCMF2=1, the pulse are sent using the rapid pulse generator RP a new input event. 	.2. es provided by MPVAL2
	Note: The fast pulse generation is performed in current increment. MPVAL2 must be positive integers for the fast pul	lse correction mode - in
	the case of negative values the correction FPCE (fast pulse correction error) bit in the E is set, causing the EI (error interrupt) when The setting of PCMF2 prevents the transfer of co	DPLL_STATUS register enabled.
	corresponding shadow registers with an a prevents therefore the distribution of the MI current or next increment. The MPVAL2 pu fast clock CMU_CLK0 by the rapid pulse a chapter 18.8.3.6 of specification v3.0) trigge 18/38 of the state machines (see chapters 1 specification v2.1.0) respectively. The INC_C MPVAL2 respectively.	active input event and PVAL1 values over the ulses are sent with the generator RPCUx (see red in the state 6/26 or L8.8.6.1 and 18.8.6.7 of
	When taken the MPVAL2 value to RPCUx and IN is reset immediately and after that also the F The value of PCMF2 can be only written when W Be careful when using the fast pulse correction du Because of sending the correction pulses be direction change recognition the result is typ automatic correction of the fast correction p necessary corrections must be performed user.	PCMF2 bit. PCMF2=1. ring a direction change. efore, during or after the ically unpredictable. No pulses is provided. The
Bit 11	 FSYL2: Force Synchronization Loss of LOCK 0 = no force of synchronization loss. 1 = Reset LOCK2, and reset SYS (in emergency Note: The synchronization loss resets SYS an profiles respectively. The above described only active when WFSYL2=1 simultaneously 	mode and for SMC=1). Id prevents the use of I effect for FSYL2=1 is
Bit 12	<pre>INCF: INC_CNT2 fast 0 = the calculation of a new INC_CNT2 is perform was detected and the plausibility check was 1 = the calculation of a new INC_CNT2 is prepared</pre>	performed.

1 = the calculation of a new INC_CNT2 is prepared before an active slope is detected; the plausibility check is supported by an additional HW checker in order to get the decision earlier and after this decision the pulse generator for SUB_INC2 starts immediately sending out

GTM-IP	Specification	Revision 3.1.5.1
	pulses. The calculation of ADD_IN for the performed without adding the 0.5 value to DPLL_25 ff. The Signal RESET_SIGx of th chapter 18.8.3.6) is activated for each ne order to reset the register values.	o NMB_S in equations ne pulse generator (see
Bit 13	Note: The INCF2 value can be only written wher PCMF2_INCCNT_B: no increment of INC_CNT (automatic end mode).	
	 0 = Add MPVAL2 value is as well added to the pulse correction is done by PCM2 or PCMF 1 = Do not add MPVAL2 value to the INC_CNT2 correction is done by PCM2 or PCMF2. The pulses are done by decrementing current register as long as INC_CNT2 is not zero The number of pulses (MPVAL2) shall be a INC_CNT2 when MPVAL2 is written. 	2. register when fast pulse his means that just fast content of INC_CNT2 (automatic end mode).
	Note: The PCMF2_INCCNT_B value can b WPCMF2_INCCNT_B=1.	be only written when
Bit 14	STATE_EXT: Use of STATE engine extension	
	 0 = STATE extension is not considered. 1 = STATE extension is enabled up to 128 STATE Note: The STATE_EXT value can be only writter 1 and the DPLL is disabled. See 18.10 for this bit shall be modified during operation DPLL module is strongly recommended. A F also be considered depending on the given 	a when WSTATE_EXT= a further explanation. If a software reset of the RAM initialisation should
Bit 15	 ACBU: ACB use; the ACB values of PMTR a action is in the past 0 = ACB values of PMTR are not considered in I action is in the past is made considering the 	OPLL; the decision if an
	 1 = ACB values of PMTR are considered in DPLI if ACB[1] = 1, consider if the calculated corresponding action is in the past. if ACB[0] = 1, consider if the calculated time valuation is in the past. ACB[1] and ACB[0] can be set also simultaneous 	position value of the ue of the corresponding
	Note : Return ACB values together with actions as are in future;	s zero, when the actions

BOSCH

GTM-IP	Specification	Revision 3.1.5.1
	set ACB[1]=1, when calculated position value is ACB[1] of PMTR was 1.	in the past and the
	Set ACB[0]=1, when calculated time value is in the	past and the ACB[0]
	of PMTR was 1.	
	The value of ACBU can be only written when WACE	3U=1.
Bit 16	WSIP1: write enable for simplified increment pre	diction 1.
	0 = Writing to SIP1 is not enabled. 1 = Writing to SIP1 is enabled.	
	Note: Enable writing.	
Bit 17	WERZ1: write enable for error zero 1.	
	0 = Writing to ERZ1 is not enabled.	
	1 = Writing to ERZ1 is enabled.	
	Note: Enable writing.	
Bit 18	WPCMF1: write enable for pulse correction mod	e fast 1
	0 = Writing to PCM1 is not enabled.	
	1 = Writing to PCM1 is enabled. Note: Enable writing.	
Bit 19	WFSYL1: write enable for Force Synchronizatio	n Loss 1.
	0 = Writing to FSYL1 is not enabled.	
	1 = Writing to FSYL1 is enabled.	
	Note: Enable writing	
Bit 20	WINCF: write enable for INC_CNT1 fast	
	0 = Writing to INCF1 is not enabled.	
	1 = Writing to INCF1 is enabled. Note: Enable writing.	
Bit 21	WPCMF1_INCCNT_B: write enable of PCMF1_IN	CCNT_B
	0 = Writing to PCMF1_INCCNT_B is not enabled.	_
D# 00	1 = Writing to PCMF1_INCCNT_B is enabled. WADT: write enable of ADT	
Bit 22	0 = Writing to ADT is not enabled.	
	1 = Writing to ADT is enabled.	
Bit 23	WADS: write enable of ADS	
	0 = Writing to ADS is not enabled.	
Bit 24	1 = Writing to ADS is enabled.WSIP2: write enable for simplified increment pre	diction 2.
2.121	0 = Writing to SIP2 is not enabled.	
	1 = Writing to SIP2 is enabled.	
	able writing.	
Bit 25	WERZ2: write enable for error zero 2. 0 = Writing to ERZ2 is not enabled	
	1 = Writing to ERZ2 is enabled.	
	Note: Enable writing.	

GTM-IP	Specification	Revision 3.1.5.1
Bit 26 Bit 27	 WPCMF2: write enable for pulse correction model 0 = Writing to PCMF2 is not enabled 1 = Writing to PCMF2 is enabled Note: Enable writing. WFSYL2: write enable for Force Synchronization 0 = Writing to FSYL2 is not enabled. 	
	1 = Writing to FSYL2 is enabled Note: Enable writing	
Bit 28	WINCF: write enable for INC_CNT2 fast 0 = Writing to INCF2 is not enabled 1 = Writing to INCF2 is enabled.	
Bit 29	Note: Enable writing. WPCMF2_INCCNT_B: write enable of PCMF2_II 0 = Writing to PCMF2_INCCNT_B is not enabled. 1 = Writing to PCMF2_INCCNT_B is enabled.	NCCNT_B
Bit 30	WSTATE_EXT: write enable of STATE_EXT 0 = Writing to STATE_EXT is not enabled. 1 = Writing to STATE_EXT is enabled.	
Bit 31	WACBU: write enable for ACB use; the ACB value to decide if an action is in the past 0 = Writing to ACBU is not enabled. 1 = Writing to ACBU is enabled. Note: Enable writing.	ues of PMTR are used

18.12.96 Register DPLL_THVAL2

BOSCH

Specification

Address Offset:	see Appendix B		Initial	Value:	0x0000_	0000
	31 30 29 28 27 26 25 25 25	23 22 21 21 20 19 19 18 17 17	15 14 13	12 11 10 9 8	7 6 5 4	3 2 1 0
Bit	Reserved			тниаг		
Mode	٣			с		
Initial Value	00×0			0		

Bit 23:0 **THVAL:** measured last pulse time from active to inactive slope of TRIGGER after correction of input slope filter delays

Note: This value is available immediately after the inactive slope of TRIGGER. The measured value considers all input slope filter delays. From the received input the corresponding filter delays are subtracted before the time stamp difference of active and inactive slope is calculated.

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

18.12.97 Register DPLL_TIDEL

Address Offset:	see Appendix B	Initial Value:	0x0000_0000
	31 30 29 28 27 26 26 26 25 23 23 23 23 23 23 21 21 20 19 118 17	15 15 14 13 13 12 11 11 10 9 8	6 6 7 7 7 7 7 7 7 0 0
Bit	Reserved	TIDEL	
Mode	Ľ	RW	
Initial Value	00×0	000 000000	
Bit 23:0	TIDEL: TRIGGER input delay Transmit this value with each ac register. Subtract this shado time stamp (active and inactiv and cannot be disabled by a	v register value fro e slope). This featu	m each TRIGGER

Specification

Bit 31:24 **Reserved**

Note: Read as zero, should be written as zero.

18.12.98 Register DPLL_SIDEL

Address Offset:	see Appendix B		Initial Value:	0x0000_0000						
	31 30 29 28 27 26 25 25	23 22 21 20 20 19 18 17 17	15 14 13 12 12 11 10 9 8	7 5 4 3 3 3 1 1 0						
Bit	Reserved		S S D E I S							
Mode	٣		R							
Initial Value	00×00	0 0000 0000								

Bit 23:0 **SIDEL:** STATE input delay

Transmit this value with each active STATE slope into a shadow register. Subtract this shadow register value from each STATE time stamp (active and inactive slope). This feature is always active and cannot be disabled by a control bit.

Bit 31:24 **Reserved**

Note: Read as zero, should be written as zero.

18.12.99 Register DPLL_CTN_MIN

Specification

Address Offset:	see Appendix B		Initial Value:	0x0000_0000						
	31 30 29 28 27 26 25 25	23 22 21 20 20 19 18 17 17	15 14 13 12 11 11 10 9 8	7 6 5 4 4 3 3 3 2 2 1 1						
Bit	Reserved		CTN_MIN							
Mode	٣		RX							
Initial Value	00×0	0								
Bit 23:0	Use this register		X_NOM value wh	nen the calculated GGER is less than						

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

18.12.100 Register DPLL_CTN_MAX

the register value

Address Offset:	see Appendix B											Initial Value: 0x00FF									F_	_FFFF									
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	в	7	т 0
Bit				Received												CTN_MAX															
Mode				۵	1															RW											
Initial Value		0×00 EFF																													

Bit 23:0 **CTN_MAX:** CDT_T_NOM max value

Use this register value as CDT_TX_NOM value when the calculated value for the nominal increment prediction of TRIGGER is greater than the register value

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

18.12.101 Register DPLL_CSN_MIN

Address Offset:	see Appendix B		Initial Value:	0x0000_0000
	31 30 29 28 27 26 25 25	23 22 21 21 20 19 18 17 17	15 14 13 12 11 10 9 8	7 6 5 4 3 3 3 2 2 1 1
Bit	Reserved		CSN_MIN	
Mode	۲		RW	
Initial Value	000000		o	
D:+ 02.0		S NOM min value		

Bit 23:0 **CSN_MIN:** CDT_S_NOM min value

Use this register value as CDT_SX_NOM value when the calculated value for the nominal increment prediction of STATE is less than the register value

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

18.12.102 Register DPLL_CSN_MAX

Address Offset:	see Appendix B		Initial Value:	0x00FF_FFFF						
	31 30 29 28 27 26 26 25 24 23	22 22 21 20 20 19 18 17 17 16	15 14 13 13 12 11 10 9 8	7 5 3 3 3 2 2 1 1						
Bit	Reserved		CSN_MAX							
Mode	۳.	R R R								
Initial Value	00×0									

GTM-IP	Specification	Revision 3.1.5.1
Bit 23:0	CTN_MAX: CDT_S_NOM max value Use this register value as CDT_SX_NOM value wher value for the nominal increment prediction of STAT the register value	
Bit 31:24	Reserved Note : Read as zero, should be written as zero.	

18.12.103 Register DPLL_STA

Address Offset:	see Appendix B				Initial V	alue:		0x0000_0000
	31 30 29 28 27 26 25 25	23 22 21	20	19 18 17 16	15 14 13 12	11 10 9	8	7 6 7 3 3 3 2 1 1
Bit	Reserved	CNT_S	Reserved	0 V L 0		CNT_T	Reserved	STA_T
Mode	۲	£	Я	۵	c	£	Ľ	۲
Initial Value	00×0	0×0	0		00000	0x0	0	000x0

Status of the state machine states

BOSCH

Bit 7:0 STA_T: Status of TRIGGER state machine; state binary coded This bit field reflects the status of the TRIGGER state machine Note: The decimal step number 1 to 20 of the state machine is binary coded from 0x01 to 0x14 respectively using the upper 5 bits (7:3). The lower 3 bit (2:0) show substates of the corresponding state machine. When the DPLL is disabled this field is 0x000.

STA_T(7:3)	STA_T(2:0)	Description/ Monitored action
0	0	Reset state
0	1	Wait, DEN=0
0	2	Calculation of 1/mlt+1, mls1, mls2.
0	3	calculation of direction change issues (pointers and profile
		update)
0	4	APT_2C is being incremented in normal mode
0	5	APT_2C was incremented 3 times in normal mode, 1 in
		emergency or SMC=1
0	6	APT_2C was incremented 4 times in normal mode, 2 in
		emergency or SMC=1
0	7	Update of pointers is finished, perform change of direction
		operations
1	0	pvt-check
1		update of RAM: write RDT_T; DT_T; TSF_T
1		loading of profile (syn_t, update syn_t_old) from ADT_T
1		TASI-irq, store FTV into RAM1b
1	4	Write PSTC;
		modify apt, apt_2b; apt_2c (if synchronized);
		Start fast pulse updates if necessary;
		Update inc_cnt1;
2		Write TS_T to ram1b, calculate dt_t_actual
3		update nti_cnt, cdti-irq if nti_cnt=0;
3		calculated EDT_T, MEDT_T, RDT_T_actual
4	0	calculate cdt_tx_nom, cdt_tx
5	0	calculate PSTM, rcdt_t, nmb_t_tar, start fast correction of
		missing pulses (if necessary) for rmo=0 or smc=1.
6		calculate nmb_t for rmo=0 or smc=1, dmo=0, coa=0.
7		calculate nmb_t for rmo=0 or smc=1, dmo=0, coa=1.
8		calculate nmb_t for rmo=0 or smc=1, dmo=1.
9	0	
10		calculate add_in_cal1
10	1	write of add_in_cal1 finished, all subincrement calulations
		done for last active input event
11	0	calculate ts_t_check (MTI-irq), r_add_caln (prepare time
40	-	stamp calculation(TS_T)) for IDT=IFP=1.
12		set caip1,2, action masking bits , action calculation loop
13		calculate NA(i),
14		calculate PDT_T(i)
14		calculate DTA(i)
15		calculate TSAC(i)
15		calculate PSAC(i)
15	2	action(i) in past condition occured: assignment of output
4 -	-	data.
15		action loop control
16	0	wait for new action calculation

(\mathbf{a})	BOSCH
Re	evision 3.1.5.1

Bit 8	Reserved
	Note: Read as zero, should be written as zero.
Bit 11:9	CNT_T: Count TRIGGER; this reflects the count of active <i>TRIGGER</i> slopes (mod8).
	This value shows the number of active TRIGGER slopes (mod8)
	Note: This value allows distinguishing if the above state machine status is consistent to other status values read before or after it.
Bit 19:12	STA_S: Status of STATE state machine; state binary coded This bit field reflects the status of the STATE state machine
	Note: The decimal step number 21 to 40 of the state machine is binary coded from 0x01 to 0x14 respectively using the upper 5 bits (19:15) after subtraction of 20 to the decimal value. The lower 3 bits (14:12) show substates of the corresponding state machine. When the DPLL is disabled this field is 0x000.

Specification

Confidential

STA S(7:3)	STA S(2:0)	Description/ Monitored action
0		Reset state
0		Wait, DEN=0
0		Calculation of 1/mlt+1, mls1, mls2.
0		Calculation of direction change issues (pointers and profile
		update)
0	4	
0	5	APS 1c3 was incremented once
0	6	APS 1c3 was incremented twice
0	7	 Update of pointers is finished, perform change of direction
		operations
1	0	pvt-check
1	1	update of RAM: write RDT_S; DT_S; TSF_S
1	2	loading of profile (syn_s, update syn_s_old) from ADT_S
1	3	SASI-irq, store FTV into RAM1b
1	4	Write PSSC;
		modify aps, aps_1c2; aps_1c3 (if synchronized);
		Start fast pulse updates if necessary;
		Update inc_cnt1/2;
2	0	Write TS_S to ram1b, calculate dt_s_actual
3		update cdsi-irq
3	1	calculate EDT_S, MEDT_S, RDT_S_actual
4		calculate cdt_sx_nom, cdt_sx
5	0	calculate PSSM, rcdt_s, nmb_s_tar, start fast correction of
		missing pulses (if necessary).
6	0	calculate nmb_s for rmo=1 or smc=1, dmo=0, coa=0.
7	0	calculate nmb_s for rmo=1 or smc=1, dmo=0, coa=1.
8	0	calculate nmb_t for rmo=1 or smc=1, dmo=1.
9	0	
10		calculate add_in_cal1
10	1	write of add_in_cal1 finished, all subincrement calulations
		done for last active input event
11	0	calculate ts_s_check (MSI-irq), r_add_caln (prepare time
		stamp calculation(TS_S)) for IDT=IFP=1.
12		set caip1,2, action masking bits , action calculation loop
13		calculate NA(i),
14		calculate PDT_S(i)
14		calculate DTA(i)
15		calculate TSAC(i)
15		calculate PSAC(i)
15	2	action(i) in past condition occured: assignment of output
		data.
15		action loop control
16	0	wait for new action calculation

GTM-IP	Specification	Revision 3.1.5.1
Bit 20	Reserved	
	Note: Read as zero, should be written as zero.	
Bit 23:21	CNT_S: Count STATE; this reflects the count of (mod8).	active STATE slopes
	This value shows the number of active STATE	E slopes (mod8)
	Note: This value allows distinguishing if the above is consistent to other status values read befor	state machine status
Bit 31:24	Reserved	
	Note: Read as zero, should be written as zero.	

18.12.104 Register DPLL_INCF1_OFFSET

Address Offset:	see Appendix B		Initial Value:	0x0000_0000
	31 30 29 28 27 26 25 25	23 22 21 21 20 19 18 17 17	15 14 13 13 12 11 10 9 8	7 6 7 7 3 3 3 3 2 2 2 0
Bit	Reserved		DPLL_INCF1_OFF SET	
Mode	٣		ж Х	
Initial Value	00×0		0000	

Bit 23:0 **DPLL_INCF1_OFFSET:** start value of the ADD_IN_ADDER1 In the case of set DPLL_CTRL_11-INCF1 the ADD_IN_ADDER1 starts always after an active new input event (TRIGGER in normal mode or STATE in emergency mode respectively) with this offset value. In the case of choosing DPLL_INCF1_OFFSET= 0xFFFFFF the generation of the first SUB_INC1 pulse is performed with the next TS_CLK. In the case of DPLL_INCF1_OFFSET= 0x000000 the first pulse is delayed by a full SUB_INC1 period and in the case of DPLL_INCF1_OFFSET= 0x7FFFFF the first pulse is delayed by a half SUB_INC1 period. Any other value is possible.

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

18.12.105 Register DPLL_INCF2_OFFSET

BOSCH

Specification

Address Offset:	see Appendix B		Initial Value:	0x0000_0000
	31 30 29 28 27 26 25 25	23 22 21 20 20 19 18 17 17	15 14 13 12 12 11 10 9 8	7 6 7 4 4 4 2 2 2 1 1
Bit	Reserved		DPLL_INCF2_OFF SET	
Mode	۳		ж Х	
Initial Value	00×0		0000	

Bit 23:0 **DPLL_INCF2_OFFSET:** start value of the ADD_IN_ADDER2

In the case of set DPLL_CTRL_11-INCF2 the ADD_IN_ADDER2 starts always after an active new input event (STATE) with this offset value. In the case of choosing DPLL_INCF2_OFFSET= 0xFFFFFF the generation of the first SUB_INC2 pulse is performed with the next TS_CLK. In the case of DPLL_INCF2_OFFSET= 0x000000 the first pulse is delayed by a full SUB_INC2 period and in the case of DPLL_INCF2_OFFSET= 0x7FFFFF the first pulse is delayed by a half SUB_INC2 period. Any other value is possible.

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

18.12.106 Register DPLL_DT_T_START

Address Offset:	see Appendix B		Initial Value:	0x0000_0101
	31 30 29 28 27 26 25 25 25	23 22 21 20 20 19 18 17 17	15 14 13 13 12 11 10 9	6 5 3 3 3 1 1 0
Bit	Reserved		DPLL_DT_T_STA RT	
Mode	٣		RW	
Initial Value	00×00		0x00_0 101	
Bit 23:0	increment after S For the first incl DPLL_DT_1	IP1 is set to 1 rement after settin 「_START is ta	ng SIP1 from 0 ken instead of	ACT for the first to 1 the value of the calculated uration. This value

Specification

should be always > 256 in order to avoid an overflow during the calculation of DPLL RDT T ACT.

Bit 31:24 **Reserved Note**: Read as zero, should be written as zero.

18.12.107 Register DPLL_DT_S_START

Address Offset:	see Appendix B		Initial Value:	0x0000_0101
	31 30 29 28 27 26 26 25 25	23 22 21 20 20 19 18 17 17	15 14 13 13 12 11 10 9 8	7 6 6 7 3 3 3 3 1 1 1 0
Bit	Reserved		DPLL_DT_S_STA RT	
Mode	٣		ж Х	
Initial Value	00×0		0x00_0 101	

Bit 23:0 **DPLL_DT_S_START:** start value of DPLL_DT_S_ACT for the first increment after SIP2 is set to 1

For the first increment after setting SIP2 from 0 to 1 the value of DPLL_DT_S_START is taken instead of the calculated DPLL_DT_S_ACT for the current increment duration. This value should be always > 256 in order to avoid an overflow during the calculation of DPLL_RDT_S_ACT.

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

18.12.108 Register DPLL_STA_MASK

Bit 7:0

Specification

Address Offset:	see Appendix B	Initial Value:	0×0000_0000
	31 30 29 27 27 26 26 25 25 25 23 23 23 23 23 23 21 19 11 11	15 14 13 13 12 11 10 9 8	7 5 3 3 3 2 1 1
Bit	Reserved	STA_NOTIFY_S	STA_NOTIFY_T
Mode	œ	RW	RW
Initial Value	00000×0	00×0	00×0

STA_NOTIFY_T: notify value for STA_T of register DPLL_STA.

The STA_NOTIFY_T is representing a trigger mask of DPLL_STA.STA_T. When DPLL_STA.STA_T reaches the value of STA_NOTIFY_T the flag DPLL_STA_FLAG.STA_FLAG_T is set to '1' when DPLL_STA.STA_T is leaving the state STA_NOTIFY_T.

- The STA_NOTIFY_S is representing a trigger mask of DPLL_STA.STA_S. When DPLL_STA.STA_S reaches the value of STA_NOTIFY_S the flag DPLL_STA_FLAG.STA_FLAG_S is set to '1' when DPLL_STA.STA_S is leaving the state STA_NOTIFY_S.
- Bit 31:16 **Reserved Note**: Read as zero, should be written as zero.

18.12.109 Register DPLL_STA_FLAG

Confidential

The signal is visible to MCS0 sub module as part of the special function register.

Bit 15:8 **STA_NOTIFY_S:** notify value for STA_S of register DPLL_STA.

Specification

Revision	3.1	.5.1
----------	-----	------

Address Offset:	see Appendix B Initial Value: 0x0000_0000
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Bit	Reserved INC_CNT2_FLAG STA_FLAG_S STA_FLAG_S STA_FLAG_S STA_FLAG_S STA_FLAG_S STA_FLAG_S STA_FLAG_S
Mode	ж ж х х х х х х х х х х х х х х х
Initial Value	
Bit 0	 STA_FLAG_T: Flag according to DPLL_MASK.STA_NOTIFY_T The STA_FLAG_T is set to '1' indicating that the signal DPLL_STA.STA_T has left the state defined by the trigger mask of DPLL_STA_MASK.STA_NOTIFY_T. The Flag is reset when this bit of the register is written to '1'. The signal is visible to MCS0 sub module as part of the special function register.
Bit 7:1 Bit 8	Reserved Note: Read as zero, should be written as zero. STA_FLAG_S: Flag according to DPLL_STA_MASK.STA_NOTIFY_S
	 The STA_FLAG_S is set to '1' indicating that the signal DPLL_STA.STA_S has left the state defined by the trigger mask of DPLL_STA_MASK.STA_NOTIFY_S. The Flag is reset when this bit of the register is written to '1'. The signal is visible to MCS0 sub module as part of the special function register.
Bit 9	 INC_CNT1_FLAG: Flag according to DPLL_INC_CNT1_MASK.INC_CNT1_NOTIFY The INC_CNT1_FLAG is set to '1' indicating that the signal DPLL_INC:CNT1.INC_CNT1 has left the state defined by the trigger mask of DPLL_INC_CNT1_MASK.INC_CNT1_NOTIFY. The Flag is reset when this bit of the register is written to '1'. The signal is visible to MCS0 sub module as part of the special function register.
Bit 10	INC_CNT2_FLAG: Flag according to DPLL_INC_CNT2_MASK.INC_CNT2_NOTIFY
	The INC_CNT2_FLAG is set to '1' indicating that the signal DPLL_INC_CNT2.INC_CNT2 has left the state defined by the trigger mask of DPLL_INC_CNT2_MASK.INC_CNT2_NOTIFY.

The Flag is reset when this bit of the register is written to '1'.

Specification

The signal is visible to MCS0 sub module as part of the special function register.

Bit 31:11 **Reserved Note**: Read as zero, should be written as zero.

18.12.110 Register DPLL_INC_CNT1_MASK

Address Offset:	see Appendix B		Initial Value:	0x0000_0000
	31 30 29 28 27 26 25 25	23 22 21 21 20 19 18 17 17	15 14 13 13 12 11 11	9 8 6 5 7 4 4 3 3 3 3 3 2 2 1 1
Bit	Reserved		INC_CNT1_NOTIF	
Mode	۲		RW	
Initial Value	00×0		00 00	
Dit 22.0	INC CNT1 NOT	IEV. potify yol	ue for INC	CNIT1 of register

Bit 23:0 **INC_CNT1_NOTIFY:** notify value for INC_CNT1 of register DPLL_INC_CNT1.

The INC_CNT1_NOTIFY is representing a trigger mask of DPLL_INC_CNT1.INC_CNT1. When DPLL_INC_CNT1.INC_CNT1 reaches the value of INC_CNT1_NOTIFY the flag DPLL_STA_FLAG.INC_CNT1_FLAG is set to '1' when DPLL_INC_CNT1.INC_CNT1 is leaving the state INC_CNT1_NOTIFY.

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

18.12.111 Register DPLL_INC_CNT2_MASK

Specification

Address Offset:	see Appendix B		Initial Value:	0x00000000							
	31 30 29 28 27 26 25 25	23 22 21 20 20 19 18 17 17	15 14 13 13 12 11 11 9	8 6 6 4 4 4 2 3 3 0							
Bit	Reserved		INC_CNT2_NOTIF								
Mode	٣		RW								
Initial Value			000000000000000000000000000000000000000								
Bit 23:0		-	ue for INC_C	NT2 of register							

- DPLL_INC_CNT2.
 - The INC_CNT2_NOTIFY is representing a trigger mask of DPLL INC CNT2.INC CNT2. When DPLL INC CNT2.INC CNT2 reaches the value of INC_CNT2_NOTIFY the flag DPLL_STA_FLAG.INC_CNT2_FLAG is set to '1' when DPLL INC CNT2.INC CNT2 is leaving the state INC_CNT2_NOTIFY.
- Bit 31:24 Reserved Note: Read as zero, should be written as zero.

18.12.112 Register DPLL NUSC EXT1

Address Offset:	see Appendix B									Initial Value: 0								0	×0001_0001												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	з	2	1 0
Bit	Reserved	WSYN				Reserved				SYN'S_OLD							Reserved							s 'NA's							
Mode	В	RAw	٣			RPw						٣							RPw												
Initial Value	0×00	0		0×00			0×01											00X0					0x01								

Number of Recent STATE Events used for Calculations

Bit 6:0 SYN S: number of real and virtual events to be considered for the current increment.

GTM-IP	Specification	Revision 3.1.5.1
	This value reflects the NS value of the last valid ind ADT_S[i]; to be updated after all calculations in 18.8.6.7.1.	•
	Note: This value can only be written when the WSYN is set.	I bit in this register
Bit 15:7	Reserved Note : Read as zero, should be written as zero.	
Bit 22:16	SYN_S_OLD: number of real and virtual events to be last increment. This value reflects the NS value of the last but one value in ADT_S[i]; is updated automatically when writin	d increment, stored
Bit 29:23	 Note: This value is updated by the SYN_S value when this register is set. Reserved Note: Read as zero, should be written as zero. 	en the WSYN bit in
Bit 30	WSYN: write control bit for SYN_S and SYN_S_OLD; 0 = the SYN_S value is not writeable 1 = the SYN_S value is writeable	read as zero.
Bit 31	Reserved Note : Read as zero, should be written as zero.	

Note: This register is only used when DPLL_CTRL_11.STATE_EXT is set. If DPLL_CTRL_11.STATE_EXT is not set any read/write access to this register will return AEI_STATUS = 0b10.

18.12.113 Register DPLL_NUSC_EXT2

OSCH

Bit 6:0

Specification

Address Offset:	see Appendix B									Initial Value: 0									x0000_0001												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	3	2	1
Bit	NSAM	Reserved	SUNW			Decented	neserven						VSN				FSS	L L L L L L L L L L L L L L L L L L L						U N N N N N N N N N N N N N N N N N N N							
Mode	RAw	Я	RAw			۵	Ċ						RPw				RPw				۵	r							RPw		
Initial Value	0	0×00	0			0^0	0×0						0×00				0				0000	nnxn							0×01		

Number of Recent STATE Events used for Calculations

NUSE: Number of recent *STATE* events used for SUB_INCx calculations modulo 2*(SNU_{max}+1).

No gap is considered in that case for this value, but in the VSN value (see below): This register is set by the CPU but reset automatically to "1" by a change of direction or loss of LOCK. Each other value can be set by the CPU, maybe Full_SCALE, HALF_SCALE or parts of them. The relation values QDT_Sx are calculated using NUSE values in the past with its maximum value of 2*SNU+1.

Note: This value can only be written when the WNUS bit is set.

Bit 14:7 Reserved

Note: Read as zero, should be written as zero.

- Bit 15 **FSS: FULL_SCALE of STATE;** this value is to be set, when NUSE is set to FULL_SCALE 0 = the NUSE value is less then FULL_SCALE 1 = the NUSE value is equal to FULL_SCALE
 - This value is set by the CPU, but reset automatically to "0" by a change of direction or loss of LOCK.

Note: This value can only be written when the WNUS bit is set.

- Bit 22:16 **VSN: virtual STATE number;** number of virtual state increments in the current NUSE region.
 - This value reflects the number of virtual increments in the current NUSE region; for NUSE=1 this value is zero, when the CPU sets NUSE to a value > 1 or zero(2⁷ modulo 2⁷), it must also set VSN to the correspondent value;
 - the VSN value is subtracted from the NUSE value in order to get the corresponding APS value for the past; the VSN value is not used for the APS_1C2 pointer.

VSN is to be updated by the CPU when a new gap is to be considered for NUSE or a gap is leaving the NUSE region; for this purpose the SASI interrupt can be used; no further update of VSN is necessary when NUSE is set to FULL_SCALE

	Note: This value can only be written when the WVSN bit is set.
Bit 28:23	Reserved
	Note: Read as zero, should be written as zero.
Bit 29	WNUS: write control bit for NUSE; read as zero.
	0 = the NUSE value is not writeable
	1 = the NUSE value is writeable
Rit 30	Beserved

Bit 30 Reserved Note: Read as zero, should be written as zero.

- Bit 31 **WVSN:** write control bit for VSN; read as zero.
 - 0 = the VSN value is not writeable
 - 1 = the VSN value is writeable

Note: This register is only used when DPLL_CTRL_11.STATE_EXT is set. If DPLL_CTRL_11.STATE_EXT is not set any read/write access to this register will return AEI_STATUS = 0b10.

18.12.114 Register DPLL_APS_EXT

Address Offset:	see Appendix B	Initi	ial Value:	0x0000_0000
	31 30 29 28 28 28 26 26 26 25 24 23 23 23	20 19 18 17 16 15 14	13 12 11 10 9	8 7 5 6 4 4 3 3 3 2 2 1 1
Bit	Reserved	APS_1C2	WAPS_IC2 Reserved	APS WAPS Reserved
Mode	œ	RPw	RAw R	RPw RAw R
Initial Value	000000	00000	0 0	0 00000

Actual RAM Pointer Address for STATE

Bit 0ReservedNote: Read as zero, should be written as zero.Bit 1WAPS: Write bit for address pointer APS, read as zero.0 = the APS is not writeable1 = the APS is writeable

Bit 8:2 **APS: Address pointer STATE;** Actual RAM pointer address value for DT_S[i] and RDT_S[i]

Specification

- Actual RAM pointer and synchronization position/value of *STATE* events in FULL_SCALE for up to 128 *STATE* events but limited to 2*(SNU+1-SYN_NS) in normal and emergency mode for SYSF=0 or to 2*(SNU+1)-SYN_NS for SYSF=1 respectively; See 18.10.
- APS is incremented (decremented) by one for each active *STATE* event and DIR2=0 DIR2=1). The APS offset value is added in the above shown bit position with the subsection offset of the RAM region.
- **Note:** The APS pointer value is directed to the RAM position, in which the data values are to be written, which correspond to the last increment. The APS value is not to be changed, when the direction (shown by DIR2) changes, because it points always to a storage place after the considered increment. Changing of DIR2 takes place always after an active *STATE* event and the resulting increment/decrement.

Note: This value can only be written when the WAPS bit is set.

Bit 12:9 Reserved

Note: Read as zero, should be written as zero.

- Bit 13 WAPS_1C2: Write bit for address pointer APS_1C2, read as zero.
 - 0 = the APS_1C2 is not writeable
 - 1 = the APS_1C2 is writeable
- Bit 20:14 **APS_1C2: Address pointer STATE for RAM region 1c2;** Actual RAM pointer address value for TSF_S[i].
 - Initial value: zero (0x00). Actual RAM pointer and synchronization position/value of *STATE* events in FULL_SCALE for up to 128 *STATE* events but limited to 2*(SNU+1) in normal and emergency mode; this pointer is used for the RAM region 1c2.
 - For SYS=1: APS_1C2 is incremented (decremented) by SYN_S_OLD for each active *STATE* event and DIR2=0 (DIR2=1).
 - For SYS=0: APT_1c2 is incremented or decremented by 1 respectively.
 - The APS_1C2 offset value is added in the above shown bit position with the subsection offset of the RAM region.
 - In addition when the APS_1C3 value is written by the CPU in order to synchronize the DPLL- with the next active *STATE* event the APS_1C2_EXT value is added/subtracted (while APS_1C2_STATUS is one; see DPLL_APT_SYNC register at chapter 18.12.25).
- Note: This value can only be written when the WAPS_1C2 bit is setBit 31:21Reserved

Note: Read as zero, should be written as zero.

Confidential

Specification

BOSCH

Note: This register is only used when DPLL_CTRL_11.STATE_EXT is set. If DPLL_CTRL_11.STATE_EXT is not set any read/write access to this register will return AEI_STATUS = 0b10.

18.12.115 Register DPLL_APS_1C3_EXT

Address Offset:	see Appendix B	Initial Value:	0x0000_000	0					
	31 30 29 28 28 27 26 26 27 26 27 24 21 23 23 21 21 21 19 117 17	15 14 13 13 12 11 10 9	8 7 6 5 4 4 3 3	1 0					
Bit	Reserved	Reserved							
Mode	۳		RW	Я					
Initial Value	00000 00000 00		0×00	00					
Bit 1.0	Reserved								

Bit 1:0 Reserved

Note: Read as zero, should be written as zero.

Bit 8:2 **APS_1C3: Address pointer STATE for RAM region 1c3;** Actual RAM pointer address value for ADT_S[i] Initial value: zero (0x00). Actual RAM pointer and synchronization position/value of *STATE* events in FULL_SCALE for up to 128 *STATE* events but limited to 2*(SNU+1-SYN_NS) in normal and emergency mode for SYSF=0 or to 2*(SNU+1)-SYN_NS for SYSF=1 respectively; this pointer is used for the RAM region 1c3. See 18.10. The RAM pointer is set by the CPU accordingly, when the synchronization condition was detected.

Bit 31:9 Reserved

Note: Read as zero, should be written as zero.

Note: The APS_1C3 pointer value is directed to the RAM position of the profile element in RAM region 1c2, which corresponds to the current increment. When changing the direction DIR1 or DIR2 respectively, this is always known before an active *STATE* event is processed. This is because of the pattern recognition in SPE (for PMSM) or because of the direction change recognition by TRIGGER. This direction change results in an automatic increment (forwards) or decrement (backwards) when the input event occurs in addition with a 2 times correction.

The APS_1C3_x offset value is added in the above shown bit position with the subsection address offset of the corresponding RAM region.

Confidential

BOSCH

Note: This register is only used when DPLL_CTRL_11.STATE_EXT is set. If DPLL_CTRL_11.STATE_EXT is not set any read/write access to this register will return AEI_STATUS = 0b10.

18.12.116 Register DPLL_APS_SYNC_EXT

Address Offset:	see Appendix B		In	nitial Value: 0	×0000_0000
	31 30 29 28 27 26 26 25 24 23	22 21 20 19 18 17 16	15	14 13 12 11 10 9 8 8	6 5 3 3 4 6 0 1 1 0
Bit	Reserved	APS_1C2_OLD	APS_1C2_STATU	Reserved	APS_1C2_EXT
Mode	۲	RW	RW	۲	RŴ
Initial Value	00000	00×0	0	0	00×0

STATE Time Stamp Field Offset at Synchronization Time

Bit 6:0 **APS_1C2_EXT: Address pointer 1c2 extension;** this offset value determines, by which value the APS_1C2 is changed at the synchronization time; set by CPU before the synchronization is performed.

This offset value is the number of virtual increments to be inserted in the TSF for an imminent intended synchronization; the CPU sets its value dependent on the gaps until the synchronization time taking into account the considered NUSE value to be set and including the next future increment (when SYN_S_OLD is still 1). When the synchronization takes place, this value is to be added to the APS_1C2 address pointer (for forward direction, DIR2=0) and the APT_1c2_status bit is cleared after it. For backward direction subtract APS_1C2_EXT accordingly.

- **Note:** When the synchronization is intended and the NUSE value is to be set to FULL_SCALE after it, the APS_1C2_EXT value must be set to SYN_NS (for SYSF=1) or 2*SYN_NS (for SYSF=0) in order to be able to fill all gaps in the extended TSF_S with the corresponding values by the CPU.
- When still not all values for FULL_SCALE are available, the APS_1C2_EXT value considers only a share according to the NUSE value to be set after the synchronization.

736/868

GTM-IP	Specification	Revision 3.1.5.1
	Note: Read as zero, should be written as zero.	
Bit 15	APS_1C2_STATUS: Address pointer 1c2 status; the synchronization is performed. The value is cle when the APS_1C2_OLD value is written. 0 = APS_1C2_EXT is not to be considered.	eared automatically
Bit 22:16	1 = APS_1C2_EXT has to be considered for time state APS_1C2_OLD: Address pointer STATE for RA synchronization time; this value is set by the current when the synchronization takes place for the first at after writing APS_1C3 but before adding the offset van (that means: when APS_1C2_STATUS=1). Address pointer APS_1C2 value at the moment of before the offset value is added, that means the value points to the last value before the addition	AM region 1c2 at ent APS_1C2 value ctive STATE event lue APS_1C2_EXT of synchronization, he pointer with this

Bit 31:23 Reserved

Note: Read as zero, should be written as zero.

Note: This register is only used when DPLL_CTRL_11.STATE_EXT is set. If DPLL_CTRL_11.STATE_EXT is not set any read/write access to this register will return AEI_STATUS = 0b10.

Address Offset:	see Appendix B		Initial Value: 0x0	000_0017
	31 30 29 28 27 26 25 25 24 23 23	21 20 19 18 17 16	15 14 13 13 12 11 11 10 9 8 8 6	5 4 3 3 1 0
Bit	Reserved	SYN_NS	Reserved	NNS
Mode	œ	RPw	œ	RPw
Initial Value	0000×0	0000	0	0×17

18.12.117 Register DPLL_CTRL_EXT

STATE Time Stamp Field Offset at Synchronization Time

Bit 5:0 **SNU³: STATE number;** SNU+1 is number of nominal *STATE* events in HALF_SCALE (1...32).

Note: This bit can only be written when the DPLL is disabled.

Note: The number of nominal *STATE* events is the decimal value plus 1. This value can only be written when (RMO=0 and SMC=0) or DEN=0. Set SSL=00 before changing this value and set RMO=1 only after FULL_SCALE with SSL>0.

BOSCH

Specification

Bit 15:6 Reserved

Note: Read as zero, should be written as zero.

- Bit 21:16 **SYN_NS: Synchronization number of** *STATE***;** summarized number of virtual increments in HALF_SCALE
 - sum of all systematic missing *STATE* events in HALF_SCALE (for SYSF=0) or FULL SCALE (for SYSF=1) ; the SYN_NS missing *STATES* can be divided up to an arbitrary number of blocks. The pattern of events and missing events in FULL_SCALE is shown in RAM region 1c3 as value NS in addition to the adapted values. The number of stored increments in FULL_SCALE must be equal to 2*(SNU+1-SYN_NS) for SYSF=0 or 2*(SNU+1)-SYN_NS for SYSF=1. This pattern is written by the CPU beginning from a fixed reference point (maybe beginning of the FULL_SCALE region). The relation to the actual increment is established by setting of the profile RAM pointer APS_1C3 in an appropriate relation to the RAM pointer APS of the actual increment by the CPU.

Note: This value can only be written when the DPLL is disabled.

Note: This value can only be written when (RMO=0 and SMC=0) or DEN=0. Set SSL=00 before changing this value and set RMO=1 only after FULL_SCALE with SSL>0.

Bit 31:22 Reserved

Note: Read as zero, should be written as zero.

Note: This register is only used when DPLL_CTRL_11.STATE_EXT is set. If DPLL_CTRL_11.STATE_EXT is not set any read/write access to this register will return AEI_STATUS = 0b10.

18.12.118 Memory DPLL_RR1A

Specification

Revision 3.1.5.1

Address Offset:	see Appendix B	Initial Value:	0x0000_0000
	31 30 29 27 28 26 26 26 25 26 23 23 23 23 23 21 21 19 11 11	15 14 13 12 11 11 10 9 8	7 6 5 4 3 3 2 2 1 1
Bit			
Mode			
Initial Value	0000×0	0000	
Bit 31:0	DATA		

18.12.119 Memory DPLL_RR2

Address Offset:	S	ee	Α	pp	er	ndi	ix	В		Initial	Value:	0x0000_0000
	31	30	29	28	27	26	25	24	23 22 21 20 20 19 18 17 17	15 14 13	12 11 10 9 8	7 6 5 4 3 3 2 2 1 1
Bit											DATA	
Mode											RŴ	
Initial Value											00000	
Bit 23.0		N۸.	TΔ									

Bit 23:0 DATA

18.13 DPLL RAM Region 1a value description

18.13.1 Memory DPLL_PSA[i]

Specification

Revision 3.1.5.1

Address Offset:	see Appendix B		Initial Value:	0x0000_0000
	31 30 29 28 28 27 26 26 25 25	23 22 21 21 20 19 18 17 17	15 14 13 12 11 11 10 9 8	7 6 5 3 3 3 2 2 1 1
Bit	Reserved		PSA	
Mode	٣		RPW	
Initial Value	00×0		0000×0	

Position Request for Action i, (RAM1a, i=0...NOAC-1)¹⁾

Bit 23:0 **PSA** Position information of a desired action (i=0...NOAC-1)¹).

Note: This value can only be written when the DPLL is disabled.

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

¹⁾ Note: The PSA values for actions 24...31 are not available for all devices. Please refer to appendix B.

18.13.2 Memory DPLL_DLA[i]

Address Offset:	see Appendix B		Initial Value:	0x0000_0000
	31 30 29 28 27 26 25 25	23 22 21 20 20 19 18 17 17	15 14 13 12 11 11 10 9 8	7 5 4 4 3 3 3 1 1 1
Bit	Reserved		DLA	
Mode	٣		д Р	
Initial Value	00×0		000000	

Time to React for Action i, (RAM1a, i=0...NOAC-1)¹⁾

DLA Time to react before the corresponding position value of a desired Bit 23:0 action is reached $(x=0...NOAC-1)^{1}$. In the case of LOW RES=1 (see chapter 18.4.2) this delay value must be also given as low resolution value.

Note: This value can only be written when the DPLL is disabled.

Bit 31:24 Reserved Note: Read as zero, should be written as zero.

Specification

¹⁾ **Note:** The DLA values for actions 24...31 are only available for all devices. Please refer to appendix B.

18.13.3 Memory DPLL_NA[i]

Address Offset:	see Appendix B		Initial Value:	0x0000_0000
	31 30 29 28 27 26 25 25	23 22 21 20 20 19 18 17 17	15 14 13 12 11 10	9 8 6 6 7 7 7 8 7 3 3 3 3 2 2 1 1
Bit	Reserved	NOT_USED	DW	DB
Mode	Ľ	RW	RPw	RPw
Initial Value	0×00	0X0	0×000	000×0

Calculated Relative Time to Action i, (RAM1a, i=0...NOAC-1)¹⁾

Bit 9:0 **DB:** number of events to Action_i (fractional part, i=0...NOAC-1)¹). **Note:** This value can only be written when the DPLL is disabled.

Bit 19:10 **DW:** number of events to Action_i (integer part, i=0...NOAC-1)¹⁾. **Note:** Use the maximum value for NA_DW=0x3FF in the case of a calculated value which exceeds the represent able value.

Note: This value can only be written when the DPLL is disabled.

Bit 23:20 Not used

Note: must be written to zero.

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

¹⁾ **Note:** The NA values for actions 24...31 are not available for devices. Please refer to appendix B.

18.13.4 Memory DPLL_DTA[i]

Confidential

Specification

Address Offset:	see Appendix B		Initial Value:	0x0000_0000
	31 30 29 28 27 26 25 25	23 22 21 21 20 19 18 17 17	15 14 13 13 12 11 11 10 9	8 6 6 4 4 4 3 3 3 2 2 2 0
Bit	Reserved		рта	
Mode	۳		RPw	
Initial Value	0000		000000 000000	

Calculated Relative Time to Action i, (RAM1a, i=0...NOAC-1)¹⁾

Bit 23:0 **DTA:** calculated relative time to ACTION_i (i=0...NOAC-1)¹⁾ **Note:** This value can only be written when the DPLL is disabled. The DTA value is a positive integer value. When calculations using equations DPLL-12 or DPLL-14 result in a negative value, it is replaced by zero.

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

¹⁾ **Note:** The DTA values for actions 24...31 are not available for all devices. Please refer to appendix B.

18.14 DPLL RAM Region 2 value description

Note: Bits 31 to 24 of RAM region 2 are not implemented and therefore always read as zero (reserved). Other bits which are declared as reserved are not protected against writing. Unused address regions are not protected against writing when implemented.

18.14.1 Memory DPLL_RDT_T[i]

Specification

Address Offset:	see Appendix B		Initial Value:	0x0000_0000
	31 30 29 28 28 27 26 26 25 24	23 22 21 21 20 19 18 17 16	15 14 13 13 12 11 11 9 9	8 6 6 7 8 7 1 1 1 0
Bit	Reserved		RDT_T	
Mode	٣		RW	
Initial Value	00×0		00000 00000	

Reciprocal Values of the Nominal TRIGGER Increments Duration in FULL_SCALE

- Bit 23:0 **RDT_T: Reciprocal difference time of TRIGGER;** 2* (TNU+1-SYN_NT) stored values nominal reciprocal value of the number of time stamp clocks measured in the corresponding increment (which is divided by the number of nominal increments); multiplied by *2³² while only the lower 24 bits are used; the LSB is rounded up, when the next truncated bit is 1.
 - **Note:** There are 2* (TNU+1- SYN_NT) entries. The maximum number of entries is restricted to a value corresponding to the OSS value in the DPLL_OSW register.

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

Note: The starting index for Memory DPLL_RDT_T[i] in RAM2 is defined by the parameter AOSV_2A in DPLL_AOSV2 Register

18.14.2 Memory DPLL_TSF_T[i]

Address Offset:	see Appendix B		Initial	Value:	0x0000_0	0000
	31 30 29 28 27 26 25 25	23 22 21 21 20 19 19 17 17	15 14 13	12 11 10 9 8	7 6 5 4	3 2 0
Bit	Reserved			TSF_T		
Mode	٣			RŇ		
Initial Value	00×0			00000 00		

Time Stamp Values of the Nominal TRIGGER Increments in FULL_SCALEBit 23:0**TSF_T:** Time stamp field of active TRIGGER slopes

Specification

Note: There are 2* (TNU+1) entries. The maximum number of entries is restricted to a value corresponding to the OSS value in the DPLL OSW register.

Bit 31:24 **Reserved**

Note: Read as zero, should be written as zero.

Note: The starting index for Memory DPLL_TSF_T[i] in RAM2 is defined by the parameter AOSV_2C in DPLL_AOSV2 Register

18.14.3 Memory DPLL_ADT_T[i]

Address Offset:	see Appendix B			Initial	Value: 0x0000_0000
	31 30 29 28 27 26 25 25 25	23 22 21 20 19	18 17 16	15 14 13	12 11 10 9 8 8 8 7 7 7 7 6 6 6 5 1 3 3 3 3 3 0 0
Bit	Reserved	NOT_USED	ΤΝ	TINT	6
Mode	۲	RW	RW	RŴ	٣
Initial Value	00000	00×00	000	000	

Adapt and Profile Values of the TRIGGER Increments in FULL_SCALE

Bit 12:0 **PD: Physical deviation;** Adapt values for each nominal *TRIGGER* increment in FULL_SCALE (sint13);

The PD value does mean the number of SUB_INC1 pulses to be added to NT*((MLT+1) + PD);

the absolute value of a negative PD must not exceed (MLT+1) or MLS1 respectively; systematic missing *TRIGGER* events must be considered for the value of PD;

Bit 15:13 **TINT:** *TRIGGER* Interrupt information;

- depending on the value up to 7 different interrupts can be generated. In the current version the 5 interrupts TE0_IRQ ... TE4_IRQ are supported by TINT="001", "010", "011", "100", "101" respectively. For the values "000", "110" and "111" no interrupt is generated and no other reaction is performed.
 - The corresponding interrupt is activated, when the TINT value is read by the DPLL together with the other values (PD, NT) according to the profile.

Bit 18:16 **NT: Number of TRIGGERs;** number of nominal *TRIGGER* parts in the corresponding increment.

GTM-IP Specification Revision 3.1.5.1

Note: There are 2* (TNU+1- SYN_NT) entries. The maximum number of entries is restricted to a value corresponding to the OSS value in the DPLL_OSW register.

Bit 23:19 Not used

Note: must be written to zero.

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

Note: The starting index for Memory DPLL_ADT_T[i] in RAM2 is defined by the parameter AOSV_2C in DPLL_AOSV2 Register

18.14.4 Memory DPLL_DT_T[i]

Address Offset:	see Appendix B		Initial Value:	0x0000_0000
	31 30 29 28 27 26 25 25	23 22 20 20 19 18 17 17	15 14 13 12 11 11 10 9 8	7 6 7 4 4 3 3 3 2 1 1
Bit	Reserved		DI_T	
Mode	Я	RV		
Initial Value	0000		000000	

Nominal TRIGGER Increments Duration in FULL_SCALE

Bit 23:0 **DT_T: Difference time of TRIGGER;** increment duration values for each *TRIGGER* increment in FULL_SCALE divided by the number of nominal increments (nominal value).

Note: There are 2* (TNU+1- SYN_NT) entries. The maximum number of entries is restricted to a value corresponding to the OSS value in the DPLL_OSW register.

Bit 31:24 Reserved

Note: Read as zero, should be written as zero.

Note: The starting index for Memory DPLL_DT_T[i] in RAM2 is defined by the parameter AOSV_2D in DPLL_AOSV2 Register

18.15 MCS to DPLL Register description

BOSCH

Specification

As already mentioned in section 18.10, the following registers of the MCS2DPLL interface are exclusively accessible by the MCS instance of cluster 0 and cannot be accessed directly via CPU.

18.15.1 Register MCS2DPLL_DEB0

Address Offset:	see Appendix B Initial Value:
	31 33 30 29 27 28 26 26 25 25 25 25 25 25 23 23 23 23 23 23 23 23 21 10 11 11 11 11 11 11 11 11 11 20 20 20 21 25 27 26 26 26 27 26 26 26 26 26 26 26 26 27 26 26 26 27 27 26 26 26 26 26 26 26 27 26 26 26 26 26 26 26 27 26 26 26 26 26 26 26 26 26 26 26 26 26
Bit	л/а DATA
Mode	RX
Initial Value	00000 000000

Bit 23:0 DATA: Data exchange buffer 0. Actual content depends on whether it is a Read or Write operation from MCS.

READ access from MCS:

Duration of the last increment DT_S_ACT (18.7.5). This value is updated by the DPLL during the update of ram (STA_S = $0b0000_1001$) and is ready to be read when STA_S is modified to $0b0000_1010$.

WRITE access from MCS:

The DPLL expects $DT_S[p-1]$ (18.6.3.5) or $DT_S[p+1]$ (18.6.5.2) during the increment prediction (STA_S = 0b0001_0000).

Bit 31:24 n/a

Note: The data write from MCS should be performed between the two writes to MCS2DPLL_DEB15 (MCS2DPLL_STATUS_INFO)

18.15.2 Register MCS2DPLL_DEB1

Specification

Address Offset:	see Appendix B		Initial Value:	
	31 30 29 28 27 26 25 25 25	23 22 21 21 20 19 19 18 17 17	15 14 13 13 12 11 11 10 9 8	7 5 3 3 3 1 1 0
Bit	n/a		рата	
Mode			RW	
Initial Value			0000000	
Bit 23:0	DATA: Data exch	ange buffer 1.		

it 23:0 DATA: Data exchange buffer 1. READ access from MCS:

Reads as 0.

WRITE access from MCS:

The DPLL expects RDT_S[p-1] (18.6.3.4) or RDT_S[p+1](18.6.5.1) during the increment prediction (STA_S = 0b0001_0000) and RDT_S[t-1] (18.7.3) or RDT_S[t+1](18.7.4) during the action calculation (STA_S = 0b0111_0000)

Bit 31:24 n/a

Note: In both cases, the data write from MCS should be performed between the two writes to MCS2DPLL_DEB15 (MCS2DPLL_STATUS_INFO).

18.15.3 Register MCS2DPLL_DEB2	
--------------------------------	--

Address Offset:	see Appendix B		Initial Value:
	31 30 29 28 27 26 25 25 25	23 22 21 21 20 19 18 17 17	15 14 13 13 13 10 9 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 3 3 3 3
Bit	n/a		DATA
Mode			ж Х
Initial Value			000000 00
Bit 23:0		operation from MC	ual content depends on whether it is S.

Specification

TS_Sx (18.7.5.5). Use to compute/update the time stamp values for STATE during the update of ram (STA_S = 0b0000_1001)

WRITE access from MCS:

The DPLL expects $RDT_S[p-q-1]$ (18.6.3.5) or $RDT_S[p+q+1](18.6.5.2)$ during the increment prediction (STA_S = 0b0001_0000).

Bit 31:24 n/a

Note: The data read from MCS should be performed between the two writes to MCS2DPLL_DEB15 (MCS2DPLL_STATUS_INFO).

Note: The data write from MCS should be performed between the two writes to MCS2DPLL_DEB15 (MCS2DPLL_STATUS_INFO)

18.15.4 Register MCS2DPLL_DEB3

Address Offset:	see Appendix B		Initial Value:	
	31 30 29 28 27 26 25 25 25	23 22 21 21 20 19 18 17 17	$\begin{array}{c} 15\\14\\11\\13\\11\\11\\11\\12\\10\\10\\10\\10\\10\\10\\10\\10\\10\\10\\10\\10\\10\\$	
Bit	n/a		рата	
Mode			RW	
Initial Value			000000 000000	
Bit 23:0	DATA: Data exchange buffer 3. Actual content depends on whether it is a Read or Write operation from MCS. READ access from MCS: DT_Sx (18.7.5.5). Use to compute/update the time stamp values for STATE during the update of ram (STA_S = 0b0000_1001)			
		expects DT_S[p-c	q] (18.6.3.5) or DT_S[p+q](18.6.5.2) n (STA_S = 0b0001_0000).	
Bit 31:24 n/a Note: The data read from MCS should be performed between the two writes to MCS2DPLL_DEB15 (MCS2DPLL_STATUS_INFO).				

Specification

18.15.5 Register MCS2DPLL_DEB4

Address Offset:	see Appendix B Initial Value:
	31 30 29 27 27 26 26 25 26 22 23 23 23 23 23 23 13 11 11 11 11 11 11 11 12 13 13 13 13 13 13 14 11 14 11 16 16 16 20 20 20 21 20 27 26 27 26 26 26 26 26 26 26 26 26 26 26 26 26
Bit	n/a DATA
Mode	R
Initial Value	00000 00

Bit 23:0 DATA: Data exchange buffer 4. Actual content depends on whether it is a Read or Write operation from MCS.

READ access from MCS:

SYN_S_OLD (18.7.5.5). Use to compute/update the time stamp values for STATE during the update of ram (STA_S = $0b0000_{-}1001$)

WRITE access from MCS:

The DPLL expects RDT_S[p-q] (18.6.3.7) or RDT_S[p+q](18.6.5.4) during the increment prediction (STA_S = 0b0001_0000) and RDT_S[t-q] (18.7.3) or RDT_S[t+q](18.7.4) during the action calculation (STA_S = 0b0111_0000)

Bit 31:24 n/a

Note: The data read from MCS should be performed between the two writes to MCS2DPLL_DEB15 (MCS2DPLL_STATUS_INFO).

Note: The data write from MCS should be performed between the two writes to MCS2DPLL_DEB15 (MCS2DPLL_STATUS_INFO)

18.15.6 Register MCS2DPLL_DEB5

Confidential

Specification

Address Offset:	see Appendix B Initial Value:
	31 33 33 33 33 33 33 34 36 37 35 32 32 32 33 33 33 33 33 33 31 31 32 32 32 32 32 32 32 32 32 32 32 32 32
Bit	л/а DATA
Mode	R K
Initial Value	000000 000000

Bit 23:0 DATA: Data exchange buffer 5. Actual content depends on whether it is a Read or Write operation from MCS.

READ access from MCS:

M_DW (m in 18.7.3 and 18.7.4). Use to provide the proper Time Stamp Field value during the action calculation (STA_S = $0b0111_0000$)

WRITE access from MCS:

The DPLL expects DT_S[p-q+1] (18.6.3.7) or DT_S[p+q-1](18.6.5.4) during the increment prediction (STA_S = 0b0001_0000) and DT_S[t-q+1] (18.7.3) or DT_S[t+q-1](18.7.4) during the action calculation (STA_S = 0b0111_0000)

Bit 31:24 n/a

Note: The data write from MCS should be performed between the two writes to MCS2DPLL_DEB15 (MCS2DPLL_STATUS_INFO).

18.15.7 Register MCS2DPLL_DEB6

Address Offset:	see Appendix B Initial Value:
	31 31 30 29 27 28 26 25 26 25 24 26 23 23 23 23 23 13 11 11 11 11 11 11 11 11 11 16 12 13 13 13 16 16 16 16 16 16 21 22 23 23 23 23 23 23 23 23 26 26 26 26 26 26 26 26 26 26 26 26 26
Bit	рата
Mode	R K
Initial Value	00 00 00 00 00

Specification

Bit 23:0 DATA: Data exchange buffer 6. READ access from MCS: Reads as 0.

WRITE access from MCS:

The DPLL expects ADT_S[APS_1C2] during the update of RAM (STA_S = 0b0000_1001) and change of direction (STA_S = 0b0000_0100 and STA_S = 0b0000_0110)

Bit 31:24 n/a

Note: In both cases, the current ADT_S[APS_1C2] value should be stored in the register before unlocking the state machine the second time, i.e.: between the two writes to MCS2DPLL_DEB15 (MCS2DPLL_STATUS_INFO).

Note: The format of ADT_S should match the defined in 18.12.90

18.15.8 Register MCS2DPLL_DEB7

Address Offset:	see Appendix B Initial Value:
	31 30 29 27 27 26 25 25 25 26 25 22 23 23 23 23 23 23 21 12 13 13 13 11 11 11 11 12 13 13 13 13 14 11 14 12 14 20 20 20 21 25 25 27 26 26 26 26 26 26 26 27 26 26 26 26 27 26 26 26 27 26 26 26 26 26 26 26 26 26 26 26 26 26
Bit	n/a DATA
Mode	R S S
Initial Value	00000 00 00

Bit 23:0 DATA: Data exchange buffer 7. Actual content depends on whether it is a Read or Write operation from MCS.

READ access from MCS:

Duration of the reciprocal of the last increment RDT_S_ACT (18.7.5). This value is written by the DPLL during the update of ram (STA_S = 0b0000_1001) and is ready to be read when STA_S is modified to 0b0000_1010.

WRITE access from MCS:

The DPLL expects the reciprocal of the last increment RDT_S[APS] (18.7.5) before it is overwritten with RDT_S_ACT during the update of ram (STA_S = 0b0000_1001). For the action calculation, this value is needed as well as RDT_S[t] in 18.7.3 and 18.7.4.

Revision 3.1.5.1

GTM-IP

Specification

Bit 31:24 n/a

Note: During an update of ram, perform the write before unlocking the state machine (STA_S = 0b0000_1001), i.e.: after the first write to MCS2DPLL_DEB15 (MCS2DPLL_STATUS_INFO) but before the second write. During the action calculation, the data write from MCS should be performed between the two writes to MCS2DPLL_DEB15 (MCS2DPLL_STATUS_INFO).

18.15.9 Register MCS2DPLL_DEB8

Address Offset:	see Appendix B Initial Value:	Initial Value:	
	31 30 29 27 28 27 26 26 25 25 26 21 23 23 23 13 11 11 11 11 11 11 11 11 11 11 11 11	0	
Bit	лда DATA		
Mode	S [™]	RW	
Initial Value	00000 000000	0000×0	

Bit 23:0 DATA: Data exchange buffer 8. READ access from MCS: Reads as 0.

WRITE access from MCS:

The DPLL expects TSF_S[p] (18.7.3 and 18.7.4) during the action calculation (STA_S = 0b0111_0000)

Bit 31:24 n/a

Note: The data write from MCS should be performed between the two writes to MCS2DPLL_DEB15 (MCS2DPLL_STATUS_INFO)

18.15.10 Register MCS2DPLL_DEB9

Specification

Address Offset:	see Appendix B		Initial Value:	
	31 30 29 28 27 26 25 25 25 25	23 22 21 21 20 20 19 18 18 17	15 14 13 13 12 11 10 9	0 1 7 3 4 2 2 2 3
Bit	n/a		рата	
Mode			RX	
Initial Value			00 00	
Bit 23:0	DATA: Data exch	ange buffer 9.		

Bit 23:0 DATA: Data exchange buffer 9. READ access from MCS:

Reads as 0.

WRITE access from MCS:

The DPLL expects TSF_S[p-n] (18.7.3) or TSF_S[p+n](18.7.4) during the action calculation (STA_S = $0b0111_0000$)

Bit 31:24 n/a

Note: The data write from MCS should be performed between the two writes to MCS2DPLL_DEB15 (MCS2DPLL_STATUS_INFO)

18.15.11 Register MCS2DPLL_DEB10

Address Offset:	see Appendix B Initial Value:
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Bit	л/а ДАТА
Mode	ک ک
Initial	0 00 00 00 00
Value	ŏ
Bit 23:0	DATA: Data exchange buffer 10.
	READ access from MCS:
	Boads as 0

Reads as 0.

WRITE access from MCS:

Specification

The DPLL expects $TSF_S[p+m-n]$ (18.7.3) or $TSF_S[p-m+n](18.7.4)$ during the action calculation (STA_S = 0b0111_0000)

Bit 31:24 n/a

Note: The data write from MCS should be performed between the two writes to MCS2DPLL_DEB15 (MCS2DPLL_STATUS_INFO)

18.15.12 Register MCS2DPLL_DEB11

Address Offset:	see Appendix B Initial Value:
	31 30 29 27 27 26 25 25 25 26 25 22 23 23 23 23 23 23 21 12 13 13 13 11 11 11 11 12 13 13 13 13 14 11 14 12 14 20 20 20 21 25 25 27 26 26 26 26 26 26 26 27 26 26 26 26 27 26 26 26 27 26 26 26 26 26 26 26 26 26 26 26 26 26
Bit	л/а DATA
Mode	₹£
Initial Value	00000 00000

Bit 23:0 DATA: Data exchange buffer 11. READ access from MCS: Reads as 0.

WRITE access from MCS:

The DPLL expects $TSF_S[p+m]$ (18.7.3) or $TSF_S[p-m](18.7.4)$ during the action calculation ($STA_S = 0b0111_0000$)

Bit 31:24 n/a

Note: The data write from MCS should be performed between the two writes to MCS2DPLL_DEB15 (MCS2DPLL_STATUS_INFO)

18.15.13 Register MCS2DPLL_DEB12

Specification

Address Offset:	see Appendix B		Initial Value:								
	31 30 29 28 27 26 25 25 25	23 22 21 21 20 20 19 18 17 17	15 14 13 13 12 11 11 10 9	8 6 7 7 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
Bit	n/a		DATA								
Mode			RW								
Initial Value			000000								
Bit 23:0	DATA: Data exch	ange buffer 12.									

Bit 23:0 DATA: Data exchange buffer 12. READ access from MCS:

Reads as 0.

WRITE access from MCS:

The DPLL expects the future adapt information ADT_S[APS_1C2+1] (when in forwards) or ADT_S[APS_1C2-1] (when in backwards) (18.6.3.5) during the update of RAM (STA_S = 0b0000_1001) and change of direction (STA_S = 0b0000_0100 and STA_S = 0b0000_0110)

Bit 31:24 n/a

Note: In both cases, the current ADT_S[APS_1C2+1] or ADT_S[APS_1C2-1] value should be stored in the register before unlocking the state machine the second time, i.e.: between the two writes to MCS2DPLL_DEB15 (MCS2DPLL_STATUS_INFO).

Note: The format of ADT_S should match the defined in 18.12.90

18.15.14 Register MCS2DPLL_DEB13

Confidential

Specification

Address Offset:	see Appendix B		Initial Value:	
	31 30 29 28 27 26 25 25 25	23 22 20 20 19 18 17 17	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	• 0
Bit	n/a		рата	
Mode			۲	
Initial Value			00000	
Bit 23:0	DATA: Data exch READ access fro Reads as 0.	m MCS:		
	WRITE access fr Ignored dur	om MCS: ing DPLL processi	sing.	

Bit 31:24 n/a

18.15.15 Register MCS2DPLL_DEB14

Address Offset:	see Appendix B		Initial	Value:					
	31 30 29 28 27 26 25 25 25	23 22 21 21 20 19 18 17 17	15 14 13	$\begin{array}{c} 12 \\ 111 \\ 10 \\ 9 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 7 \\ 7 \\ 7 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3$					
Bit	n/a			рата					
Mode				œ					
Initial Value				00000 00					
Bit 23:0	DATA: Data exchange buffer 14. READ access from MCS: Reads as 0.								
Bit 31:24	WRITE access fro Ignored duri n/a	om MCS: ing DPLL processii	ng.						

Specification

18.15.16 Register MCS2DPLL_DEB15

Address Offset:	see Appendix B Initial Value:
	31 31 30 29 27 28 27 26 25 26 25 24 25 21 19 11 11 11 11 11 11 11 11 11 11 12 12 13 13 13 13 16 16 16 16 16 16 17 20 21 22 23 23 23 23 23 23 23 26 26 26 26 26 26 26 26 26 26 26 26 26
Bit	л/а DATA
Mode	R R
Initial Value	000000
Bit 23:0	DATA: Data exchange buffer 15.

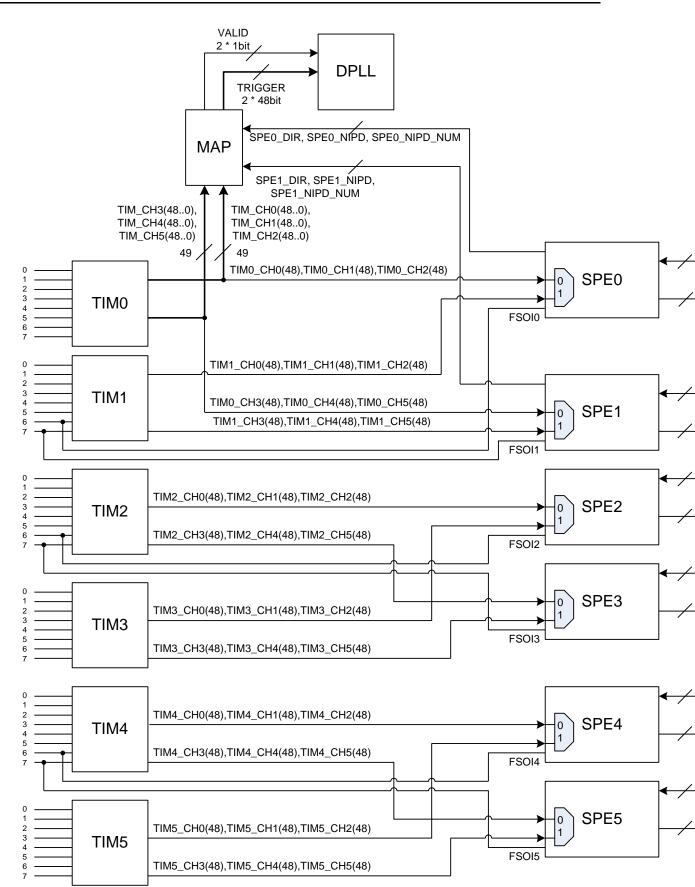
Bit 23:0 DATA: Data exchange buffer 15. READ access from MCS: Reads as 0.

> WRITE access from MCS: Unlocks the DPLL STATE state machine. See 18.10.2.

Bit 31:24 n/a

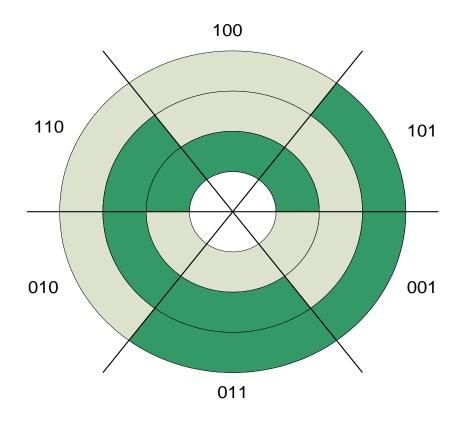
19 Sensor Pattern Evaluation (SPE)

19.1 Overview


The Sensor Pattern Evaluation (SPE) submodule can be used to evaluate three hall sensor inputs and together with the TOM module to support the drive of BLDC engines. Thus, the input signals are filtered already in the connected TIM channels. In addition, the SPE submodule can be used as an input stage to the MAP submodule if the DPLL should be used to calculate the rotation speed of one or two electric engine(s). The integration of the SPE submodule into the overall GTM-IP architecture concept is shown in figure 19.1.1.

19.1.1 SPE Submodule integration concept into GTM-IP

BOSCH Revision 3.1.5.1



Specification

Specification

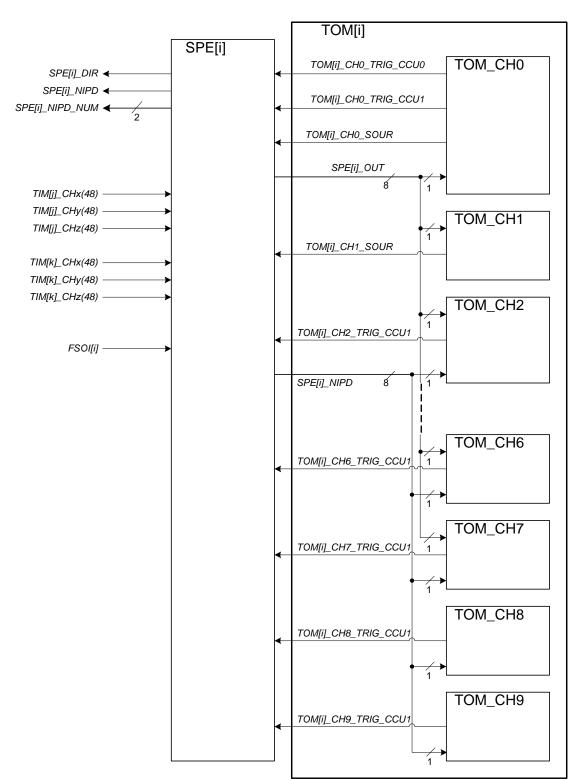
The SPE submodule can determine a rotation direction out of the combined $TIM[i]_CHx(48)$, $TIM[i]_CHy(48)$ and $TIM[i]_CHz(48)$ signals. On this input signals a pattern match algorithm is applied to generate the $SPEx_DIR$ signal on behalf of the temporal relation between these input patterns. A possible sample pattern of the three input signals is shown in figure 19.1.2. In general, the input pattern is programmable within the SPE submodule.

19.1.2 SPE Sample input pattern for *TIM[i]_CH[x,y,z](48)*

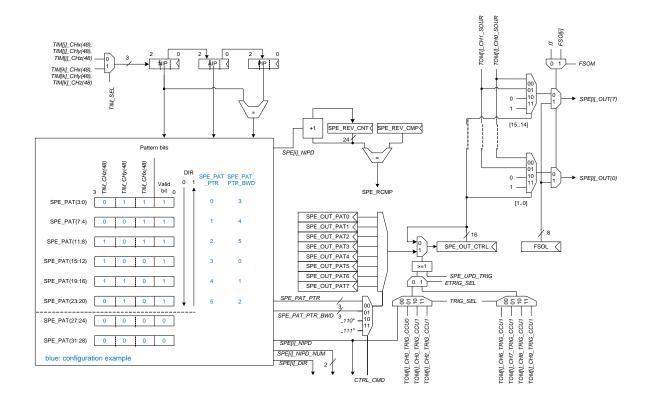
In figure 19.1.2 the input signals define the pattern from the input sensors which have a 50% high and 50% low phase. The pattern according to figure 19.1.2 is as follows:

100 - 110 - 010 - 011 - 001 - 101 - 100where the first bit (smallest circle) represents $TIM[i]_CH[x](48)$, the second bit represents $TIM[i]_CH[y](48)$, and the third bit (greatest circle) represents $TIM[i]_CH[z](48)$.

Note that the SPE module expects that with every new pattern only one of the three input signals changes its value.



19.2SPE Submodule description


The SPE submodule can handle sensor pattern inputs. Every time if one of the input signals $TIM[i]_CH[x](48), TIM[i]_CH[y](48)$ or $TIM[i]_CH[z](48)$ changes its value, a sample of all three input signals is made. Derived from the sample of the three inputs the encoded rotation direction and the validity of the input pattern sequence is determined and signaled. When a valid input pattern is detected, the SPE submodule can control the outputs of a dedicated connected TOM submodule. This connection is shown in figure 19.2.1.

19.2.1 SPE to TOM Connections

BOSCH Revision 3.1.5.1

The *TOM[i]_CH0_TRIG_CCU[x]* and *TOM[i]_CH[x]_SOUR* signal lines are used to evaluate the current state of the TOM outputs, whereas the *SPE[i]_OUT* output vector is used to control the TOM output depending on the new input pattern. The *SPE[i]_OUT* output vector is defined inside the SPE submodule in a pattern definition table **SPE[i]_OUT_PAT[x]**. The internal SPE submodule architecture is shown in figure 19.2.2.

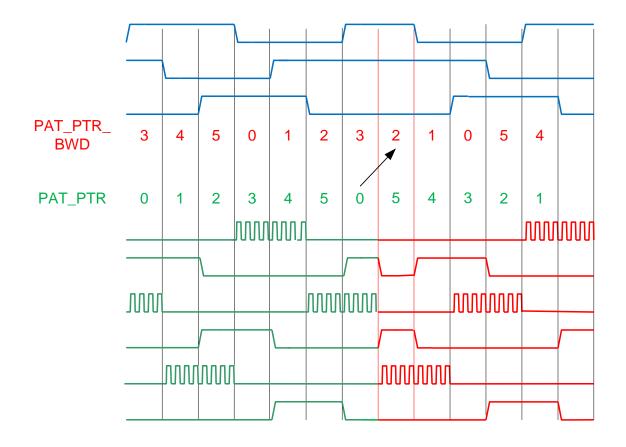
19.2.2 SPE Submodule architecture

The **SPE[i]_PAT** register holds the valid input pattern for the three input patterns $TIM[i]_CH[x](48)$, $TIM[i]_CH[y](48)$ and $TIM[i]_CH[z](48)$. The input pattern is programmable. The valid bit shows if the programmed pattern is a valid one. Figure 19.2.2 shows the programming of the **SPE[i]_PAT** register for the input pattern defined in figure 19.1.2.

The rotation direction is determined by the order of the valid input pattern. This rotation direction defines if the SPE_PAT_PTR is incremented (DIR = 0) or decremented (DIR = 1). Whenever a valid input pattern is detected, the *NIPD* signal is raised, the SPE_PAT_PTR is incremented/decremented and a new output control signal $SPE[i]_OUT(x)$ is send to the corresponding TOM submodule.

To command directly the forward or backward rotation the SPE provides with SPE[i]_APT_PTR and SPE[i]_PAT_PTR_BWD two pointers to array SPE[i]_OUT_PAT[z]. Both can point to different values of SPE[i]_OUT_PAT[z] at the same point in time. SPE[i]_APT_PTR is intended to point to the pattern for forward commanding and SPE[i]_PAT_PTR_BWD is intended to point to the pattern for backward commanding.

On startup both pointers have to be configured to an initial value that corresponds to different direction depending start pattern of **SPE[i]_OUT_PAT[z]**.


Specification

With each valid new input pattern indicated by *SPE_NIPD* both pointers will be incremented or decremented according to the detected direction.

Switching from command forward to command backward can then be done by changing the selected pointer to SPE[i]_OUT_PAT[z] array, i.e. changing SPE_CTRL_CMD in register SPE[i]_CMD from selecting SPE[i]_PAT_PTR to selecting SPE[i]_PAT_PTR_BWD or vice versa.

The intended behavior is depicted in the following figure:

19.2.3 SPE forward - backward commanding

With command **SPE_CTRL_CMD** = 0b10 or 0b11 a dedicated configurable output pattern configured to the pattern **SPE_OUT_PAT6** or **SPE_OUT_PAT7** can be commanded to the outputs.

An example is the introduction of a SW dead time if switching from pointer **SPE[i]_PAT_PTR** to **SPE[i]_PAT_PTR_BWD** or vice versa. E.g. if in **SPE[i]_OUT_PAT6** the value 0b10 for each output (i.e. set *SPE_OUT(n)* to 0) is programmed, this can be used as an intermediate step to introduce this 'all off' when switching between **SPE[i]_PAT_PTR** to **SPE[i]_PAT_PTR_BWD** or vice versa.

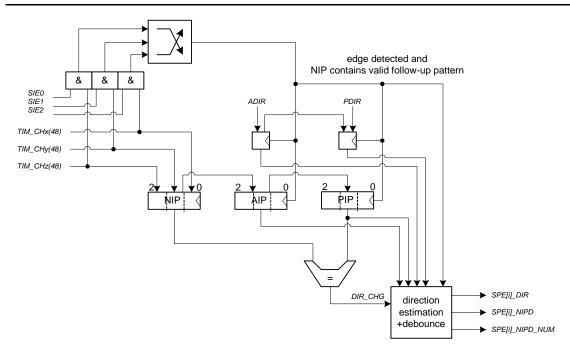
Selectable by **TRIG_SEL** and **ETRIG_SEL** the CCU1 trigger of either the TOM channel 2,6,7,8 and 9 can be used together with the SPE module to trigger a delayed update of the **SPE_OUT_CTRL** register after new input pattern detected by SPE (signaled by *SPE[i]_NIPD*).

To do this, the TOM channel z=2,6,7,8 or 9 has to be configured to work in one-shot mode (set bit **OSM** in register **TOM[i]_CH[z]_CTRL**). The SPE trigger of this channel has to be enabled, too (set description of bit **SPEM** and bit **SPE_TRIG** in register **TOM[i]_CH[z]_CTRL**). The SPE module has to be configured to update **SPE_OUT_CTRL** on *TOM[i]_CH[z]_TRIG_CCU1* (set in **SPE[i]_CTRL_STAT** bits **TRIG_SEL** to 0b11). Then, on new input detected by SPE, the signal *SPE[i]_NIPD* triggers the start of the TOM channel z to generates one PWM period by resetting **CN0** to 0. On second PWM edge triggered by CCU1 of TOM channel z, the signal *TOM[i]_CH[z]_TRIG_CCU1* triggers the update of **SPE_OUT_CTRL**.

The update of **SPE[i]_OUT_CTRL** with the content of one of the **SPE_OUT_PAT[z]** register can be triggered at any time by writing a 1 to bit **SPE_UPD_TRIG** in register **SPE[i]_CMD**.

The regular trigger for update of **SPE[i]_OUT_CTRL** (commutation trigger) is selected by **TRIG_SEL** and **ETRIG_SEL**.

According to figure 19.2.2, the two input patterns 0b000 and 0b111 are not allowed combinations and will end in a *SPE[i]_PERR* interrupt. These two patterns can be used to determine a sensor input error. A *SPE[i]_PERR* interrupt will also be raised, if the input patterns occur in a wrong order, e.g. if the pattern 0b010 does not follow the pattern 0b110 or 0b011.


The register **SPE[i]_IN_PAT** bit field inside the **SPE[i]_CTRL_STAT** register is implemented, where the input pattern history is stored by the SPE submodule. The CPU can determine a broken sensor when the SPE[i]_PERR interrupt occurs by analyzing the bit pattern readable via bit field **NIP** inside the **SPE[i]_CTRL_STAT** register. The input pattern in the **SPE[i]_CTRL_STAT** register is updated whenever a valid edge is detected on one of the input lines $TIM[i]_CH[x](48)$, $TIM[i]_CH[y](48)$ or $TIM[i]_CH[z](48)$. The pattern bit fields are then shifted. The input pattern history generation inside the **SPE[i]_CTRL_STAT** register is shown in figure 19.2.4.

Additionally to the sensor pattern evaluation the SPE module also provides the feature of fast shutoff for all TOM channels controlled by the SPE module. The feature is enabled by setting bit **FSOM** in register **SPE[i]_CTRL_STAT**. The fast shutoff level itself is defined in the bit field **FSOL** of register **SPE[i]_CTRL_STAT**. The TIM input used to trigger the fast shutoff is either TIM channel 6 or TIM channel 7 depending on the TIM instance connected to the SPE module. For details of connections please refer to figure 19.1.1.

19.2.4 SPE[i]_IN_PAT register representation

Specification

The CPU can disable one of the three input signals, e.g. when a broken input sensor was detected, by disabling the input with the three input enable bits **SIE** inside the **SPE[i]_CTRL_STAT** register.

Whenever at least one of the input signal $TIM[i]_CH[x](48)$, $TIM[i]_CH[y](48)$ or $TIM[i]_CH[z](48)$ changes the SPE submodule stores the new bit pattern in an internal register NIP (New Input Pattern). If the current input pattern in **NIP** is the same as in the Previous Input Pattern (**PIP**) the direction of the engine changed, the $SPE[i]_DCHG$ interrupt is raised, the direction change is stored internally and the pattern in the **PIP** bit field is filled with the **AIP** bit field and the **AIP** bit field is filled with the **NIP** bit field. The **SPE[i]_DIR** bit inside the **SPE[i]_CTRL_STAT** register is toggled and the *SPE[i]_DIR* signal is changed.

If the SPE encounters that with the next input pattern detected new input pattern **NIP** the direction change again, the input signal is categorized as bouncing and the bouncing input signal interrupt *SPE[i]_BIS* is raised.

Immediately after update of register **NIP**, when the new detected input pattern doesn't match the **PIP** pattern (i.e. no direction change was detected), the SPE shifts the value of register **AIP** to register **PIP** and the value of register **NIP** to register **AIP**. The *SPE[i]_NIPD* interrupt is raised.

The number of the channel that has been changed and thus leads to the new input pattern is encoded in the signal *SPE[i]_NIPD_NUM*.

If a sensor error was detected, the CPU has to define upon the pattern in the **SPE[i]_CTRL_STAT** register, which input line comes from the broken sensor. The faulty signal line has to be masked by the CPU and the SPE submodule determines the rotation direction on behalf of the two remaining $TIM[i]_CH[x]$ input lines.

BOSCH

Revision 3.1.5.1

The pattern history can be determined by the CPU by reading the two bit fields AIP and PIP of the **SPE[i]_CTRL_STAT** register. The **AIP** register field holds the actual detected input pattern at $TIM[i]_CH[x](48)$, $TIM[i]_CH[y](48)$ and $TIM[i]_CH[z](48)$ and the PIP holds the previous detected pattern.

After reset the register **NIP**, **AIP** and **PIP** as well as the register **SPE[i]_PAT_PTR** and **SPE[i]_OUT_CTRL** will not contain valid startup values which would allow correct behavior after enabling SPE and detecting the first input patterns.

Thus, it is necessary to initialize these register to correct values.

To do this, before enabling the SPE, the bit field **NIP** of register **SPE[i]_CTRL_STAT** can be read and depending on this value the initialization values for the register **AIP**, **PIP**, **SPT_PAT_PTR** and **SPE[i]_OUT_CTRL** can be determined.

19.2.5 SPE Revolution detection

The SPE submodule is able to detect and count the number of valid input patterns detected at the specified input ports. This is done with a 24 bit revolution counter **SPE_REV_CNT**. The counter is incremented by a value of one (1) when a new valid input pattern indicating forward direction is detected. The counter is decremented by a value of one (1) when a new valid input pattern indicating backward direction is detected.

In addition there exists a 24 bit **SPE_REV_CMP** register. The user can initialize this register with a compare value, where an interrupt *SPE[i]_RCMP* is raised, when the revolution counter equals the compare value either in forward or backward direction.

Both register may be written by software at any time.

Signal	Description
SPE[i]_NIPD	SPE New valid input pattern detected.
SPE[i]_DCHG	SPE Rotation direction change detected on behalf of input pattern.
SPE[i]_PERR	SPE Invalid input pattern detected.
SPE[i]_BIS	SPE Bouncing input signal detected at input.
SPE[i]_RCMP	SPE Revolution counter compare value reached.

19.3SPE Interrupt signals

19.4SPE Register overview

θ	BO	SC	H

Register name	Description	Details in
		Section
SPE[i]_CTRL_STAT	SPEi Control status register	19.5.1
SPE[i]_PAT	SPEi Input pattern definition register.	19.5.2
SPE[i]_OUT_PAT[z] (z:07)	SPEi Output definition register.	19.5.3
SPE[i]_OUT_CTRL	SPEi output control register	19.5.4
SPE[i]_REV_CNT	SPEi input revolution counter	19.5.5
SPE[i]_REV_CMP	SPEi Revolution counter compare value	19.5.6
SPE[i]_IRQ_NOTIFY	SPEi Interrupt notification register.	19.5.7
SPE[i]_IRQ_EN	SPEi Interrupt enable register.	19.5.8
SPE[i]_EIRQ_EN	SPEi Error interrupt enable register.	19.5.11
SPE[i]_IRQ_FORCINT	SPEi Interrupt generation by software.	19.5.9
SPE[i]_IRQ_MODE	SPEi Interrupt mode configuration register	19.5.10
SPE[i]_CTRL_STAT2	SPEi Control status register 2	19.5.12
SPE[i]_CMD	SPEi Command register	19.5.13

Specification

19.5SPE Register description

19.5.1 Register SPE[i]_CTRL_STAT

Address Offset:	s	see Appendix B										Initial Value: 0x0000_000)0()										
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	2	4	3	2	1	0
Bit	Esol					ETRIG_SEL		NIP		PDIR		PIP		ADIR		AIP		Reserved		SPE_PAT_PTR		FSOM	TIMSEL		ואוט_סבר	SIE2	SIE1	SIEO	EN			
Mode				RW					RW		с		RW		RW		RW		RW		Я		RW		RW	RW		M M	RW	RW	RW	RW
Initial Value	00×0						0		00000		0		000d0		000000 00000					0	0	0040	UDUU	0	0	0	0					
Bit 0	S	P	Ε_	ΕN	: :	SF	Έ	Sı	Jb	mc	odu	ıle	e e	na	ble	э.																

0 = SPE disabled.

		BUSCH
GTM-IP	Specification	Revision 3.1.5.1
Bit 1	 1 = SPE enabled. SIE0: SPE Input enable for TIM_CHx(48). 0 = SPE Input is disabled. 1 = SPE Input is enabled. Note: When the input is disabled, a 0 signal is san However, the bit field NIP of this register shows the signal. 	
Bit 2	SIE1: SPE Input enable for TIM_CHy(48). See bit 1.	
Bit 3	SIE2: SPE Input enable for TIM_CHz(48). See bit 1.	
Bit 5:4	<pre>TRIG_SEL: Select trigger input signal. ETRIG_SEL = 0 / ETRIG_SEL = 1 0b00 = SPE[i]_NIPD selected / TOM_CH6_TRIG_ 0b01 = TOM_CH0_TRIG_CCU0 selected / TO selected 0b10 = TOM_CH0_TRIG_CCU1 selected / TO selected 0b11 = TOM_CH2_TRIG_CCU1 selected / TO selected</pre>	DM_CH7_TRIG_CCU1 DM_CH8_TRIG_CCU1 DM_CH9_TRIG_CCU1 cording to selected uration bits SPE_TRIG ave to be set in same
Bit 6	<pre>TIM_SEL: select TIM input signal The GTM supports up to 6 SPE modules. SPE0: 0 = TIM0_CH02 1 = TIM1_CH02 SPE1: 0 = TIM0_CH35 1 = TIM1_CH35 SPE2: 0 = TIM2_CH02 1 = TIM3_CH02 SPE3: 0 = TIM2_CH35 1 = TIM3_CH35 SPE4: 0 = TIM4_CH02 1 = TIM5_CH02 SPE5: 0 = TIM4_CH35 1 = TIM5_CH35</pre>	

BOSCH

GTM-IP	Specification	Revision 3.1.5.1
Bit 7	FSOM: Fast Shutoff Mode	
	0 = Fast Shutoff mode disabled 1 = Fast Shutoff mode enabled	
Bit 10:8	SPE_PAT_PTR: Pattern selector for TOM output signal Actual index into the SPE[i]_OUT_PAT[x] register table Each register SPE[i]_OUT_PAT[x] is fixed assigned IPx_PAT of register SPE[i]_PAT. Thus SPE[i]_PAT_PTR represents an index to SPE[i]_OUT_PAT[x] register as well as the actu- pattern IPx_PAT. Ob000 = SPE[i]_OUT_PAT0 selected	e. I to one bit field s, the pointer o the selected
Bit 11	Reserved:	
Bit 14:12	Note: Read as zero, should be written as zero AIP: Actual input pattern that was detected by a reg change.	ular input pattern
Bit 15	ADIR: Actual rotation direction. 0 = Rotation direction is 0 according to SPE[i]_PAT reg 1 = Rotation direction is 1 according to SPE[i]_PAT reg	-
Bit 18:16	PIP: Previous input pattern that was detected by a reg change.	gular input pattern
Bit 19	 PDIR: Previous rotation direction. 0 = Rotation direction is 0 according to SPE[i]_PAT reg 1 = Rotation direction is 1 according to SPE[i]_PAT reg 	-
Bit 22:20	NIP: New input pattern that was detected. Note: This bit field mirrors the new input patter functionality is triggered on each change of this b	
Bit 23	ETRIG_SEL: extended trigger selection ETRIG_SEL = 0 / ETRIG_SEL = 1: 0b00 = SPE[i]_NIPD selected / TOM_CH6_TRIG_CCU 0b01 = TOM_CH0_TRIG_CCU0 selected / TOM_C selected 0b10 = TOM_CH0_TRIG_CCU1 selected / TOM_C selected 0b11 = TOM_CH2_TRIG_CCU1 selected / TOM_C selected	CH7_TRIG_CCU1 CH8_TRIG_CCU1
Bit 31:24	FSOL: Fast Shutoff Level for TOM[i] channel 0 to 7	

19.5.2 Register SPE[i]_PAT

BOSCH

Specification

Revision 3.1.5.1

Address Offset:	see Appendix B							Initial	Initial Value: 0x0000_0000					0000		
	31 30 29	28	27 26 25	24	23 22 21	20	19 18 17	16	15 14 13	12	11 10 9	8	7 6 5	4	3 2	- 0
Bit	IP7_PAT	IP7_VAL	IP6_PAT	IP6_VAL	IP5_PAT	IP5_VAL	IP4_PAT	IP4_VAL	- IP3_PAT	IP3_VAL	IP2_PAT	IP2_VAL	IP1_PAT	IP1_VAL	IP0_PAT	IP0_VAL
Mode	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW
Initial Value	00000	0	00090	0	00090	0	00000	0	00000	0	00000	0	00000	0	00090	0
Bit 0 Bit 3:1	 IP0_VAL: Input pattern 0 is a valid pattern. 0 = Pattern invalid. 1 = Pattern valid. IP0_PAT: Input pattern 0. Bit field defines the first input pattern of the SPE input signals. Bit 1 defines the TIM[i]_CHx(48) input signal. Bit 2 defines the TIM[i]_CHy(48) input signal. Bit 3 defines the TIM[i]_CHz(48) input signal. 															
Bit 4	IP1_VAL: Input pattern 1 is a valid pattern. See bit 0.															
Bit 7:5	IP1_PAT: Input pattern 1.															
Bit 8	See bits 3:1. IP2_VAL: Input pattern 2 is a valid pattern.															
Bit 11:9	See bit 0. IP2_PAT: Input pattern 2.															
Bit 12	See bits 3:1. IP3_VAL: Input pattern 3 is a valid pattern.															
Bit 15:13	See bit 0. IP3_PAT: Input pattern 3. See bits 3:1.															
Bit 16		Ά	L: Inpu	t p	attern	4 i	s a vali	d	pattern							
Bit 19:17	IP4_F	Ά	T: Inpu	t p	attern	4.										
Bit 20	See bits 3:1. IP5_VAL: Input pattern 5 is a valid pattern															
Bit 23:21	See bit 0. IP5_PAT: Input pattern 5.															
Bit 24	IP6_V	See bits 3:1. IP6_VAL: Input pattern 6 is a valid pattern See bit 0														
Bit 27:25	IP6_F	See bit 0. IP6_PAT: Input pattern 6. See bits 3:1.														
Bit 28		IP7_VAL: Input pattern 7 is a valid pattern														

Specification

See bit 0. Bit 31:29 **IP7_PAT:** Input pattern 7. See bits 3:1.

Note: Only the first block of valid input patterns defines the commutation. All input pattern following the first marked invalid input pattern are ignored.

19.5.3 Register SPE[i]_OUT_PAT[z] (z:0...7)

Address Offset:	see Appendix B	Initial Value: 0x0000_0000					
	31 30 29 27 27 26 26 26 25 25 24 25 23 23 23 23 21 19 11 11	15 14 13 13 12 10 9 9 8 8 8 8 8 8 8 7 7 6 6 5 5 3 3 3 2 2 1 0					
Bit	Reserved	SPE_OUT_PAT					
Mode	œ	RW					
Initial Value	00000×0	0000×0					
Bit 15:0	SPE_OUT_PAT: SPE output control value for TOM_CH0 to TOM_CH7						

Bit 15:0 SPE_OUT_PAT: SPE output control value for TOM_CH0 to TOM_CH7 SPE_OUT_PAT[n+1:n] defines output select signal of TOM[i]_CH[n] 0b00 = set SPE_OUT(n) to TOM_CH0_SOUR 0b01 = set SPE_OUT(n) to TOM_CH1_SOUR 0b10 = set SPE_OUT(n) to 0 0b11 = set SPE_OUT(n) to 1 with n:0...7

Bit 31:16 **Reserved:** Note: Read as zero, should be written as zero **Note:** Register SPE_OUT_PAT[x] defines the output selection for TOM[i]_CH0 to TOM[i]_CH7 depending on actual input pattern IP[z]_PAT with z:0...7.

19.5.4 Register SPE[i]_OUT_CTRL

Specification

Revisio

Address Offset:	see Appendix B	Initial Value:	0x0000_0000				
	31 30 29 27 27 26 26 26 25 25 24 25 23 23 23 23 23 21 19 11 11	15 14 13 13 12 11 10 9	8 6 6 7 7 1 7 1 1 1 0				
Bit	Reserved		SPE_OUT_CTRL				
Mode	œ	≥ 2					
Initial Value	0000×0	00000×0					
Bit 15:0	SPE_OUT_CTRL: SPE output cont SPE_OUT_CTRL[n+1:n] defines ou Ob00 = set SPE_OUT(n) to TOM_C Ob01 = set SPE_OUT(n) to TOM_C Ob10 = set SPE_OUT(n) to 0 Ob11 = set SPE_OUT(n) to 1 with n:07	tput select signal H0_SOUR					
Bit 31:16	Note: Current output control selecti Reserved:	on for SPE[i]_OU	Т(07).				

Note: Read as zero, should be written as zero

19.5.5 Register SPE[i]_REV_CNT

Address Offset:	see Appendix B		Initial Value:	0x0000_0000					
	31 30 29 28 27 26 25 25	23 22 21 20 20 19 18 17 17	15 14 13 13 12 11 10 9 8	7 6 7 4 4 3 3 3 2 2 1 1					
Bit	Reserved		REV_CNT						
Mode	۲		ж Х						
Initial Value	0000×0		000000						
Bit 23:0	-	signal revolution on ning if SPE modu		SPE_EN).					

REV_CNT is incrementing if SPE_PAT_PTR is incrementing

REV_CNT is decrementing if SPE_PAT_PTR is decrementing

Revision 3.1.5.1

GTM-IP

Specification

Bit 31:24 **Reserved:**

Note: Read as zero, should be written as zero

19.5.6 Register SPE[i]_REV_CMP

Address Offset:	see Appendix B		Initial Value:	0x0000_0000
	31 30 29 28 27 26 25 25 25	23 22 21 21 20 19 18 17 17	15 14 13 12 11 11 10 9 8	7 6 7 3 3 3 3 2 2 2 1 1
Bit	Reserved		REV_CMP	
Mode	٣		ж Х	
Initial Value	00000X0		00 00 00 00 00	

Bit 23:0 **REV_CMP:** Input signal revolution counter compare value

The interrupt *SPE[i]_RCMP* is raised when the SPE[i]_REV_CNT value equals the SPE[i]_REV_CMP register. It should be noted that *SPE[i]_RCMP* is only raised if an incrementation or decrementation of SPE[i]_REV_CNT is applied, due to an input signal change. Any update of SPE[i]_REV_CNT or SPE[i]_REV_CMP via AEI does not raise a *SPE[i]_RCMP* interrupt.

Bit 31:24 Reserved:

Note: Read as zero, should be written as zero

19.5.7 Register SPE[i]_IRQ_NOTIFY

Specification

Revision 3.1.5.1

Address Offset:	see Appendix B Initial Value: 0x0000_0000							
	31 33 30 29 29 28 27 27 28 29 29 20 21 23 24 23 24 23 24 27 28 29 9 9 11 12 2 3 3 3 1 1 1 1 1 1 1 1 1 <t< th=""></t<>							
Bit	Reserved SPE_RCMP SPE_BIS SPE_BIS SPE_DCHG							
Mode	R R R R R R R R R R R R R R R R R R R							
Initial Value								
Bit 0	 SPE_NIPD: New input pattern interrupt occurred. 0 = No interrupt occurred. 1 = New input pattern detected interrupt occurred. Note: This bit will be cleared on a CPU write access of value 1. A read access leaves the bit unchanged. 							
Bit 1	SPE_DCHG: SPE_DIR bit changed on behalf of new input pattern. See bit 0.							
Bit 2	SPE_PERR: Wrong or invalid pattern detected at input. See bit 0.							
Bit 3	SPE_BIS: Bouncing input signal detected. See bit 0.							
Bit 4	SPE_RCMP: SPE revolution counter match event. See bit 0.							
Bit 31:5	Reserved: Note: Read as zero, should be written as zero							

19.5.8 Register SPE[i]_IRQ_EN

Address Offset:	see Appendix B Initial Valu	e: 0x000	0_00	000	
	31 30 29 27 27 26 26 26 25 23 23 23 23 23 23 21 19 11 11 11	10 9 8 7 6 5	4 3	2	- 0
Bit	Reserved		SPE_RCMP_IRQ_ SPE_BIS_IRQ_EN		NIPD
Mode	œ		RW RW	RW	RW
Initial Value	000000 000000		0 0	0 0	0
Bit 0	SPE_NIPD_IRQ_EN: SPE_NIPD_IRQ interrupt	enable.			

GTM-IP	Specification	Revision 3.1.5.1
	0 = Disable interrupt, interrupt is not visible outside GTM 1 = Enable interrupt, interrupt is visible outside GTM-IP.	
Bit 1	SPE_DCHG_IRQ_EN: SPE_DCHG_IRQ interrupt enables See bit 0.	ble.
Bit 2	SPE_PERR_IRQ_EN: SPE_PERR_IRQ interrupt enables See bit 0.	le.
Bit 3	SPE_BIS_IRQ_EN: SPE_BIS_IRQ interrupt enable. See bit 0.	
Bit 4	SPE_RCMP_IRQ_EN: SPE_RCMP_IRQ interrupt enables See bit 0.	ole.
Bit 31:5	Reserved: Note: Read as zero, should be written as zero	

19.5.9 Register SPE[i]_IRQ_FORCINT

Address Offset:	see Appendix B	Initial Value:	0x000	0_0	000	0
	31 30 29 27 28 26 26 25 25 23 23 23 23 21 21 19 11 11 11	15 14 14 13 13 11 10 9 9	5 5	4	ო ძ	v + c
Bit	Reserved			TRG_SPE_RCMP		TRG_SPE_DCHG
Mode	۳			RAw	RAw	RAW
Initial Value	0000×00			0	0	
Bit 0	 TRG_SPE_NIPD: Force interrupt o 0 = Corresponding bit in status regi 1 = Assert corresponding field in SI Note: This bit is cleared automatica Note: This bit is write protected by bit 	ster will not be fore PE_IRQ_NOTIFY Illy after interrupt is	register. s releas	ed	10	CTRL
Bit 1	TRG_SPE_DCHG: Force interrupt See bit 0.	of SPE_DCHG.	-			
Bit 2	TRG_SPE_PERR: Force interrupt of See bit 0.	of SPE_PERR.				
Bit 3	TRG_SPE_BIS: Force interrupt of See bit 0.	SPE_BIS.				
Bit 4	TRG_SPE_RCMP: Force interrupt See bit 0.	of SPE_RCMP.				
Bit 31:5	Reserved: Note: Read as zero, should be writt	en as zero				

BOSCH

Register SPE[i]_IRQ_MODE 19.5.10

Address Offset:	see Appendix B Initial Value: 0x0000_000	x
	31 33 29 28 28 27 28 26 27 26 22 23 23 23 23 23 17 11 11 11 11 11 11 11 11 11 11 11 20 21 21 22 21 23 23 23 23 23 23 23 23 23 26 21 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 26 27 26 26 27 26 26 27 26 26 27 26 26 27 26 26 27 26 26 27 26 26 27 26 26 27 26 26 27 26 27 26 26 27 27 26 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27	1 0
Bit	Reserved	IRQ_MODE
Mode	٣	RW
Initial Value	00000 0000000	хх
Bit 1:0	IRQ_MODE: IRQ mode selection 0b00 = Level mode 0b01 = Pulse mode 0b10 = Pulse-Notify mode 0b11 = Single-Pulse mode Note: The interrupt modes are described in section 2.5.	

Bit 31:2 Reserved Note: Read as zero, should be written as zero

Register SPE[i]_EIRQ_EN 19.5.11

Address Offset:	se	see Appendix B												Initial Value: 0x0000_000)0(00								
	31	30 20	52 78	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	6	5	4	3	2	1	0
Bit													Reserved														SPE_RCMP_EIRQ	SPE_BIS_EIRQ_E	SPE_PERR_EIRQ	SPE_DCHG_EIRQ	NIPD E
Mode													£														RW	RW	RW	RW	RW
Initial Value													0000x0)))													0	0	0	0	0
Bit 0	SF 0 =																										e (ЭT	M·	١P).

GTM-IP	Specification	Revision 3.1.5.1
Bit 1	SPE_DCHG_EIRQ_EN: SPE_DCHG_EIRQ error	or interrupt enable.
	See bit 0.	
Bit 2	SPE_PERR_EIRQ_EN: SPE_PERR_EIRQ erro	r interrupt enable.
	See bit 0.	
Bit 3	SPE_BIS_EIRQ_EN: SPE_BIS_EIRQ error inte	rrupt enable.
	See bit 0.	
Bit 4	SPE_RCMP_EIRQ_EN: SPE_RCMP_EIRQ error	or interrupt enable.

	See bit 0.
Bit 31:5	Reserved:
	Note: Read as zero, should be written as zero

19.5.12 Register SPE[i]_CTRL_STAT2

Address Offset:	see Appendix B	Initial Valu	ie:	0x0000_0000						
	31 30 29 27 28 27 26 26 25 25 23 23 23 23 23 23 21 21 21 21 21 21 21 21 21 21 21 21 21	15 14 13 12 11	10 9 8	7 5 3 3 3 2 2 1 1						
Bit	Reserved		SPE_PAT_PTR_B WD	Reserved						
Mode	٣		RW	٣						
Initial Value	0 0 0 0 0 0 0 0		00000	00×0						
Bit 7:0	Reserved:									
Bit 10:8	 Note: Read as zero, should be writte SPE_PAT_PTR_BWD: Pattern select of SPE_CTRL_CMD = 0b01 (e.g. baselindex into the SPE[i]_OUT_PAT SPE_CTRL_CMD = 0b01 wheter of the selection. Each register SPE[i]_OUT_PAT[x] IPx_PAT of register SPE[i]_OUT_PAT[x] IPx_PAT of register SPE[i]_OUT_PAT[x] SPE[i]_PAT_PTR_BWD represent selection. SPE[i]_OUT_PAT[x] register as pattern IPx_PAT. The index pointer SPE_PAT_PTR_Eendots. Ob001. Ob000 = SPE[i]_OUT_PAT0 selected 	ctor for TC ckward dire [z] regist hich may is fixed a PE[i]_PAT. sents an s well as t 3WD is use s used if S	ection) ter ta be us ssigned Thu: index he act ed if SI	ble in case of ed for backward d to one bit field s, the pointer to the selected ual detected input PE_CTRL_CMD =						

BOSCH

Specification

Bit 31:11 **Reserved:**

Note: Read as zero, should be written as zero

19.5.13 Register SPE[i]_CMD

Address Offset:	see Appendix B Initial Value: 0x0000_0000													
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 0												
Bit	Reserved Reserved Reserved	SPE_CTRL_CMD												
Mode	۲ <u>۲</u> ۲	RW												
Initial Value	0000×0	0090												
Bit 1:0	<pre>SPE_CTRL_CMD: SPE control command Ob00 = use SPE_PAT_PTR as an index pointer to select SPE[i]_OUT_PAT[z] Ob01 = use SPE_PAT_PTR_BWD as an index pointer to select SPE[i]_OUT_PAT[z] Ob10 = select SPE[i]_OUT_PAT6 Ob11 = select SPE[i]_OUT_PAT7</pre>													
	Note: on switch between 0b00 and 0b01 the direction flag will be according to used pointer.	set												
Bit 15:2	Reserved: Note: Read as zero, should be written as zero													
Bit 16	SPE_UPD_TRIG: SPE updater trigger													

1 = trigger update of SPE_OUT_CTRL with register selected by CTR_CMD multiplexer.

Note: This bit is automatically reset to 0.

Bit 31:17 Reserved:

Note: Read as zero, should be written as zero

20 Interrupt Concentrator Module (ICM)

20.1 Overview

The Interrupt Concentrator Module (ICM) is used to bundle the GTM-IP interrupt lines of the individual sub-modules in a reasonable manner into interrupt groups. By this bundling a smaller amount of interrupt lines is visible at the outside of the GTM-IP.

The individual interrupts of the GTM-IP sub-modules and channels have to be enabled or disabled inside the sub-modules and channels.

The feed through architecture of bundled interrupt lines is used for the sub-modules AEI, ARU, BRC, CMP, SPE, PSM, TIM, DPLL, TOM, ATOM and MCS.

To determine the detailed interrupt source the microcontroller has to read the submodule/channel interrupt notification register **NOTIFY** and serve the channel individual interrupt.

Please note, that the interrupts are only visible inside the ICM and in consequence outside of the GTM-IP, when the interrupt is enabled inside the sub-modules themselves.

20.2 Bundling

The GTM-IP sub-module individual interrupt sources are connected to the ICM. There, the individual interrupt lines are either feed through and signaled to the outside world or bundled a second time into groups and are then signaled to the outside world. The ICM interrupt bundling is described in the following sections.

20.2.1 GTM Infrastructure Interrupt Bundling

The first interrupt group contains interrupts of the infrastructure and safety components of the GTM. This interrupt group includes therefore interrupt lines coming from the AEI, ARU, BRC, PSM, SPE and CMP sub-modules. In this interrupt group each individual channel of the sub-modules has its own interrupt line to the outside world.

Thus, the active interrupt line can be used by the CPU to determine the GTM-IP submodule channel that raised the interrupt. The interrupts are also represented in the **ICM_IRQG_0** register. This register is typically not read by the CPU, but it is readable.

In addition the interrupt line status for 8 channels of each FIFO are shown in the **ICM_IRQG_PSM_0_CI** register. Typically, the interrupt source is determined by the corresponding interrupt line and the **ICM_IRQG_PSM_0_CI** register are typically not read out by the CPU, but they are readable.

In addition the interrupt line status for each SPE are shown in the **ICM_IRQG_SPE_CI** register. Typically, the interrupt source is determined by the corresponding interrupt line and the **ICM_IRQG_SPE_CI** register are typically not read out by the CPU, but they are readable.

20.2.2 DPLL Interrupt Bundling

The DPLL Interrupt group handles the interrupts coming from the DPLL sub-module of the GTM-IP. Each of the individual DPLL interrupt lines has its own dedicated interrupt line to the outside world. The interrupts are additionally identified in the **ICM_IRQG_1** interrupt group register. This register is typically not read out by the CPU, but it is readable.

20.2.3 TIM Interrupt Bundling

Inside this group sub-modules which handle GTM-IP input signals are treated. This is the case for the TIM[i] sub-modules. Each TIM sub-module channel is able to generate six (6) individual interrupts if enabled inside the TIM channel. This six interrupts are bundled into one interrupt per TIM channel connected to the ICM.

The ICM does no further bundling. Thus, for the GTM-IP 32 interrupt lines *TIM[i]_IRQ*[y] are provided for the external microcontroller. The channel responsible for the interrupt can be determined by the raised interrupt line.

In addition, the **ICM_IRQG_2** and **ICM_IRQG_3** registers are mirrors for the TIM submodule channel interrupts and typically not read out by the CPU, but it is readable.

20.2.4 MCS Interrupt Bundling

For complex signal output generation, the MCS sub-modules are used inside the GTM-IP. Each of these MCS sub-modules could have 8 channels with one interrupt line. This interrupt line is connected to the ICM sub-module and is feed through directly to the outside world.

In addition the interrupt line status for the first 8 channels of each MCS is shown in the **ICM_IRQG_4** and **ICM_IRQG_5** register. The interrupt line status for all used channels of each MCS are shown in the **ICM_IRQG_MCS[i]_CI** register. Typically, the interrupt

Specification

source is determined by the corresponding interrupt line and the ICM_IRQ4(/_5) and ICM_IRQG_MCS[i]_CI register are typically not read out by the CPU, but they are readable.

20.2.5 TOM and ATOM Interrupt Bundling

For the TOM and ATOM sub-modules, the interrupts are bundled within the ICM submodule a second time to reduce external interrupt lines. The interrupts are ORed in a manner that one GTM-IP external interrupt line represents two adjacent TOM or ATOM channel interrupts. For TOM[i] and ATOM[i] the bundling is shown in table 20.2.5.1.

TOM[i]-input IRQs	TOM-output IRQs (OR-ed)		ATOM[i]-input IRQs	ATOM-output IRQs (OR-ed)
[i]=0number of TOM's-1			[i]=0number of ATOM's-1	
TOM[i]_CH0_IRQ			ATOM[i]_CH0_IRQ	
TOM[i]_CH1_IRQ	GTM_TOM[i]_IRQ[0]		ATOM[i]_CH1_IRQ	GTM_ATOM[i]_IRQ[0]
TOM[i]_CH2_IRQ			ATOM[i]_CH2_IRQ	
TOM[i]_CH3_IRQ	GTM_TOM[i]_IRQ[1]		ATOM[i]_CH3_IRQ	GTM_ATOM[i]_IRQ[1]
TOM[i]_CH4_IRQ			ATOM[i]_CH4_IRQ	
TOM[i]_CH5_IRQ	GTM_TOM[i]_IRQ[2]		ATOM[i]_CH5_IRQ	GTM_ATOM[i]_IRQ[2]
TOM[i]_CH6_IRQ			ATOM[i]_CH6_IRQ	
TOM[i]_CH7_IRQ	GTM_TOM[i]_IRQ[3]		ATOM[i]_CH7_IRQ	GTM_ATOM[i]_IRQ[3]
TOM[i]_CH8_IRQ				
TOM[i]_CH9_IRQ	GTM_TOM[i]_IRQ[4]			
TOM[i]_CH10_IRQ				
TOM[i]_CH11_IRQ	GTM_TOM[i]_IRQ[5]			
TOM[i]_CH12_IRQ				
TOM[i]_CH13_IRQ	GTM_TOM[i]_IRQ[6]			
TOM[i]_CH14_IRQ				
TOM[i]_CH15_IRQ	GTM_TOM[i]_IRQ[7]			

20.2.5.1 TOM and ATOM interrupt bundling within ICM

The interrupts coming from the TOM[i] sub-modules are registered in the ICM_IRQG_6 / ICM_IRQG_7 / ICM_IRQG_8 register. Always two TOM's are bundled in one ICM register, TOM0 and TOM1 are bundled in ICM_IRQG_6. To identify the TOM sub-module channel where the interrupt occurred, the CPU has to read out the ICM_IRQG_6(/_7/_8) register first before it goes to the TOM sub-module channel itself.

The **ICM_IRQG_6(/_7/_8)** register bits are cleared automatically, when their corresponding interrupt in the sub-module channels is cleared.

The interrupts coming from the ATOM[i] sub-modules are registered in the ICM_IRQG_9 / ICM_IRQG_10 /ICM_IRQG_11 register. Always four ATOM's are bundled in one ICM register. ATOM0, ATOM1, ATOM2 and ATOM3 are bundled in ICM_IRQG_9. To identify the ATOM sub-module channel where the interrupt occurred, the CPU has to read out the ICM_IRQG_9(/_10/_11) register first before it goes to the ATOM sub-module channel itself.

The **ICM_IRQG_9(/_10/_11)** register bits are cleared automatically, when their corresponding interrupt in the sub-module channels is cleared.

In addition the interrupt line status of two 16 channels TOM are shown in each ICM_IRQG_TOM_[k]_CI (k:0..2) register, TOM0 and TOM1 are bundled in ICM_IRQG_TOM_0_CI. Typically, the interrupt source is determined by the corresponding interrupt line and the ICM_IRQG_TOM_[k]_CI register are typically not read out by the CPU, but they are readable.

In addition the interrupt line status of four 8 channels ATOM are shown in each **ICM_IRQG_ATOM_[k]_CI (k:0..2)** register, ATOM0, ATOM1, ATOM2 and ATOM3 are bundled in **ICM_IRQG_ATOM_0_CI**. Typically, the interrupt source is determined by the corresponding interrupt line and the **ICM_IRQG_ATOM_[k]_CI** register are typically not read out by the CPU, but they are readable.

20.2.6 Module Error Interrupt Bundling

The Module Error Interrupt group handles the error interrupts coming from the BRC, FIFO, TIM, MCS, SPE, CMP, DPLL sub-module of the GTM-IP. The Module Error interrupts are additionally identified in the **ICM_IRQG_MEI** error interrupt group register. This register is typically not read out by the CPU, but it is readable.

In addition the error interrupt line status for each SPE are shown in the **ICM_IRQG_SPE_CEI** register. Typically, the error interrupt source is determined by the corresponding interrupt line and the **ICM_IRQG_SPE_CEI** register are typically not read out by the CPU, but they are readable.

20.2.7 FIFO Channel Error Interrupt Bundling

The FIFO Channel Error Interrupt group handles the error interrupts coming from the FIFO channel of the GTM-IP. The FIFO Channel Error interrupts are additionally identified in the **ICM_IRQG_CEI0** error interrupt group register. This register is typically not read out by the CPU, but it is readable.

The **ICM_IRQG_CEI0** register bits are cleared automatically, when their corresponding error interrupt in the sub-module channel is cleared.

In addition the error interrupt line status for 8 channels of each FIFO are shown in the **ICM_IRQG_PSM_0_CEI** register. Typically, the error interrupt source is determined by the corresponding interrupt line and the **ICM_IRQG_PSM_0_CEI** register are typically not read out by the CPU, but they are readable.

20.2.8 TIM Channel Error Interrupt Bundling

The TIM Channel Error Interrupt group handles the error interrupts coming from the TIM channel of the GTM-IP. The TIM Channel Error interrupts are additionally identified for the sub-modules TIM0, TIM1, TIM2 and TIM3 in the **ICM_IRQG_CEI1** error interrupt group register and for the sub-modules TIM4, TIM5 and TIM6 in the **ICM_IRQG_CEI2** error interrupt group register. These register are typically not read out by the CPU, but they are readable.

The **ICM_IRQG_CEI1** and **ICM_IRQG_CEI2** register bits are cleared automatically, when their corresponding error interrupt in the sub-module channel is cleared.

20.2.9 MCS Channel Error Interrupt Bundling

The MCS Channel Error Interrupt group handles the error interrupts coming from the MCS channel of the GTM-IP. All used 8 MCS Channel Error interrupts are additionally identified for each sub-modules MCS[i] in the **ICM_IRQG_MCS[i]_CEI** error interrupt group register. The first 8 MCS Channel Error interrupts are additionally identified for the sub-modules MCS0, MCS1, MCS2 and MCS3 in the **ICM_IRQG_CEI3** error interrupt group register and for the sub-modules MCS4, MCS5, MCS6 and MCS7 in the **ICM_IRQG_CEI4** error interrupt group register. These register are typically not read out by the CPU, but they are readable.

The ICM_IRQG_MCS[i]_CEI, ICM_IRQG_CEI3 and ICM_IRQG_CEI4 register bits are cleared automatically, when their corresponding error interrupt in the sub-module channel is cleared.

20.2.10 Error Interrupt Cluster Bundling

The Error Interrupt lines of up to 4 clusters are bundled in each ICM_IRQG_CLS_[i]_MEI.

Actually each cluster collects one EIRQ of one TIM, MCS, SPE and FIFO. These register are typically not read out by the CPU, but they are readable.

Signal	Description
GTM_AEI_IRQ	AEI Shared interrupt
GTM_ARU_IRQ[2:0]	[0]: ARU_NEW_DATA0 Interrupt
	[1]: ARU_NEW_DATA1 Interrupt
	[2]: ARU_ACC_ACK Interrupt

20.3ICM Interrupt Signals

GTM BRC IRQ	BRC Shared interrupt
GTM_CMP_IRQ	CMP Shared interrupt
GTM_SPE[i]_IRQ	SPE Shared interrupt (i: 0number of SPE's-1)
GTM_PSM[i]_IRQ[x]	PSM Shared interrupts (x: 07) (i: 0number of PSM's- 1)
GTM_DPLL_IRQ[0]	DPLL_DCGI: DPLL direction change interrupt
GTM_DPLL_IRQ[1]	DPLL_EDI; DPLL enable or disable interrupt
GTM_DPLL_IRQ[2]	<i>DPLL_TINI:</i> DPLL <i>TRIG</i> . min. hold time (THMI) viol. detected
GTM_DPLL_IRQ[3]	<i>DPLL_TAXI:</i> DPLL <i>TRIG.</i> max. hold time (THMA) viol. detected
GTM_DPLL_IRQ[4]	DPLL_SISI: DPLL STATE inactive slope detected
GTM_DPLL_IRQ[5]	DPLL_TISI: DPLL TRIGGER inactive slope detected
GTM_DPLL_IRQ[6]	DPLL_MSI: DPLL Missing STATE interrupt
GTM_DPLL_IRQ[7]	DPLL_MTI: DPLL Missing TRIGGER interrupt
GTM_DPLL_IRQ[8]	DPLL_SASI: DPLL STATE active slope detected
GTM_DPLL_IRQ[9]	<i>DPLL_TASI:</i> DPLL <i>TRIG.</i> active slope det. while NTI_CNT is 0
GTM_DPLL_IRQ[10]	<i>DPLL_PWI</i> : DPLL Plausibility window (PVT) viol. int. of <i>TRIG</i> .
GTM_DPLL_IRQ[11]	<i>DPLL_W2I:</i> DPLL Write access to RAM region 2 interrupt
GTM_DPLL_IRQ[12]	<i>DPLL_W11:</i> DPLL Write access to RAM region 1b or 1c int.
GTM_DPLL_IRQ[13]	DPLL_GL11: DPLL Get of lock interrupt for SUB_INC1
GTM_DPLL_IRQ[14]	DPLL_LL11: DPLL Lost of lock interrupt for SUB_INC1
GTM_DPLL_IRQ[15]	DPLL_EI: DPLL Error interrupt
GTM_DPLL_IRQ[16]	DPLL_GL21: DPLL Get of lock interrupt for SUB_INC2
GTM_DPLL_IRQ[17]	DPLL_LL21: DPLL Lost of lock interrupt for SUB_INC2
GTM_DPLL_IRQ[18]	DPLL_TE0I: DPLL TRIGGER event interrupt 0
GTM_DPLL_IRQ[19]	DPLL_TE11: DPLL TRIGGER event interrupt 1
GTM_DPLL_IRQ[20]	DPLL_TE21: DPLL TRIGGER event interrupt 2
GTM_DPLL_IRQ[21]	DPLL_TE31: DPLL TRIGGER event interrupt 3
GTM_DPLL_IRQ[22]	DPLL_TE4I; DPLL TRIGGER event interrupt 4
GTM_DPLL_IRQ[23]	DPLL_CDTI; DPLL calculated duration interrupt for TRIGGER
GTM_DPLL_IRQ[24]	<i>DPLL_CDSI;</i> DPLL calculated duration interrupt for <i>STATE</i>
GTM_DPLL_IRQ[25]	DPLL_TORI; TRIGGER out of range interrupt
GTM_DPLL_IRQ[26]	DPLL_SORI; STATE out of range interrupt
GTM_TIM[i]_IRQ[x]	TIM Shared interrupts (i: 0number of TIM's-1) (x: 07)
GTM_MCS[i]_IRQ[x]	MCS Interrupt for channel x (x: 08) (i: 0number of MCS's-1)
GTM_TOM[i]_IRQ[x]	TOM Shared interrupts for x:07 = {ch0 ch1,,ch14 ch15}

Specification

	(i: 0number of TOM's-1)												
	ATOM Shared interrupts for x:03 = {ch0 ch1,,ch6 ch7} (i: 0number of ATOM's-1)												
GTM_ERR_IRQ	GTM Error Interrupt												

20.4ICM Configuration Register Overview

20.4.1 ICM Configuration Register Overview Table

Register Name	Description	Details in Section
ICM_IRQG_0	ICM Interrupt group register covering infrastructural and safety components (ARU, BRC, AEI, PSM0, PSM1, MAP, CMP,SPE)	20.5.1
ICM_IRQG_1	ICM Interrupt group register covering DPLL	20.5.2
ICM_IRQG_2	ICM Interrupt group register covering TIM0, TIM1, TIM2, TIM3	20.5.3
ICM_IRQG_3	ICM Interrupt group register covering TIM4, TIM5, TIM6, TIM7	20.5.4
ICM_IRQG_4	ICM Interrupt group register covering MCS0 to MCS3 sub-modules	20.5.5
ICM_IRQG_5	ICM Interrupt group register covering MCS4 to MCS6 sub-modules	20.5.6
ICM_IRQG_6	ICM Interrupt group register covering GTM-IP output sub-modules TOM0 to TOM1	20.5.7
ICM_IRQG_7	ICM Interrupt group register covering GTM-IP output sub-modules TOM2 to TOM3	20.5.8
ICM_IRQG_8	ICM Interrupt group register covering GTM-IP output sub-modules TOM4 to TOM5	20.5.9
ICM_IRQG_9	ICM Interrupt group register covering GTM-IP output sub-modules ATOM0, ATOM1, ATOM2 and ATOM3	20.5.10
ICM_IRQG_10	ICM Interrupt group register covering GTM-IP output sub-modules ATOM4 to ATOM7	20.5.11

GTM-IP	
--------	--

Specification

Revision 3.1.5.1

ICM_IRQG_11	ICM Interrupt group register covering GTM-IP output sub-modules ATOM8 to ATOM11	20.5.12
ICM_IRQG_MEI	ICM Interrupt group register for module error interrupt information	20.5.13
ICM_IRQG_CEI0	ICM Interrupt group register 0 for channel error interrupt information	20.5.14
ICM_IRQG_CEI1	ICM Interrupt group register 1 for channel error interrupt information	20.5.15
ICM_IRQG_CEI2	ICM Interrupt group register 2 for channel error interrupt information	20.5.16
ICM_IRQG_CEI3	ICM Interrupt group register 3 for channel error interrupt information	20.5.17
ICM_IRQG_CEI4	ICM Interrupt group register 4 for channel error interrupt information	20.5.18
ICM_IRQG_MCS[i]_CI	ICM Interrupt group MCS i for Channel Interrupt information	20.5.19
ICM_IRQG_MCS[i]_CEI	ICM Interrupt group MCS i for Channel Error Interrupt information	20.5.20
ICM_IRQG_SPE_CI	ICM Interrupt group SPE for module Interrupt information	20.5.21
ICM_IRQG_SPE_CEI	ICM Interrupt group SPE for module Error Interrupt information	20.5.22
ICM_IRQG_PSM_0_CI	ICM Interrupt group PSM 0 for Channel Interrupt information of FIFO0, FIFO1, FIFO2	20.5.23
ICM_IRQG_PSM_0_CEI	ICM Interrupt group PSM 0 for Channel Error Interrupt information of FIFO0, FIFO1, FIFO2	20.5.24
ICM_IRQG_TOM_[k]_CI (k:02)	ICM Interrupt group TOM k for Channel Interrupt information of TOMm (m=2*k+(01))	20.5.25
ICM_IRQG_ATOM_[k]_CI (k:02)	ICM Interrupt group ATOM k for Channel Interrupt information of ATOMm (m=4*k+(03))	20.5.26
ICM_IRQG_CLS_[k]_MEI (k:02)	ICM Interrupt group for module Error Interrupt information for each TIMm, MCSm, SPEm, FIFOm (m=4*k+(03))	20.5.27

20.5ICM Configuration Register Description

Confidential

Specification

20.5.1 Register ICM_IRQG_0

Address Offset:	see Appendix B											Initial Value: 0x0000_0000																				
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	З	2	1	0
Bit	PSM1_CH7_IRQ	PSM1_CH6_IRQ	PSM1_CH5_IRQ	PSM1_CH4_IRQ		CH2_	PSM1_CH1_IRQ	CH0_	CH7_	CH6_	CH5_		PSM0_CH3_IRQ	PSM0_CH2_IRQ	PSM0_CH1_IRQ	PSM0_CH0_IRQ			Keserved		SPE5_IRQ	SPE4_IRQ	SPE3_IRQ	SPE2_IRQ	SPE1_IRQ	SPE0_IRQ	CMP_IRQ	AEI_IRQ	BRC_IRQ	ARU_ACC_ACK_I		ARU NEW DATA
Mode	Я	œ	Я	Я	Я	Я	Я	ц	Я	Я	Я	Я	œ	Я	Я	Я			r		Я	Я	щ	Я	Я	Я	Я	Я	Я	Я	щ	œ
Initial Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			nnxn		0	0	0	0	0	0	0	0	0	0	0	0
	 ARU_NEW_DATA0_IRQ: ARU_NEW_DATA0 interrupt 0 = no interrupt occurred 1 = interrupt was raised by the corresponding sub-module Note: This bit is only set, when the interrupt is enabled in the interrup enable register of the corresponding sub-module. 															pt																
Bit 1 Bit 2 Bit 3 Bit 4	 ARU_NEW_DATA1_IRQ: ARU_NEW_DATA1 interrupt. See bit 0. ARU_ACC_ACK_IRQ: ARU_ACC_ACK interrupt. See bit 0. BRC_DID_IRQ: BRC shared sub-module interrupt. See bit 0. AEI_IRQ: AEI_IRQ interrupt. See bit 0. Note: Set this bit represents an OR function of the interrupt sources: AEI_TO_XPT, AEI_USP_ADDR, AEI_IM_ADDR, AEI_USP_BE, AEIM_USP_ADDR, AEIM_IM_ADDR, AEIM_USP_BE, CLK_EN_ERR or CLK_PER_ERR. 														Ε,																	
Bit 5 Bit 6	S	P	Ξ0 :e:	- S S P	RC et PE_): thi _N	SF s I IP	PE(bit) s re Si	sha pro PE	are es	ed en	su Its	b- ar	mo n C	odi DR	ule fu	e ir Inc	nte ctic	rup erru on R,	ipt of	: S th	see e f	e b ive	oit e ir	0. nte						
Bit 7 Bit 8 Bit 9 Bit 10 Bit 11 Bit 15:12 Bit 16	S S S R N	PE PE PE es lot	E2 E3 E4 E5 Sei	 II II r ve R	RG RG RG ed ea	2: 2: 2: 2:	SF SF SF	PE PE PE	2 s 3 s 4 s 5 s ero	sha sha sha sha o, s	are are are are	ed ed ed ed	su su su	b- b- b-	ma ma ma	odi odi odi odi	ule ule ule	e ir e ir e ir e ir	nte nte nte	erru erru erru erru zei ule	ipt ipt ipt ipt			e b e b e b	oit oit oit	0 a 0 a 0 a	ano ano ano	d k d k d k	oit oit oit oit	6. 6. 6.	e k	pit

GTM-IP	Specification	Revision 3.1.5.1
	Note: Set this bit represents an OR function of the fo <i>FIFO_EMPTY</i> , <i>FIFO_FULL</i> , <i>FIFO_LC</i> <i>FIFO_UPPER_WM</i> of FIFO instance 0 channel	OWER_WM or
Bit 17	PSM0_CH1_IRQ: PSM0 shared sub-module channe 0 and 16.	l 1 interrupt. See bit
Bit 18	PSM0_CH2_IRQ: PSM0 shared sub-module channe 0 and 16.	l 2 interrupt. See bit
Bit 19	PSM0_CH3_IRQ: PSM0 shared sub-module channe 0 and 16.	I 3 interrupt. See bit
Bit 20	PSM0_CH4_IRQ: PSM0 shared sub-module channe 0 and 16.	I 4 interrupt. See bit
Bit 21	PSM0_CH5_IRQ: PSM0 shared sub-module channe 0 and 16.	l 5 interrupt. See bit
Bit 22	PSM0_CH6_IRQ: PSM0 shared sub-module channe 0 and 16.	l 6 interrupt. See bit
Bit 23	PSM0_CH7_IRQ: PSM0 shared sub-module channe 0 and 16.	I 7 interrupt. See bit
Bit 24	PSM1_CH0_IRQ: PSM1 shared sub-module channe 0 and 16.	l 0 interrupt. See bit
Bit 25	PSM1_CH1_IRQ: PSM1 shared sub-module channel 0 and 16.	1 interrupt. See bit
Bit 26	PSM1_CH2_IRQ: PSM1 shared sub-module channe 0 and 16.	l 2 interrupt. See bit
Bit 27	PSM1_CH3_IRQ: PSM1 shared sub-module channe 0 and 16.	l 3 interrupt. See bit
Bit 28	PSM1_CH4_IRQ: PSM1 shared sub-module channe 0 and 16.	I 4 interrupt. See bit
Bit 29	PSM1_CH5_IRQ: PSM1 shared sub-module channe 0 and 16.	l 5 interrupt. See bit
Bit 30	PSM1_CH6_IRQ: PSM1 shared sub-module channe 0 and 16.	l 6 interrupt. See bit
Bit 31	PSM1_CH7_IRQ: PSM1 shared sub-module channe 0 and 16.	l 7 interrupt. See bit

20.5.2 Register ICM_IRQG_1

BOSCH

Specification

Revision 3.1.5.1

Address Offset:	see Appendix B												ial	Va	alu	ie:	;		0x0000_0000								
	31 30 29 28 27	26 26	25	24	22	21	20	19	18	17 16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Bit	Reserved	DPLL_SORI_IRQ	TORI	DPLL_CDSI_IRQ	TE4I	TE31_	TE21_	TE11	UPLL_IE01_IRQ	DPLL_LL21_IRQ	DPLL EI IRQ	DPLL LL11 IRQ	DPLL_GL11_IRQ	DPLL_W11_IRQ	DPLL_W21_IRQ	DPLL_PWI_IRQ	DPLL_TASI_IRQ	SASI	DPLL_MTI_IRQ	DPLL_MSI_IRQ	TISI		DPLL_TAXI_IRQ	DPLL_TINI_IRQ	DPLL_EDI_IRQ	DPLL DCGI IRQ	
Mode	٣	æ	ъ	۵ ۲		Я	ж	œ ۱	r	а. а	: œ	щ	ч	Я	Я	В	Я	Я	ч	R	Я	Я	Я	В	Я	ж	
Initial Value	00×00	0	0	0			0			0 0					0	0		0			0	0	0	0	0	0	
Bit 0	DPLL_DC		_					ER	di	irec	ctio	n	cha	an	ge	de	ete	ect	ed	•							
	 0 = no interrupt occurred 1 = interrupt was raised by the corresponding sub-module Note: This bit is only set, when the interrupt is enabled in the interrupt enable register of the corresponding sub-module. 														pt												
Bit 1	DPLL_EDI_IRQ: DPLL enable/disable interrupt. See bit 0. Note: Set this bit represents an OR function of the two interrupt sources <i>DPLL_PDI</i> or <i>DPLL_PEI</i> .													es													
Bit 2	DPLL_TII detected i	٩Ī_	IR	Q:	ΤF	RIC	G	ER		mir	im	un	n	hc	ld	t	im	е	(ΤH	M	I)	vi	ola	atio	on	
Bit 3		XI	_IR	Q:	T	RIC	GG	ER	2	ma	ximum hold time (THMA) violation																
Bit 4											slope detected interrupt. See bit 0.																
Bit 5	DPLL_TIS	_											•						nte	rrι	ıpt	. 5	See	e b	it ().	
Bit 6 Bit 7	DPLL_MS	_					-						-						^								
Bit 8	DPLL_MT DPLL_SA						-													۰							
Bit 9	DPLL_TA	SI	_IR																			١T	I_(CN	IT	is	
Bit 10	DPLL_PV TRIGGEF	VI_	IR			au	sib	ility	,	wir	ndo	SW	((P\	/T))	vi	ola	atic	n	i	nte	err	up	t	of	
Bit 11	DPLL_W	21_	IRO	ג: \	Vrit	te a	acc	es	s t	to F	RAI	M	reg	gio	n 2	2 ir	nte	err	up	t. S	Se	еł	oit	0.			
Bit 12	DPLL_W : 0.	11_	IRO	א: \	Vrit	te a	acc	es	s t	to F	RAI	М	reg	gio	n 1	1b	or	1	c i	nte	err	up	t.	Se	e l	oit	
Bit 13	DPLL_GL	-																									
Bit 14	DPLL_LL		_								-			Sl	JB	8_1	N	C1	. S	see	e b	it (0.				
Bit 15	DPLL_EI							•																			
Bit 16	DPLL_GL	-	_								-					_											
Bit 17	DPLL_LL		_								-					_					e b	it (0.				
Bit 18	DPLL_TE	_												•													
Bit 19	DPLL_TE													-													
Bit 20	DPLL_TE	_												•													
Bit 21	DPLL_TE	.31	IR	Q:	I R	IG	GE	R	ev	ent	In	ter	ru	pt	3.	Se	ee	Di	τÜ	•							

GTM-IP	Specification	Revision 3.1.5.1
Bit 22	DPLL_TE4I_IRQ: TRIGGER event interrupt 4. See bit	0.
Bit 23	DPLL_CDTI_IRQ: DPLL calculated duration interrupt f 0.	or trigger. See bit
Bit 24	DPLL_CDSI_IRQ: DPLL calculated duration interrupt 0.	for state. See bit
Bit 25	DPLL_TORI_IRQ: DPLL calculated duration interrupt for	or state. See bit 0.
Bit 26	DPLL_SORI_IRQ: DPLL calculated duration interrupt 0.	
Bit 31:27	Reserved: Reserved Note: Read as zero, should be written as zero	

20.5.3 Register ICM_IRQG_2

Address Offset:	S	ee	A	pp	er	ndi	ix	В									In	iti	al	Va	alu	ie:			0>	k0	00	0_	00	00)	
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	в	2	1	0
Bit	TIM3_CH7_IRQ	TIM3_CH6_IRQ	тімз_сн5_іко	-	TIM3_CH3_IRQ	TIM3_CH2_IRQ	TIM3_CH1_IRQ	1	CH7	TIM2_CH6_IRQ	TIM2_CH5_IRQ	1	TIM2_CH3_IRQ	TIM2_CH2_IRQ	TIM2_CH1_IRQ	TIM2_CH0_IRQ	TIM1_CH7_IRQ	TIM1_CH6_IRQ	TIM1_CH5_IRQ	TIM1_CH4_IRQ	TIM1_CH3_IRQ	TIM1_CH2_IRQ	TIM1_CH1_IRQ	TIM1_CH0_IRQ	TIM0_CH7_IRQ	TIM0_CH6_IRQ	TIM0_CH5_IRQ	TIM0_CH4_IRQ	TIM0_CH3_IRQ	TIM0_CH2_IRQ	TIM0_CH1_IRQ	TIM0 CH0 IRQ
Mode	Я	В	R	R	В	R	R	R	R	R	R	R	R	R	R	В	R	R	R	R	R	R	Я	R	В	Я	В	R	R	В	R	R
Initial Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit 0	0	TIM0_CH0_IRQ: TIM0 shared interrupt channel 0. 0 = no interrupt occurred																														

1 = interrupt was raised by the corresponding sub-module **Note**: This bit is only set, when the interrupt is enabled in the interrupt

lote: This bit is only set, when the interrupt is enabled in the interrupt enable register of the corresponding sub-module.

Note: Set this bit represents an OR function of the six interrupt sources *NEWVALx_IRQ*, *ECNTOFLx_IRQ*, *CNTOFLx_IRQ*, *GPRXOFLx_IRQ*, GLITCHDETx_IRQ or *TODETx_IRQ* of TIM instance 0 channel x.

Bit 1	TIM0_CH1_IRQ: TIM0 shared interrupt channel 1. See bit 0.
-------	--

- Bit 2 **TIM0_CH2_IRQ:** TIM0 shared interrupt channel 2 . See bit 0.
- Bit 3 **TIM0_CH3_IRQ:** TIM0 shared interrupt channel 3. See bit 0.
- Bit 4 **TIM0_CH4_IRQ:** TIM0 shared interrupt channel 4. See bit 0.
- Bit 5 **TIM0_CH5_IRQ:** TIM0 shared interrupt channel 5. See bit 0.
- Bit 6 **TIM0_CH6_IRQ:** TIM0 shared interrupt channel 6. See bit 0.
- Bit 7 **TIM0_CH7_IRQ:** TIM0 shared interrupt channel 7. See bit 0.
- Bit 8 **TIM1_CH0_IRQ:** TIM1 shared interrupt channel 0. See bit 0.

BOSCH

		1310
Bit 9	TIM1_CH1_IRQ: TIM1 shared interrupt channel 1. See bit 0.	•
Bit 10	TIM1_CH2_IRQ: TIM1 shared interrupt channel 2. See bit 0.	
Bit 11	TIM1_CH3_IRQ: TIM1 shared interrupt channel 3. See bit 0.	
Bit 12	TIM1_CH4_IRQ: TIM1 shared interrupt channel 4. See bit 0.	
Bit 13	TIM1_CH5_IRQ: TIM1 shared interrupt channel 5. See bit 0.	
Bit 14	TIM1_CH6_IRQ: TIM1 shared interrupt channel 6. See bit 0.	
Bit 15	TIM1_CH7_IRQ: TIM1 shared interrupt channel 7. See bit 0.	
Bit 16	TIM2_CH0_IRQ: TIM2 shared interrupt channel 0. See bit 0.	•
Bit 17	TIM2_CH1_IRQ: TIM2 shared interrupt channel 1. See bit 0.	
Bit 18	TIM2_CH2_IRQ: TIM2 shared interrupt channel 2. See bit 0.	•
Bit 19	TIM2_CH3_IRQ: TIM2 shared interrupt channel 3. See bit 0.	•
Bit 20	TIM2_CH4_IRQ: TIM2 shared interrupt channel 4. See bit 0.	•
Bit 21	TIM2_CH5_IRQ: TIM2 shared interrupt channel 5. See bit 0.	•
Bit 22	TIM2_CH6_IRQ: TIM2 shared interrupt channel 6. See bit 0.	•
Bit 23	TIM2_CH7_IRQ: TIM2 shared interrupt channel 7. See bit 0.	•
Bit 24	TIM3_CH0_IRQ: TIM3 shared interrupt channel 0. See bit 0.	•
Bit 25	TIM3_CH1_IRQ: TIM3 shared interrupt channel 1. See bit 0.	•
Bit 26	TIM3_CH2_IRQ: TIM3 shared interrupt channel 2. See bit 0.	•
Bit 27	TIM3_CH3_IRQ: TIM3 shared interrupt channel 3. See bit 0.	•
Bit 28	TIM3_CH4_IRQ: TIM3 shared interrupt channel 4. See bit 0.	•
Bit 29	TIM3_CH5_IRQ: TIM3 shared interrupt channel 5. See bit 0.	
Bit 30	TIM3_CH6_IRQ: TIM3 shared interrupt channel 6. See bit 0.	
Bit 31	TIM3_CH7_IRQ: TIM3 shared interrupt channel 7. See bit 0.	•

Specification

20.5.4 Register ICM_IRQG_3

Address Offset:	S	ee	A	pp	er	ndi	ix	В									In	iti	al	Va	alu	ie:			03	x0	00	0_	00	00)	
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	з	2	1	0
Bit	TIM7_CH7_IRQ	TIM7_CH6_IRQ	TIM7_CH5_IRQ	TIM7_CH4_IRQ	TIM7_CH3_IRQ	TIM7_CH2_IRQ	TIM7_CH1_IRQ		TIM6_CH7_IRQ	TIM6_CH6_IRQ	TIM6_CH5_IRQ	TIM6_CH4_IRQ	TIM6_CH3_IRQ	TIM6_CH2_IRQ	TIM6_CH1_IRQ	TIM6_CH0_IRQ	TIM5_CH7_IRQ	TIM5_CH6_IRQ	TIM5_CH5_IRQ	TIM5_CH4_IRQ	TIM5_CH3_IRQ	TIM5_CH2_IRQ	TIM5_CH1_IRQ	TIM5_CH0_IRQ	TIM4_CH7_IRQ	TIM4_CH6_IRQ	TIM4_CH5_IRQ	TIM4_CH4_IRQ	TIM4_CH3_IRQ	TIM4_CH2_IRQ	TIM4_CH1_IRQ	TIM4 CH0 IRQ
Mode	œ	Ч	Я	Я	Я	Я	Ч	Я	Я	Я	Я	Я	Я	œ	Я	Я	Я	Я	Я	Я	Я	Я	œ	Я	Я	Я	Я	Я	Я	œ	щ	щ
Initial Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit 0	Т	IN	14_	C	HC)_l	R	Q:	ΤI	M	4 s	sha	are	d	int	er	rup	ot (ch	an	ne	0 1).									

0 = no interrupt occurred

1 = interrupt was raised by the corresponding sub-module

Note: This bit is only set, when the interrupt is enabled in the interrupt enable register of the corresponding sub-module.

\bigcirc	BOSCH
Re	evision 3.1.5.1

Specification

Note: Set this bit represents an OR function of the six interrupt sources *NEWVALx_IRQ*, *ECNTOFLx_IRQ*, *CNTOFLx_IRQ*, *GPRXOFLx_IRQ*, GLITCHDETx_IRQ or *TODETx_IRQ* of TIM instance 4 channel x.

Bit 1 **TIM4 CH1 IRQ:** TIM4 shared interrupt channel 1. See bit 0. TIM4 CH2 IRQ: TIM4 shared interrupt channel 2. See bit 0. Bit 2 Bit 3 TIM4 CH3 IRQ: TIM4 shared interrupt channel 3. See bit 0. Bit 4 **TIM4 CH4 IRQ:** TIM4 shared interrupt channel 4. See bit 0. Bit 5 **TIM4 CH5 IRQ:** TIM4 shared interrupt channel 5. See bit 0. Bit 6 TIM4 CH6 IRQ: TIM4 shared interrupt channel 6. See bit 0. Bit 7 TIM4 CH7 IRQ: TIM4 shared interrupt channel 7. See bit 0. Bit 8 TIM5 CH0 IRQ: TIM5 shared interrupt channel 0. See bit 0. TIM5 CH1 IRQ: TIM5 shared interrupt channel 1. See bit 0. Bit 9 Bit 10 TIM5 CH2 IRQ: TIM5 shared interrupt channel 2. See bit 0. Bit 11 **TIM5 CH3 IRQ:** TIM5 shared interrupt channel 3. See bit 0. Bit 12 TIM5 CH4 IRQ: TIM5 shared interrupt channel 4. See bit 0. Bit 13 TIM5 CH5 IRQ: TIM5 shared interrupt channel 5. See bit 0. Bit 14 TIM5 CH6 IRQ: TIM5 shared interrupt channel 6. See bit 0. Bit 15 TIM5 CH7 IRQ: TIM5 shared interrupt channel 7. See bit 0. Bit 16 TIM6 CH0 IRQ: TIM6 shared interrupt channel 0. See bit 0. TIM6 CH1 IRQ: TIM6 shared interrupt channel 1. See bit 0. Bit 17 TIM6 CH2 IRQ: TIM6 shared interrupt channel 2. See bit 0. Bit 18 TIM6 CH3 IRQ: TIM6 shared interrupt channel 3. See bit 0. Bit 19 TIM6 CH4 IRQ: TIM6 shared interrupt channel 4. See bit 0. Bit 20 TIM6 CH5 IRQ: TIM6 shared interrupt channel 5. See bit 0. Bit 21 Bit 22 **TIM6_CH6_IRQ:** TIM6 shared interrupt channel 6. See bit 0. Bit 23 TIM6 CH7 IRQ: TIM6 shared interrupt channel 7. See bit 0. Bit 24 TIM7 CH0 IRQ: TIM7 shared interrupt channel 0. See bit 0. Bit 25 TIM7 CH1 IRQ: TIM7 shared interrupt channel 1. See bit 0. Bit 26 TIM7 CH2 IRQ: TIM7 shared interrupt channel 2. See bit 0. Bit 27 TIM7 CH3 IRQ: TIM7 shared interrupt channel 3. See bit 0. TIM7 CH4 IRQ: TIM7 shared interrupt channel 4. See bit 0. Bit 28 TIM7 CH5 IRQ: TIM7 shared interrupt channel 5. See bit 0. Bit 29 TIM7 CH6 IRQ: TIM7 shared interrupt channel 6. See bit 0. Bit 30 Bit 31 TIM7 CH7 IRQ: TIM7 shared interrupt channel 7. See bit 0.

20.5.5 Register ICM_IRQG_4

Specification

Revision 3.1.5.1

Address Offset:	se	ee	A	pp	er	ndi	ix	B									In	iti	al	Va	lu	e:			0>	(0(00	0_	00	00)	
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	6	5	4	3	2	1	0
Bit	MCS3_CH7_IRQ	MCS3_CH6_IRQ	MCS3_CH5_IRQ	MCS3_CH4_IRQ	MCS3_CH3_IRQ	MCS3_CH2_IRQ	MCS3_CH1_IRQ	MCS3_CH0_IRQ	MCS2_CH7_IRQ	MCS2_CH6_IRQ	MCS2_CH5_IRQ		MCS2_CH3_IRQ	MCS2_CH2_IRQ	MCS2_CH1_IRQ	MCS2_CH0_IRQ	MCS1_CH7_IRQ	MCS1_CH6_IRQ	MCS1_CH5_IRQ	MCS1_CH4_IRQ	MCS1_CH3_IRQ	MCS1_CH2_IRQ	MCS1_CH1_IRQ	MCS1_CH0_IRQ	MCS0_CH7_IRQ	MCS0_CH6_IRQ	MCS0_CH5_IRQ	MCS0_CH4_IRQ	MCS0_CH3_IRQ	MCS0_CH2_IRQ	CH1	MCS0_CH0_IRQ
Mode	ж	Я	Я	Я	Ж	ж	Ж	щ	н	ж	ж	ж	н	Ч	н	Я	Я	ц	Ч	ж	щ	ж	щ	Я	ч	ч	щ	Я	В	Я	Я	ж
Initial Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1 N	= lot	int e: e: (ter Tl ena Se	ru his ab et 1	pt b le thi: _//	va iti re sb RG	is o gis oit r),	rai on tei rep	ise ly : r o ore	d se f tl	by t, v he	wł co s a	nei orr	n t es Ol	he po R f	e ir onc	nte lin; ncti	rru g s ior	ipt suk	is o-r f tł	no ne	na du thi	ble le ree	ed · e ir	in nte	erri	up	ts	ou	rce	es
Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8 Bit 9 Bit 10 Bit 11 Bit 12 Bit 13 Bit 14 Bit 15 Bit 15 Bit 16 Bit 17 Bit 18 Bit 19 Bit 20		1C: 1C: 1C: 1C: 1C: 1C: 1C: 1C: 1C: 1C:	S0 S0 S0 S1 S1 S1 S1 S1 S1 S1 S1 S2 S2 S2)_())_())_())_())_())_() (] (] (] (] (] (] (] (] (] (] (] (] (]		2_ 3_ 4_ 5_ 6_ 7_ 1_ 2_ 3_ 1_ 2_ 3_					S0 S0 S0 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1) c c c c c c c c c c c c c c c c c c c	ha ha ha ha ha ha ha ha ha ha ha	101 101 101 101 101 101 101 101	nel nel nel nel nel nel nel nel nel nel	23456701234567012	inti inti inti inti inti inti inti inti	ter ter ter ter ter ter ter ter ter	ru ru ru ru ru ru ru ru ru ru ru ru ru	pt. pt. pt. pt. pt. pt. pt. pt. pt. pt.			bi bi bi bi bi bi bi bi bi bi bi bi	t C C C C C C C C C C C C C C C C C C C).).).).).).).).).).).							

GTM-IP	Specification	Revision 3.1.5
Bit 25	MCS3_CH1_IRQ: MCS3 channel 1 interrupt. See bit 0.	
Bit 26	MCS3_CH2_IRQ: MCS3 channel 2 interrupt. See bit 0.	
Bit 27	MCS3_CH3_IRQ: MCS3 channel 3 interrupt. See bit 0.	
Bit 28	MCS3 CH4 IRQ: MCS3 channel 4 interrupt. See bit 0.	
Bit 29	MCS3 CH5 IRQ: MCS3 channel 5 interrupt. See bit 0.	
Bit 30	MCS3 CH6 IRQ: MCS3 channel 6 interrupt. See bit 0.	
Bit 31	MCS3_CH7_IRQ: MCS3 channel 7 interrupt. See bit 0.	

20.5.6 Register ICM_IRQG_5

| 31 | 30 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | | | | | | | | | | | In

 | Iti
 | al

 | Va
 | alu

 | e:
 |
 |
 | 0>
 | (0)
 | 00
 | 0_ | 00
 | 000
 |) | | | |
|--------------|--------------|---------------------------------------|--|--|--|--|---|---|--|--|---|---|--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--|--
--|--|---|
| | | 25 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17

 | 16
 | 15

 | 14
 | 13

 | 12
 | 11
 | 10
 | 6
 | 8
 | 7
 | 9 | 5
 | 4
 | З | 2 | 1 | 0 |
| MCS7_CH7_IRQ | MCS7_CH6_IRQ | MCS7_CH5_IRQ | MCS7_CH4_IRQ | MCS7_CH3_IRQ | MCS7_CH2_IRQ | MCS7_CH1_IRQ | MCS7_CH0_IRQ | MCS6_CH7_IRQ | MCS6_CH6_IRQ | MCS6_CH5_IRQ | MCS6_CH4_IRQ | MCS6_CH3_IRQ | MCS6_CH2_IRQ | MCS6_CH1_IRQ

 | MCS6_CH0_IRQ
 | MCS5_CH7_IRQ

 | MCS5_CH6_IRQ
 | MCS5_CH5_IRQ

 | MCS5_CH4_IRQ
 | MCS5_CH3_IRQ
 | MCS5_CH2_IRQ
 | MCS5_CH1_IRQ
 | MCS5_CH0_IRQ
 | MCS4_CH7_IRQ
 | MCS4_CH6_IRQ | MCS4_CH5_IRQ
 | MCS4_CH4_IRQ
 | MCS4_CH3_IRQ | MCS4_CH2_IRQ | MCS4_CH1_IRQ | MCS4_CH0_IRQ |
| R | Я | Я | Я | Я | R | Я | Я | Я | В | R | В | R | Я | R

 | R
 | Я

 | Я
 | R

 | R
 | R
 | R
 | Я
 | Я
 | Я
 | Я | В
 | Я
 | R | R | Я | Я |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0

 | 0
 | 0

 | 0
 | 0

 | 0
 | 0
 | 0
 | 0
 | 0
 | 0
 | 0 | 0
 | 0
 | 0 | 0 | 0 | 0 |
| | 0 R MCS7_CH7 | 0 R MCS7_CH7
0 R MCS7_CH6 | 0 R MCS7_CH7
0 R MCS7_CH6
0 R MCS7_CH6 | 0 R MCS7_CH7
0 R MCS7_CH6
0 R MCS7_CH6
0 R MCS7_CH4 | 0 R MCS7 CH7
0 R MCS7 CH6
0 R MCS7 CH5
0 R MCS7 CH4
0 R MCS7 CH4 | 0 R MCS7_CH7 0 R MCS7_CH6 0 R MCS7_CH5 0 R MCS7_CH6 0 R MCS7_CH2 | 0 R MCS7_CH7 0 R MCS7_CH6 0 R MCS7_CH3 0 R MCS7_CH3 0 R MCS7_CH3 0 R MCS7_CH3 | 0 R MCS7_CH7 0 R MCS7_CH6 0 R MCS7_CH5 0 R MCS7_CH2 0 R MCS7_CH2 | 0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH2 0 R MCS7 CH2 | 0 R MCS7_CH7 0 R MCS7_CH6 0 R MCS7_CH5 0 R MCS7_CH2 0 R MCS6_CH2 0 R MCS6_CH2 | 0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH5 0 R MCS7 CH5 0 R MCS7 CH5 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH5 0 R MCS6 CH5 | 0 R MCS7_CH7 0 R MCS7_CH6 0 R MCS7_CH6 0 R MCS7_CH2 0 R MCS6_CH2 0 R MCS6_CH2 0 R MCS6_CH2 0 R MCS6_CH2 | 0 R MCS7_CH7 0 R MCS7_CH6 0 R MCS7_CH6 0 R MCS7_CH2 0 R MCS6_CH2 0 R MCS6_CH2 | 0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS7 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH2 0 R <td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH1 0 R MCS6 CH1 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS7 CH1 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS6 CH5 0 R MCS6 CH4 0 R MCS6 CH4 0 R MCS6 CH5 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS6 CH4 0 R MCS6 CH4 0 R MCS6 CH4 0 R MCS6 CH2 0 R MCS6 CH4 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH4 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH1 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS6 CH5 0 R MCS6 CH4 0 R MCS6 CH4 0 R MCS6 CH2 0 R MCS6 CH4 0 R MCS6 CH4 0 R MCS6 CH4 0 R MCS6 CH4 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS6 CH4 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH1 0 R MCS7 CH2 0 R MCS7 CH1 0 R MCS7 CH1 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH1 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH4 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH6 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS7 CH1 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH1 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH1 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS6 CH7 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH1 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH1 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH5 0 R MCS6 CH6 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6
 CH1 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R</td></td></td></td></td></td></td></td></td></td></td></td></td></td></td></td></td> | 0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH1 0 R MCS6 CH1 0 R MCS6 CH2 0 R <td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS7 CH1 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS6 CH5 0 R MCS6 CH4 0 R MCS6 CH4 0 R MCS6 CH5 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS6 CH4 0 R MCS6 CH4 0 R MCS6 CH4 0 R MCS6 CH2 0 R MCS6 CH4 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH4 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH1 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS6 CH5 0 R MCS6 CH4 0 R MCS6 CH4 0 R MCS6 CH2 0 R MCS6 CH4 0 R MCS6 CH4 0 R MCS6 CH4 0 R MCS6 CH4 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS6 CH4 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH1 0 R MCS7 CH2 0 R MCS7 CH1 0 R MCS7 CH1 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH1 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH4 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH6 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS7 CH1 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH1 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH1 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS6 CH7 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH1 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH1 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH5 0 R MCS6 CH6 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R</td></td></td></td></td></td></td></td></td></td></td></td></td></td></td></td> | 0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS7 CH1 0 R MCS6 CH2 0 R <td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS6 CH5 0 R MCS6 CH4 0 R MCS6 CH4 0 R MCS6 CH5 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS6 CH4 0 R MCS6 CH4 0 R MCS6 CH4 0 R MCS6 CH2 0 R MCS6 CH4 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH4 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH1 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS6 CH5 0 R MCS6 CH4 0 R
MCS6 CH4 0 R MCS6 CH2 0 R MCS6 CH4 0 R MCS6 CH4 0 R MCS6 CH4 0 R MCS6 CH4 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS6 CH4 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH1 0 R MCS7 CH2 0 R MCS7 CH1 0 R MCS7 CH1 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH1 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH4 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH6 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS7 CH1 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH1 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH1 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS6 CH7 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH1 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH1 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH5 0 R MCS6 CH6 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R</td></td></td></td></td></td></td></td></td></td></td></td></td></td></td> | 0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS6 CH5 0 R MCS6 CH4 0 R MCS6 CH4 0 R MCS6 CH5 0 R MCS6 CH2 0 R <td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS6 CH4 0 R MCS6 CH4 0 R MCS6 CH4 0 R MCS6 CH2 0 R MCS6 CH4 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH4 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH1 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS6 CH5 0 R MCS6 CH4 0 R MCS6 CH4 0 R MCS6 CH2 0 R MCS6 CH4 0 R MCS6 CH4 0 R MCS6 CH4 0 R MCS6 CH4 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS6 CH4 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH1 0 R MCS7 CH2 0 R MCS7 CH1 0 R MCS7 CH1 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH1 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH4 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH6 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS7 CH1 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH1 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH1 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS6 CH7 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH1 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH1 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6
 0 R MCS7 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH5 0 R MCS6 CH6 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R</td></td></td></td></td></td></td></td></td></td></td></td></td></td> | 0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS6 CH4 0 R MCS6 CH4 0 R MCS6 CH4 0 R MCS6 CH2 0 R MCS6 CH4 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH4 0 R <td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH1 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS6 CH5 0 R MCS6 CH4 0 R MCS6 CH4 0 R MCS6 CH2 0 R MCS6 CH4 0 R MCS6 CH4 0 R MCS6 CH4 0 R MCS6 CH4 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS6 CH4 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH1 0 R MCS7 CH2 0 R MCS7 CH1 0 R MCS7 CH1 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH1 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH4 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH6 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS7 CH1 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH1 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH1 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS6 CH7 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH1 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH1 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH5 0 R MCS6 CH6 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R</td></td></td></td></td></td></td></td></td></td></td></td></td> | 0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH1 0 R MCS6 CH2 0 R <td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS6 CH5 0 R MCS6 CH4 0 R MCS6 CH4 0 R MCS6 CH2 0 R MCS6 CH4 0 R MCS6 CH4 0 R MCS6 CH4 0 R MCS6 CH4 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS6 CH4 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH1 0 R MCS7 CH2 0 R MCS7 CH1 0 R MCS7 CH1 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH1 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH4 0 R MCS6 CH6 0 R MCS6 CH6
 0 R MCS6 CH6 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS7 CH1 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH1 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH1 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS6 CH7 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH1 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH1 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH5 0 R MCS6 CH6 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R</td></td></td></td></td></td></td></td></td></td></td></td> | 0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS6 CH5 0 R MCS6 CH4 0 R MCS6 CH4 0 R MCS6 CH2 0 R MCS6 CH4 0 R MCS6 CH4 0 R MCS6 CH4 0 R MCS6 CH4 0 R <td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS6 CH4 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH1 0 R MCS7 CH2 0 R MCS7 CH1 0 R MCS7 CH1 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH1 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH4 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH6 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS7 CH1 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH1 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH1 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS6 CH7 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH1 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH1 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH5 0 R MCS6 CH6 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R</td></td></td></td></td></td></td></td></td></td></td> | 0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS6 CH4 0 R <td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH1 0 R MCS7 CH2 0 R MCS7 CH1 0 R MCS7 CH1 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH1 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH4 0 R MCS6 CH6 0 R MCS6 CH6
 0 R MCS6 CH6 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS7 CH1 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH1 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH1 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS6 CH7 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH1 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH1 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH5 0 R MCS6 CH6 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R</td></td></td></td></td></td></td></td></td></td> | 0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH1 0 R MCS7 CH2 0 R MCS7 CH1 0 R MCS7 CH1 0 R MCS6 CH2 0 R <td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH1 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH4 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH6 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS7 CH1 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH1 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH1 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS6 CH7 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH1 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH1 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH5 0 R MCS6 CH6 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R</td></td></td></td></td></td></td></td></td> | 0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH1 0 R MCS6 CH2 0 R <td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH4 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH6 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS7 CH1 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH1 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH1 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS6 CH7 0 R MCS6 CH6 0 R MCS6 CH6 0 R
MCS6 CH1 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH1 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH5 0 R MCS6 CH6 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R</td></td></td></td></td></td></td></td> | 0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH4 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH6 0 R <td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS7 CH1 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH1 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH1 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS6 CH7 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH1 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH1 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH5 0 R MCS6 CH6 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R</td></td></td></td></td></td></td> | 0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS7 CH1 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH1 0 R <td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH1 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS6 CH7 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH1 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH1 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH5 0 R MCS6 CH6 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R</td></td></td></td></td></td> | 0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7
 CH4 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH1 0 R <td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS6 CH7 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH1 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH1 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH5 0 R MCS6 CH6 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R</td></td></td></td></td> | 0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS6 CH7 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH1 0 R <td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH1 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH5 0 R MCS6 CH6 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R</td></td></td></td> | 0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH1 0 R MCS6 CH2 0 R <td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH2 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH5 0 R MCS6 CH6 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R</td></td></td> | 0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH1 0 R MCS6 CH2 0 R MCS6 CH2 0 R MCS6 CH2 0 R <td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH5 0 R MCS6 CH6 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R<td>0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R</td></td> | 0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH5 0 R MCS6 CH6 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R <td>0 R MCS7 CH7 0 R MCS7 CH6
 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R</td> | 0 R MCS7 CH7 0 R MCS7 CH6 0 R MCS7 CH4 0 R MCS7 CH1 0 R MCS6 CH6 0 R MCS6 CH6 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R MCS6 CH1 0 R |

Bit 0

MCS4_CH0_IRQ: MCS4 channel 0 interrupt

0 = no interrupt occurred

1 = interrupt was raised by the corresponding sub-module

Note: This bit is only set, when the interrupt is enabled in the interrupt enable register of the corresponding sub-module.

Note: Set this bit represents an OR function of the three interrupt sources *MCS_IRQ*, *STK_ERR_IRQ* or *ERR_IRQ* of MCS instance 4 channel 0.

Bit 1	MCS4_CH1_IRQ: MCS4 channel 1 interrupt. See bit 0.
Bit 2	MCS4_CH2_IRQ: MCS4 channel 2 interrupt. See bit 0.
Bit 3	MCS4_CH3_IRQ: MCS4 channel 3 interrupt. See bit 0.
Bit 4	MCS4_CH4_IRQ: MCS4 channel 4 interrupt. See bit 0.
Bit 5	MCS4_CH5_IRQ: MCS4 channel 5 interrupt. See bit 0.
Bit 6	MCS4_CH6_IRQ: MCS4 channel 6 interrupt. See bit 0.
Bit 7	MCS4_CH7_IRQ: MCS4 channel 7 interrupt. See bit 0.
Bit 8	MCS5_CH0_IRQ: MCS5 channel 0 interrupt. See bit 0.
Bit 9	MCS5_CH1_IRQ: MCS5 channel 1 interrupt. See bit 0.
Bit 10	MCS5_CH2_IRQ: MCS5 channel 2 interrupt. See bit 0.
Bit 11	MCS5_CH3_IRQ: MCS5 channel 3 interrupt. See bit 0.
Bit 12	MCS5_CH4_IRQ: MCS5 channel 4 interrupt. See bit 0.
Bit 13	MCS5_CH5_IRQ: MCS5 channel 5 interrupt. See bit 0.

Automotive Ele	ectronics	BOSCH
GTM-IP	Specification	Revision 3.1.5.1
Bit 14	MCS5_CH6_IRQ: MCS5 channel 6 interrupt. See bit 0	0.
Bit 15	MCS5_CH7_IRQ: MCS5 channel 7 interrupt. See bit (0.
Bit 16	MCS6_CH0_IRQ: MCS1 channel 0 interrupt. See bit 0	0.
Bit 17	MCS6_CH1_IRQ: MCS6 channel 1 interrupt. See bit (0.
Bit 18	MCS6_CH2_IRQ: MCS6 channel 2 interrupt. See bit (0.
Bit 19	MCS6_CH3_IRQ: MCS6 channel 3 interrupt. See bit 0	0.
Bit 20	MCS6_CH4_IRQ: MCS6 channel 4 interrupt. See bit (0.
Bit 21	MCS6_CH5_IRQ: MCS6 channel 5 interrupt. See bit 0	0.
Bit 22	MCS6_CH6_IRQ: MCS6 channel 6 interrupt. See bit 0	0.
Bit 23	MCS6_CH7_IRQ: MCS6 channel 7 interrupt. See bit (0.
Bit 24	MCS7_CH0_IRQ: MCS7 channel 0 interrupt. See bit 0	0.
Bit 25	MCS7_CH1_IRQ: MCS7 channel 1 interrupt. See bit 0	0.
Bit 26	MCS7_CH2_IRQ: MCS7 channel 2 interrupt. See bit (0.
Bit 27	MCS7_CH3_IRQ: MCS7 channel 3 interrupt. See bit (0.
Bit 28	MCS7_CH4_IRQ: MCS7 channel 4 interrupt. See bit (0.
Bit 29	MCS7_CH5_IRQ: MCS7 channel 5 interrupt. See bit (0.
Bit 30	MCS7_CH6_IRQ: MCS7 channel 6 interrupt. See bit (0.
		-

		•
Bit 31	MCS7 CH7 IRQ: MCS7 chan	nel 7 interrupt. See bit 0.

20.5.7 Register ICM_IRQG_6

Address Offset:	s	ee	A	pp	er	ndi	ix	В									In	iti	al	Va	alu	ie:			0>	(0	00	0_	00)0()	
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	6	5	4	3	2	1	0
Bit	TOM1_CH15_IRQ	TOM1_CH14_IRQ	TOM1_CH13_IRQ	TOM1_CH12_IRQ	TOM1_CH11_IRQ	TOM1_CH10_IRQ	TOM1_CH9_IRQ	TOM1_CH8_IRQ	TOM1_CH7_IRQ	TOM1_CH6_IRQ	1	1	CH3_	TOM1_CH2_IRQ	TOM1_CH1_IRQ	TOM1_CH0_IRQ	TOM0_CH15_IRQ	TOM0_CH14_IRQ	TOM0_CH13_IRQ	TOM0_CH12_IRQ	TOM0_CH11_IRQ	TOM0_CH10_IRQ	TOM0_CH9_IRQ	TOM0_CH8_IRQ	TOM0_CH7_IRQ	TOM0_CH6_IRQ	TOM0_CH5_IRQ	TOM0_CH4_IRQ	TOM0_CH3_IRQ	TOM0_CH2_IRQ	TOM0_CH1_IRQ	TOM0 CH0 IRQ
Mode	R	R	R	R	R	Я	R	R	R	R	R	R	R	R	В	В	R	R	R	Я	В	R	В	R	R	R	R	R	R	В	R	Я
Initial Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit 0

TOM0_CH0_IRQ: TOM0 channel 0 shared interrupt

0 = no interrupt occurred

1 = interrupt was raised by the corresponding sub-module

Note: This bit is only set, when the interrupt is enabled in the interrupt enable register of the corresponding sub-module.

Note: Set this bit represents an OR function of the two interrupt sources TOM CCU0TCx IRQ or TOM CCU1TCx IRQ of TOM instance 0 channel x.

Bit 1 TOM0 CH1 IRQ: TOM0 channel 1 shared interrupt. See bit 0.

Bit 2 TOM0_CH2_IRQ: TOM0 channel 2 shared interrupt. See bit 0.

	BOSCH
Re	evision 3.1.5.1

GTM-IP	Specification Revision 3.1
Bit 3	TOM0_CH3_IRQ: TOM0 channel 3 shared interrupt. See bit 0.
Bit 4	TOM0_CH4_IRQ: TOM0 channel 4 shared interrupt. See bit 0.
Bit 5	TOM0_CH5_IRQ: TOM0 channel 5 shared interrupt. See bit 0.
Bit 6	TOM0_CH6_IRQ: TOM0 channel 6 shared interrupt. See bit 0.
Bit 7	TOM0_CH7_IRQ: TOM0 channel 7 shared interrupt. See bit 0.
Bit 8	TOM0_CH8_IRQ: TOM0 channel 8 shared interrupt. See bit 0.
Bit 9	TOM0_CH9_IRQ: TOM0 channel 9 shared interrupt. See bit 0.
Bit 10	TOM0_CH10_IRQ: TOM0 channel 10 shared interrupt. See bit 0.
Bit 11	TOM0_CH11_IRQ: TOM0 channel 11 shared interrupt. See bit 0.
Bit 12	TOM0_CH12_IRQ: TOM0 channel 12 shared interrupt. See bit 0.
Bit 13	TOM0_CH13_IRQ: TOM0 channel 13 shared interrupt. See bit 0.
Bit 14	TOM0_CH14_IRQ: TOM0 channel 14 shared interrupt. See bit 0.
Bit 15	TOM0_CH15_IRQ: TOM0 channel 15 shared interrupt. See bit 0.
Bit 16	TOM1_CH0_IRQ: TOM1 channel 0 shared interrupt. See bit 0.
Bit 17	TOM1_CH1_IRQ: TOM1 channel 1 shared interrupt. See bit 0.
Bit 18	TOM1_CH2_IRQ: TOM1 channel 2 shared interrupt. See bit 0.
Bit 19	TOM1_CH3_IRQ: TOM1 channel 3 shared interrupt. See bit 0.
Bit 20	TOM1_CH4_IRQ: TOM1 channel 4 shared interrupt. See bit 0.
Bit 21	TOM1_CH5_IRQ: TOM1 channel 5 shared interrupt. See bit 0.
Bit 22	TOM1_CH6_IRQ: TOM1 channel 6 shared interrupt. See bit 0.
Bit 23	TOM1_CH7_IRQ: TOM1 channel 7 shared interrupt. See bit 0.
Bit 24	TOM1_CH8_IRQ: TOM1 channel 8 shared interrupt. See bit 0.
Bit 25	TOM1_CH9_IRQ: TOM1 channel 9 shared interrupt. See bit 0.
Bit 26	TOM1_CH10_IRQ: TOM1 channel 10 shared interrupt. See bit 0.
Bit 27	TOM1_CH11_IRQ: TOM1 channel 11 shared interrupt. See bit 0.
Bit 28	TOM1_CH12_IRQ: TOM1 channel 12 shared interrupt. See bit 0.
Bit 29	TOM1_CH13_IRQ: TOM1 channel 13 shared interrupt. See bit 0.
Bit 30	TOM1_CH14_IRQ: TOM1 channel 14 shared interrupt. See bit 0.
Bit 31	TOM1_CH15_IRQ: TOM1 channel 15 shared interrupt. See bit 0.

20.5.8 Register ICM_IRQG_7

Address Offset:	CH15 RQ CH14 RQ CH13 RQ CH13 RQ CH13 RQ CH13 RQ CH13 RQ CH13 RQ CH11 RQ CH11 RQ CH11 RQ CH11 RQ CH11 RQ CH1 RQ CH2 RQ CH2 RQ CH3 RQ CH4 RQ CH2 RQ CH3 RQ CH4 RQ CH2 RQ CH2 RQ CH3 RQ CH4 RQ CH3 RQ CH4 RQ CH3 RQ CH4 RQ CH4 RQ CH4 RQ CH4 RQ															In	iti	al	Va	alu	le:			0>	k 0	00	0_	00)00)		
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	6	5	4	3	2	1	0
Bit						TOM3_CH10_IRQ	TOM3_CH9_IRQ				CH5_				TOM3_CH1_IRQ	TOM3_CH0_IRQ	TOM2_CH15_IRQ	TOM2_CH14_IRQ	TOM2_CH13_IRQ	TOM2_CH12_IRQ	TOM2_CH11_IRQ	TOM2_CH10_IRQ	TOM2_CH9_IRQ	TOM2_CH8_IRQ	TOM2_CH7_IRQ	TOM2_CH6_IRQ	TOM2_CH5_IRQ	TOM2_CH4_IRQ	TOM2_CH3_IRQ	TOM2_CH2_IRQ	TOM2_CH1_IRQ	TOM2 CH0 IRQ
Mode	Я	Я	Я	Я	Я	Я	Я	Я	Я	Я	Я	Я	Я	Ж	œ	Ж	Я	Я	с	Я	Я	æ	Ж	æ	œ	Я	Я	Я	Я	Я	щ	щ
Initial Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit 0	Т	0	M2	2_(СН	0	IF	Q	: 7	Ю	M:	2 c	:ha	nr	nel	0	sł	nai	ec	l ir	nte	rru	ıpt									

BOSCH Revision 3.1.5.1

- 0 = no interrupt occurred
 - 1 = interrupt was raised by the corresponding sub-module
 - **Note**: This bit is only set, when the interrupt is enabled in the interrupt enable register of the corresponding sub-module.
- **Note:** Set this bit represents an OR function of the two interrupt sources *TOM_CCU0TCx_IRQ* or *TOM_CCU1TCx_IRQ* of TOM instance 2 channel x.

Bit 1	TOM2_CH1_IRQ: TOM2 channel 1 shared interrupt. See bit 0.
Bit 2	TOM2_CH2_IRQ: TOM2 channel 2 shared interrupt. See bit 0.
Bit 3	TOM2_CH3_IRQ: TOM2 channel 3 shared interrupt. See bit 0.
Bit 4	TOM2 CH4 IRQ: TOM2 channel 4 shared interrupt. See bit 0.
Bit 5	TOM2 CH5 IRQ: TOM2 channel 5 shared interrupt. See bit 0.
Bit 6	TOM2_CH6_IRQ: TOM2 channel 6 shared interrupt. See bit 0.
Bit 7	TOM2_CH7_IRQ: TOM2 channel 7 shared interrupt. See bit 0.
Bit 8	TOM2_CH8_IRQ: TOM2 channel 8 shared interrupt. See bit 0.
Bit 9	TOM2_CH9_IRQ: TOM2 channel 9 shared interrupt. See bit 0.
Bit 10	TOM2_CH10_IRQ: TOM2 channel 10 shared interrupt. See bit 0.
Bit 11	TOM2 CH11 IRQ: TOM2 channel 11 shared interrupt. See bit 0.
Bit 12	TOM2_CH12_IRQ: TOM2 channel 12 shared interrupt. See bit 0.
Bit 13	TOM2 CH13 IRQ: TOM2 channel 13 shared interrupt. See bit 0.
Bit 14	TOM2_CH14_IRQ: TOM2 channel 14 shared interrupt. See bit 0.
Bit 15	TOM2_CH15_IRQ: TOM2 channel 15 shared interrupt. See bit 0.
Bit 16	TOM3_CH0_IRQ: TOM3 channel 0 shared interrupt. See bit 0.
Bit 17	TOM3_CH1_IRQ: TOM3 channel 1 shared interrupt. See bit 0.
Bit 18	TOM3_CH2_IRQ: TOM3 channel 2 shared interrupt. See bit 0.
Bit 19	TOM3_CH3_IRQ: TOM3 channel 3 shared interrupt. See bit 0.
Bit 20	TOM3_CH4_IRQ: TOM3 channel 4 shared interrupt. See bit 0.
Bit 21	TOM3_CH5_IRQ: TOM3 channel 5 shared interrupt. See bit 0.
Bit 22	TOM3_CH6_IRQ: TOM3 channel 6 shared interrupt. See bit 0.
Bit 23	TOM3_CH7_IRQ: TOM3 channel 7 shared interrupt. See bit 0.
Bit 24	TOM3_CH8_IRQ: TOM3 channel 8 shared interrupt. See bit 0.
Bit 25	TOM3_CH9_IRQ: TOM3 channel 9 shared interrupt. See bit 0.
Bit 26	TOM3_CH10_IRQ: TOM3 channel 10 shared interrupt. See bit 0.
Bit 27	TOM3_CH11_IRQ: TOM3 channel 11 shared interrupt. See bit 0.
Bit 28	TOM3_CH12_IRQ: TOM3 channel 12 shared interrupt. See bit 0.
Bit 29	TOM3_CH13_IRQ: TOM3 channel 13 shared interrupt. See bit 0.
Bit 30	TOM3_CH14_IRQ: TOM3 channel 14 shared interrupt. See bit 0.
Bit 31	TOM3_CH15_IRQ: TOM3 channel 15 shared interrupt. See bit 0.

20.5.9 Register ICM_IRQG_8

Specification

Revision 3.1.5.1

Address Offset:	S	ee	A	рр	er	ndi	ix	В									In	iti	al	Va	lu	e:			0>	(0)	00	0_	00)0()	
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	6	5	4	3	2	1	0
Bit	TOM5_CH15_IRQ	TOM5_CH14_IRQ	TOM5_CH13_IRQ	CH12_	TOM5_CH11_IRQ	TOM5_CH10_IRQ	TOM5_CH9_IRQ	CH8	TOM5_CH7_IRQ	TOM5_CH6_IRQ	TOM5_CH5_IRQ	CH4	TOM5_CH3_IRQ	TOM5_CH2_IRQ	TOM5_CH1_IRQ	TOM5_CH0_IRQ	TOM4_CH15_IRQ	TOM4_CH14_IRQ	TOM4_CH13_IRQ	TOM4_CH12_IRQ	TOM4_CH11_IRQ	TOM4_CH10_IRQ	TOM4_CH9_IRQ	TOM4_CH8_IRQ	TOM4_CH7_IRQ	TOM4_CH6_IRQ	TOM4_CH5_IRQ	TOM4_CH4_IRQ	TOM4_CH3_IRQ	TOM4_CH2_IRQ	TOM4_CH1_IRQ	TOM4 CH0 IRQ
Mode	ж	В	Я	Я	Я	Ч	Я	Я	с	ж	Ч	Я	ч	Ч	Ч	Ч	Ж	ж	Ч	Ж	Я	Я	ы	Я	Ч	Я	Я	Я	В	Ж	Я	Ж
Initial Value Bit 0	0	0	0			0	0	° ≀Q:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1 N	= lot	int te: te:	ter Tl ena Sc TC	ru his ab	pt b le thi _C	wa iti re sl	: oc as i is c gist oit i U0	rai onl tei	se ly r o pre	ed se ftl	by et, he en	wł co ts	nei orr an	n t es n C	he po 0R	e ir onc fu	nte ling nc	rru g s tio	upt suk	is p-r of	e no the	na du e t	bl le wc	ed o ir	ir nte	erru	upt	t s	ou	rce	es.
Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8 Bit 9 Bit 10 Bit 11 Bit 12 Bit 13 Bit 14 Bit 15 Bit 15 Bit 16 Bit 17 Bit 18 Bit 19 Bit 19 Bit 20			M4 M4 M4 M4 M4 M4 M4 M4 M4 M4 M5 M5 M5			2_ 3_ 5_ 5_ 5_ 5_ 6_ 7_ 15_ 11_ 11_ 11_ 11_ 12_ 3_					M ² M ² M ² M ² M ² M ² ON ON ON ON ON ON ON ON ON ON ON ON ON	4 c c c c c c c c c c c c c c c c c c c	ha ha ha ha ha ha ch ch ch ha ha ha	inr inr inr inr inr inr inr inr inr inr	nel nel nel nel nel nne nne nne nne nne	2 3 4 5 6 7 8 9 8 1 2 8 9 8 1 2 8 9 8 1 2 8 9 8 1 2 8 9 8 1 2 8 9 8 1 2 8 9 8 1 2 8 9 8 1 2 8 9 1 8 9 1 8 9 1 8 9 1 8 9 1 8 9 8 9 1 1 1 1	sh 10 112 134 15 sh sh sh	nar nar nar nar nar nar sh sh sh sh nar nar		I in I in I in I in I in I in I in I in	te te te te te te ir ir ir ir te	rru rru rru rru rru nte nte nte nte nte rru rru rru	ipt ipt ipt ipt ipt ipt ipt rru rru rru ipt		See See See See See See See See See See		bit bit bit bit bit bit bit bit bit bit	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0. 0. 0. 0.			

GTM-IP	Specification	Revision 3.1.5.1
Bit 25	TOM5 CH9 IRQ: TOM5 channel 9 shared interrupt. S	See bit 0.
Bit 26	TOM5 CH10 IRQ: TOM5 channel 10 shared interrup	
Bit 27	TOM5_CH11_IRQ: TOM5 channel 11 shared interrup	
Bit 28	TOM5_CH12_IRQ: TOM5 channel 12 shared interrup	t. See bit 0.
Bit 29	TOM5_CH13_IRQ: TOM5 channel 13 shared interrup	t. See bit 0.
Bit 30	TOM5_CH14_IRQ: TOM5 channel 14 shared interrup	t. See bit 0.
Bit 31	TOM5_CH15_IRQ: TOM5 channel 15 shared interrup	t. See bit 0.

20.5.10 Register ICM_IRQG_9

Address Offset:	S	ee	A	pp	er	ndi	ix	B									In	iti	al	Va	alu	e:			0>	(0)	00	0_	00	00)	
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	6	5	4	3	2	1	0
Bit	ATOM3_CH7_IRQ	ATOM3_CH6_IRQ	ATOM3_CH5_IRQ	ATOM3_CH4_IRQ	ATOM3_CH3_IRQ	ATOM3_CH2_IRQ	ATOM3_CH1_IRQ	ATOM3_CH0_IRQ	ATOM2_CH7_IRQ	ATOM2_CH6_IRQ	ATOM2_CH5_IRQ	ATOM2_CH4_IRQ	ATOM2_CH3_IRQ	ATOM2_CH2_IRQ	ATOM2_CH1_IRQ	ATOM2_CH0_IRQ	ATOM1_CH7_IRQ	ATOM1_CH6_IRQ	ATOM1_CH5_IRQ	ATOM1_CH4_IRQ	ATOM1_CH3_IRQ	ATOM1_CH2_IRQ	ATOM1_CH1_IRQ	ATOM1_CH0_IRQ	ATOM0_CH7_IRQ	ATOM0_CH6_IRQ	ATOM0_CH5_IRQ	ATOM0_CH4_IRQ	ATOM0_CH3_IRQ	ATOM0_CH2_IRQ	ATOM0_CH1_IRQ	ATOM0 CH0 IRQ
Mode	Я	R	R	R	R	Я	R	R	В	R	Я	В	Я	R	R	Я	Я	Я	R	Я	R	R	Я	Я	Я	Я	R	R	Я	R	Я	щ
Initial Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit 1	N	lot	te:	en S CC	ab et CU	le thi 07	re s l C	gis bit x_1	re IR	r o pro	ft es or	he en C	co ts Cໃ	an J1	es n C TC	po)R ;x_	fu IF	din Inc RQ	g : tic	sul on f A	of	no th∉ ⊃N	odu e t 1 ir	ule wo	b ir tar	nte	erru e O	up I	t s ha	ou nn	rru rce el	es
Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8 Bit 9 Bit 10 Bit 11 Bit 12 Bit 13				//O //O //O //O //O //1 //1 //1			23 45 701 23	IR IR IR IR IR IR IR IR IR	Q: Q	A A A A A A A A A A A A A A A A A A A			10 10 10 10 10 11 11 11 11	ch ch ch ch ch ch ch ch	an an an an an an an		방 2 영 3 영 4 8 8 9 7 7 8 1 7 8 1 7 8 1 7 8 1 7 8 1 8 1 8 1	2 s 3 s 5 s 5 s 7 s 2 s 2 s 3 s 4 s	ha ha ha ha ha ha ha ha	ure ure ure ure ure ure ure	di di di di di di di di di	nte nte nte nte nte nte nte nte	err err err err err err err err		ot. ot. ot. ot. ot. ot. ot. ot. ot.	Se Se Se Se Se Se Se Se Se		bit bit bit bit bit bit bit bit	t 0. t 0. t 0. t 0. t 0. t 0. t 0. t 0.	•		

GTM-IP	Specification	Revision 3.1.
Bit 15	ATOM1_CH7_IRQ: ATOM1 channel 7 shared interrupt.	See bit 0.
Bit 16	ATOM2 CHO IRQ: ATOM2 channel 0 shared interrupt.	
Bit 17	ATOM2_CH1_IRQ: ATOM2 channel 1 shared interrupt.	See bit 0.
Bit 18	ATOM2_CH2_IRQ: ATOM2 channel 2 shared interrupt.	See bit 0.
Bit 19	ATOM2_CH3_IRQ: ATOM2 channel 3 shared interrupt.	See bit 0.
Bit 20	ATOM2_CH4_IRQ: ATOM2 channel 4 shared interrupt.	See bit 0.
Bit 21	ATOM2_CH5_IRQ: ATOM2 channel 5 shared interrupt.	See bit 0.
Bit 22	ATOM2_CH6_IRQ: ATOM2 channel 6 shared interrupt.	See bit 0.
Bit 23	ATOM2_CH7_IRQ: ATOM2 channel 7 shared interrupt.	See bit 0.
Bit 24	ATOM3_CH0_IRQ: ATOM3 channel 0 shared interrupt.	See bit 0.
Bit 25	ATOM3_CH1_IRQ: ATOM3 channel 1 shared interrupt.	See bit 0.
Bit 26	ATOM3_CH2_IRQ: ATOM3 channel 2 shared interrupt.	See bit 0.
Bit 27	ATOM3_CH3_IRQ: ATOM3 channel 3 shared interrupt.	See bit 0.
Bit 28	ATOM3_CH4_IRQ: ATOM3 channel 4 shared interrupt.	See bit 0.
Bit 29	ATOM3_CH5_IRQ: ATOM3 channel 5 shared interrupt.	See bit 0.
Bit 30	ATOM3_CH6_IRQ: ATOM3 channel 6 shared interrupt.	See bit 0.
Bit 31	ATOM3_CH7_IRQ: ATOM3 channel 7 shared interrupt.	See bit 0.

Register ICM_IRQG_10 20.5.11

Address Offset:	S	ee	A	pp	er	ndi	ix	B									In	iti	al	Va	alu	ie:			0	x0	00	0_	00)0()	
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	9	5	4	3	2	1	0
Bit	ATOM7_CH7_IRQ	ATOM7_CH6_IRQ	ATOM7_CH5_IRQ		ATOM7_CH3_IRQ	ATOM7_CH2_IRQ	ATOM7_CH1_IRQ		ATOM6_CH7_IRQ	ATOM6_CH6_IRQ	ATOM6_CH5_IRQ	ATOM6_CH4_IRQ	ATOM6_CH3_IRQ	ATOM6_CH2_IRQ	ATOM6_CH1_IRQ	ATOM6_CH0_IRQ	ATOM5_CH7_IRQ	ATOM5_CH6_IRQ	ATOM5_CH5_IRQ	ATOM5_CH4_IRQ	ATOM5_CH3_IRQ	ATOM5_CH2_IRQ	ATOM5_CH1_IRQ	ATOM5_CH0_IRQ	ATOM4_CH7_IRQ	ATOM4_CH6_IRQ			СНЗ		ATOM4_CH1_IRQ	ATOM4 CH0 IRQ
Mode	Я	R	R	æ	Я	Я	Я	Я	æ	æ	æ	R	R	ж	Я	Я	Я	ж	æ	Я	Я	æ	æ	Я	Я	æ	Я	æ	æ	Я	æ	æ
Initial Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit 0	0 1 N	= = lot	int int int int int int int int int int	o ir ter T en S	nte ru his ab	le thi	upi wa it re s l	t o as is gis bit	cc rai on ste re	urr ise ly r o pre	rec ed se of t	d by et, he en	th wl	ne nei orr	co n t es n C	rre he pc	esp e ir onc fu	oor nte din	ndi rru g s	ing upt sul	g s : is b-r of	ub s e no the	-m na odu e t	noo abl ule	du ed o ii	l ir nte	err	up	t s	ou	rc	
Bit 1	CCU0TCx_IRQ or CCU1TCx_IRQ of ATOM instance 4 channel x. ATOM4 CH1 IRQ: ATOM4 channel 1 shared interrupt. See bit 0.																															

Bit 1	ATOM4_CH1	IRQ: ATOM4	channel 1 share	d interrupt.	See bit 0.

- ATOM4_CH2_IRQ: ATOM4 channel 2 shared interrupt. See bit 0. Bit 2
- ATOM4_CH3_IRQ: ATOM4 channel 3 shared interrupt. See bit 0. Bit 3
- ATOM4_CH4_IRQ: ATOM4 channel 4 shared interrupt. See bit 0. Bit 4

GTM-IP	Specification	Revision 3.1.
Bit 5	ATOM4 CH5 IRQ: ATOM4 channel 5 shared interrupt	. See bit 0.
Bit 6	ATOM4_CH6_IRQ: ATOM4 channel 6 shared interrupt	. See bit 0.
Bit 7	ATOM4_CH7_IRQ: ATOM4 channel 7 shared interrupt	. See bit 0.
Bit 8	ATOM5_CH0_IRQ: ATOM5 channel 0 shared interrupt	. See bit 0.
Bit 9	ATOM5_CH1_IRQ: ATOM5 channel 1 shared interrupt	. See bit 0.
Bit 10	ATOM5_CH2_IRQ: ATOM5 channel 2 shared interrupt	. See bit 0.
Bit 11	ATOM5_CH3_IRQ: ATOM5 channel 3 shared interrupt	. See bit 0.
Bit 12	ATOM5_CH4_IRQ: ATOM5 channel 4 shared interrupt	. See bit 0.
Bit 13	ATOM5_CH5_IRQ: ATOM5 channel 5 shared interrupt	. See bit 0.
Bit 14	ATOM5_CH6_IRQ: ATOM5 channel 6 shared interrupt	. See bit 0.
Bit 15	ATOM5_CH7_IRQ: ATOM5 channel 7 shared interrupt	. See bit 0.
Bit 16	ATOM6_CH0_IRQ: ATOM6 channel 0 shared interrupt	. See bit 0.
Bit 17	ATOM6_CH1_IRQ: ATOM6 channel 1 shared interrupt	. See bit 0.
Bit 18	ATOM6_CH2_IRQ: ATOM6 channel 2 shared interrupt	. See bit 0.
Bit 19	ATOM6_CH3_IRQ: ATOM6 channel 3 shared interrupt	. See bit 0.
Bit 20	ATOM6_CH4_IRQ: ATOM6 channel 4 shared interrupt	. See bit 0.
Bit 21	ATOM6_CH5_IRQ: ATOM6 channel 5 shared interrupt	. See bit 0.
Bit 22	ATOM6_CH6_IRQ: ATOM6 channel 6 shared interrupt	. See bit 0.
Bit 23	ATOM6_CH7_IRQ: ATOM6 channel 7 shared interrupt	
Bit 24	ATOM7_CH0_IRQ: ATOM7 channel 0 shared interrupt	
Bit 25	ATOM7_CH1_IRQ: ATOM7 channel 1 shared interrupt	. See bit 0.
Bit 26	ATOM7_CH2_IRQ: ATOM7 channel 2 shared interrupt	
Bit 27	ATOM7_CH3_IRQ: ATOM7 channel 3 shared interrupt	
Bit 28	ATOM7_CH4_IRQ: ATOM7 channel 4 shared interrupt	
Bit 29	ATOM7_CH5_IRQ: ATOM7 channel 5 shared interrupt	
Bit 30	ATOM7_CH6_IRQ: ATOM7 channel 6 shared interrupt	
Bit 31	ATOM7_CH7_IRQ: ATOM7 channel 7 shared interrupt	. See bit 0.

20.5.12 Register ICM_IRQG_11

Address Offset:	S	ee	A	pp	er	ndi	ix	В									In	iti	al	Va	alu	ie:			02	x0	00	0_	.00)0()	
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit	ATOM11_CH7_IR	ATOM11_CH6_IR	ATOM11_CH5_IR	ATOM11_CH4_IR	ATOM11_CH3_IR	1		ATOM11_CH0_IR	ATOM10_CH7_IR	ATOM10_CH6_IR	ATOM10_CH5_IR	- 1	ATOM10_CH3_IR	- 1	ATOM10_CH1_IR	ATOM10_CH0_IR	ATOM9_CH7_IRQ	ATOM9_CH6_IRQ	ATOM9_CH5_IRQ	CH4	ATOM9_CH3_IRQ	ATOM9_CH2_IRQ	ATOM9_CH1_IRQ	ATOM9_CH0_IRQ	ATOM8_CH7_IRQ	ATOM8_CH6_IRQ	ATOM8_CH5_IRQ	ATOM8_CH4_IRQ	ATOM8_CH3_IRQ	ATOM8_CH2_IRQ	ATOM8_CH1_IRQ	ATOM8 CH0 IRQ
Mode	н	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	Я
Initial Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit 0	0	=	on nc	o ir	nte	erru	Jpi	t o	сс	urı	e	k								are				•								

1 = interrupt was raised by the corresponding sub-module

Sp	ecification	
~~	comouton	

Note: This bit is only set, when the interrupt is enabled in the interrupt enable register of the corresponding sub-module.

Note: Set this bit represents an OR function of the two interrupt sources *CCU0TCx_IRQ* or *CCU1TCx_IRQ* of ATOM instance 8 channel x.

Bit 1	ATOMO CHI IDO: ATOMO channel 1 charad interrunt. See hit 0
	ATOM8_CH1_IRQ: ATOM8 channel 1 shared interrupt. See bit 0.
Bit 2	ATOM8_CH2_IRQ: ATOM8 channel 2 shared interrupt. See bit 0.
Bit 3	ATOM8_CH3_IRQ: ATOM8 channel 3 shared interrupt. See bit 0.
Bit 4	ATOM8_CH4_IRQ: ATOM8 channel 4 shared interrupt. See bit 0.
Bit 5	ATOM8_CH5_IRQ: ATOM8 channel 5 shared interrupt. See bit 0.
Bit 6	ATOM8_CH6_IRQ: ATOM8 channel 6 shared interrupt. See bit 0.
Bit 7	ATOM8_CH7_IRQ: ATOM8 channel 7 shared interrupt. See bit 0.
Bit 8	ATOM9_CH0_IRQ: ATOM9 channel 0 shared interrupt. See bit 0.
Bit 9	ATOM9_CH1_IRQ: ATOM9 channel 1 shared interrupt. See bit 0.
Bit 10	ATOM9_CH2_IRQ: ATOM9 channel 2 shared interrupt. See bit 0.
Bit 11	ATOM9_CH3_IRQ: ATOM9 channel 3 shared interrupt. See bit 0.
Bit 12	ATOM9_CH4_IRQ: ATOM9 channel 4 shared interrupt. See bit 0.
Bit 13	ATOM9_CH5_IRQ: ATOM9 channel 5 shared interrupt. See bit 0.
Bit 14	ATOM9_CH6_IRQ: ATOM9 channel 6 shared interrupt. See bit 0.
Bit 15	ATOM9_CH7_IRQ: ATOM9 channel 7 shared interrupt. See bit 0.
Bit 16	ATOM10_CH0_IRQ: ATOM10 channel 0 shared interrupt. See bit 0.
Bit 17	ATOM10_CH1_IRQ: ATOM10 channel 1 shared interrupt. See bit 0.
Bit 18	ATOM10_CH2_IRQ: ATOM10 channel 2 shared interrupt. See bit 0.
Bit 19	ATOM10_CH3_IRQ: ATOM10 channel 3 shared interrupt. See bit 0.
Bit 20	ATOM10_CH4_IRQ: ATOM10 channel 4 shared interrupt. See bit 0.
Bit 21	ATOM10_CH5_IRQ: ATOM10 channel 5 shared interrupt. See bit 0.
Bit 22	ATOM10_CH6_IRQ: ATOM10 channel 6 shared interrupt. See bit 0.
Bit 23	ATOM10_CH7_IRQ: ATOM10 channel 7 shared interrupt. See bit 0.
Bit 24	ATOM11_CH0_IRQ: ATOM11 channel 0 shared interrupt. See bit 0.
Bit 25	ATOM11_CH1_IRQ: ATOM11 channel 1 shared interrupt. See bit 0.
Bit 26	ATOM11_CH2_IRQ: ATOM11 channel 2 shared interrupt. See bit 0.
Bit 27	ATOM11_CH3_IRQ: ATOM11 channel 3 shared interrupt. See bit 0.
Bit 28	ATOM11_CH4_IRQ: ATOM11 channel 4 shared interrupt. See bit 0.
Bit 29	ATOM11 CH5 IRQ: ATOM11 channel 5 shared interrupt. See bit 0.
Bit 30	ATOM11 CH6 IRQ: ATOM11 channel 6 shared interrupt. See bit 0.
Bit 31	ATOM11 CH7 IRQ: ATOM11 channel 7 shared interrupt. See bit 0.

20.5.13 Register ICM_IRQG_MEI

Specification

Revision 3.1.5.1

						•																	-				—
Address Offset:	see App	end	ix	В								In	iti	al	Va	alı	ie:			03	x0	00	0_	00)0(כ	
	31 30 29 28	27 26	25	24	52 66	1	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	З	2	1	0
Bit	Reserved		DPLL_EIRQ	CMP_EIRQ	SPE3_EING	SPE1_EIRQ		MCS7_EIRQ	MCS6_EIRQ	MCS5_EIRQ	MCS4_EIRQ	MCS3_EIRQ	MCS2_EIRQ	MCS1_EIRQ	MCS0_EIRQ	TIM7_EIRQ	TIM6_EIRQ	TIM5_EIRQ	TIM4_EIRQ	TIM3_EIRQ	TIM2_EIRQ	TIM1_EIRQ	TIM0_EIRQ		FIFO0_EIRQ		GTM_EIRQ
Mode	٣		œ	<u>د</u> ر	c œ	: œ	æ	щ	щ	Я	Я	Я	Я	Я	Я	Я	Ľ	Ж	В	Я	Я	Я	Я	Я	Я	ы	œ
Initial Value	00×00		0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	 AEI_EIRQ: AEI Error interrupt request 0 = no interrupt occurred 1 = interrupt was raised by the corresponding sub-module Note: This bit is only set, when the error interrupt is enabled in the einterrupt enable register of the corresponding sub-module. Note: Set this bit represents an OR function of the interrupt sou AEI_TO_XPT_EIRQ, AEI_USP_ADDR_EIRQ, AEI_USP_ADDR_EIRA AEIM_USP_ADDR_EIRQ, AEIM_IM_ADDR_EIRA BRC_EIRQ: BRC error interrupt. See bit 0. FIFO0_EIRQ: FIFO0 error interrupt. See bit 0. 														IR IR	es Q, Q,											
Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8 Bit 9 Bit 10 Bit 11 Bit 12 Bit 13 Bit 14 Bit 15 Bit 15 Bit 16 Bit 17 Bit 18 Bit 19 Bit 20 Bit 21 Bit 22	_	EIRC EIRC IRQ: IRQ: IRQ: IRQ: IRQ: IRQ: EIRC EIRC EIRC EIRC EIRC EIRC EIRC	2: T	FIF(FIF(IM0 IM1 IM2 IM3 IM3 IM3 IM3 IM3 IM3 IM3 IM3 IM3 IM3	00 01 er er er er er 60 61 63 63 64 65 66 67 66 67 66	erri ror ror ror ror ror ror erri erri e	for int int int int int int int int int int	int int err err err err int int int int int int err	rul rul rul rul rul rul er er er er	rru pt. pt. pt. pt. ru ru ru ru ru ru up	pt. SSSSSS pt. pt. pt. pt. t.	. S eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee	ee eb b b b b b b b ee ee ee ee ee ee ee	b b it it it it it it b b b b it it it it it it it b b b b b it	it (()))))))))))))))))).).).).).).											

GTM-IP	Specification	Revision 3.1.5.1
Bit 23	SPE3_EIRQ: SPE3 error interrupt. See bit 0.	
Bit 24	CMP_EIRQ: CMP error interrupt. See bit 0.	
Bit 25	DPLL_EIRQ: DPLL error interrupt. See bit 0.	
Bit 31:26	Reserved: Read as zero, should be written as zero.	
	Note: Read as zero, should be written as zero	

20.5.14 Register ICM_IRQG_CEI0

Address Offset:	see Appendix B			Initial Value:	0x0000_0000
	31 30 30 28 28 28 27 26 27 26 25 25 25	23 22 21	20 19 18 17 17	15 15 13 13 13 11 10 10 9	8 0 1 2 3 4 5 6 7 7 8
Bit	Reserved	CH7 CH6 CH5	FIFO2_CH4_EIRQ FIFO2_CH3_EIRQ FIFO2_CH2_EIRQ FIFO2_CH1_EIRQ FIFO2_CH1_EIRQ	문 운 운 동 운 운 공	FIFO1_CH0_EIRQ FIFO0_CH6_EIRQ FIFO0_CH6_EIRQ FIFO0_CH5_EIRQ FIFO0_CH3_EIRQ FIFO0_CH3_EIRQ FIFO0_CH2_EIRQ FIFO0_CH2_EIRQ FIFO0_CH2_EIRQ
Mode	۲	ж ж ж	ж ж ж ж ж		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Initial Value	00×0	000	• • • • •		o o o o o o o o o
Bit 1	Note: This bit is interrupt en	only set able reg	, when the sister of the	e corresponding s error interrupt is e corresponding s 1 1 error interrupt.	enabled in the error ub-module.
Bit 2 Bit 3 Bit 4 Bit 5 Bit 6	FIFO0_CH2_EIR FIFO0_CH3_EIR FIFO0_CH4_EIR FIFO0_CH5_EIR	Q: FIFC Q: FIFC Q: FIFC Q: FIFC	00 channel 00 channel 00 channel 00 channel	 error interrupt. error interrupt. error interrupt. error interrupt. error interrupt. error interrupt. 	See bit 0. See bit 0. See bit 0. See bit 0.
Bit 7 Bit 8 Bit 9 Bit 10 Bit 11	FIFO0_CH7_EIR FIFO1_CH0_EIR FIFO1_CH1_EIR FIFO1_CH2_EIR FIFO1_CH3_EIR	Q: FIFC Q: FIFC Q: FIFC Q: FIFC Q: FIFC	00 channel 01 channel 01 channel 01 channel 01 channel	 7 error interrupt. 0 error interrupt. 1 error interrupt. 2 error interrupt. 3 error interrupt. 	See bit 0. See bit 0. See bit 0. See bit 0. See bit 0.
Bit 12 Bit 13 Bit 14 Bit 15 Bit 16 Bit 17 Bit 18	FIFO1_CH5_EIR FIFO1_CH6_EIR FIFO1_CH7_EIR FIFO2_CH0_EIR FIFO2_CH1_EIR	Q: FIFC Q: FIFC Q: FIFC Q: FIFC Q: FIFC Q: FIFC	D1 channel D1 channel D1 channel D2 channel D2 channel	 4 error interrupt. 5 error interrupt. 6 error interrupt. 7 error interrupt. 0 error interrupt. 1 error interrupt. 2 error interrupt. 	See bit 0. See bit 0. See bit 0. See bit 0. See bit 0.

GTM-IP	Specification	Revision 3.1.5.1
Bit 19	FIFO2_CH3_EIRQ: FIFO2 channel 3 error interrupt. Se	e bit 0.
Bit 20	FIFO2_CH4_EIRQ: FIFO2 channel 4 error interrupt. Se	e bit 0.
Bit 21	FIFO2_CH5_EIRQ: FIFO2 channel 5 error interrupt. Se	e bit 0.
Bit 22	FIFO2_CH6_EIRQ: FIFO2 channel 6 error interrupt. Se	e bit 0.
Bit 23	FIFO2_CH7_EIRQ: FIFO2 channel 7 error interrupt. Se	e bit 0.
Bit 31:24	Reserved: Read as zero, should be written as zero.	
	Note: Read as zero, should be written as zero	

Address Offset:	S	Image: CH0 Elk C Image: CH1 Elk C Image: CH2 Elk C Image: CH2 Elk C Image: CH2 Elk C Image: CH2 Elk C Image: CH2 Elk C Image: CH2 Elk C Image: CH2 Elk C Image: CH2 Elk C Image: CH2 Elk C Image: CH2 Elk C Image: CH2 Elk C Image: CH2 Elk C Image: CH2 Elk C Image: CH2 Elk C Image: CH2 Elk C Image: CH2 Elk C Image: CH2 Elk C Image: CH2 Elk C Image: CH2 Elk C Image: CH2 Elk C Image: CH2 Elk C Image: CH2 Elk C Image: CH2 Elk C Image: CH2 Elk C Image: CH2 Elk C Image: CH2 Elk C Image: CH2 Elk C Image: CH2 Elk C Image: CH2 Elk C Image: CH2 Elk C Image: CH2 Elk C Image: CH2 Elk C Image: CH2 Elk C Image: CH2 Elk C Image: CH2 Elk C Image: CH2 Elk C Image: CH2 Elk C Image: CH2 Elk C Image: CH2 Elk C Image: CH2 Elk C Image: CH2 Elk C Image: CH2 Elk C Image: CH2 Elk C Image: CH2 Elk C Image: CH2 Elk C Image: CH2 Elk C Image: CH3 Elk C Image: CH3 Elk C Image: CH3 Elk C Image: CH3 Elk C Image: CH3 Elk C Image: CH3 Elk C Image: CH3 Elk C Image: C														00	00)														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit	TIM3_CH7_EIRQ	CH6	CH5_	CH4	CH3_	CH2	CH1	CHO	CH7				CH3	CH2	CH1	CHO	CH7	CH6	CH5	CH4	СНЗ	CH2	CH1_	CHO	CH7	CH6	CH5_	CH4	TIM0_CH3_EIRQ	TIM0_CH2_EIRQ	TIM0_CH1_EIRQ	TIM0 CH0 EIRQ
Mode	Я	R	Я	Я	Я	к	щ	Я	Я	Я	Я	R	Я	R	Я	Я	Я	Я	Я	Я	ы	Я	R	Я	æ	Я	æ	æ	Я	Я	Я	ц
Initial Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit 0		TIM0_CH0_EIRQ: TIM0 channel 0 error interrupt 0 = no error interrupt occurred 1 = error interrupt was raised by the corresponding sub-module Note: This bit is only set, when the error interrupt is enabled in the																														
Bit 1			i	nte	err	up	t e	ena	abl	le	re	gis	te	r o	f tl	he	СС	orr	es	ро	nd	lin	g s	suk	o-r	no	du			e e	err	or
Bit 2	Т	IN	10	_ _C	H2	2_E	EIF	RQ): -	TIN	M 0	cl	na	nn	el	2 (err	or	in	tei	rru	pt.	. S	ee	b	it ().					
Bit 3 Bit 4						_																										
Bit 5	Т	IN	10	_C	H5	5_E	EIF	RQ): -	TIN	M 0	cl	na	nn	el	5 (err	or	in	tei	ru	pt.	. S	ee	b	it ().					
Bit 6 Bit 7						_																•										
Bit 8						_																•										
Bit 9						_																-										
Bit 10 Bit 11						_																-		ee ee								
Bit 12						_																•		ee								
Bit 13						_																•		ee								
Bit 14 Bit 15						_																•		ee ee								
Bit 16						_																-		ee								

20.5.15 Register ICM_IRQG_CEI1

BOSCH

Bit 17	TIM2_CH1_EIRQ: TIM2 channel 1 error interrupt. See bit 0.
Bit 18	TIM2_CH2_EIRQ: TIM2 channel 2 error interrupt. See bit 0.
Bit 19	TIM2_CH3_EIRQ: TIM2 channel 3 error interrupt. See bit 0.
Bit 20	TIM2_CH4_EIRQ: TIM2 channel 4 error interrupt. See bit 0.
Bit 21	TIM2_CH5_EIRQ: TIM2 channel 5 error interrupt. See bit 0.
Bit 22	TIM2_CH6_EIRQ: TIM2 channel 6 error interrupt. See bit 0.
Bit 23	TIM2_CH7_EIRQ: TIM2 channel 7 error interrupt. See bit 0.
Bit 24	TIM3_CH0_EIRQ: TIM3 channel 0 error interrupt. See bit 0.
Bit 25	TIM3_CH1_EIRQ: TIM3 channel 1 error interrupt. See bit 0.
Bit 26	TIM3_CH2_EIRQ: TIM3 channel 2 error interrupt. See bit 0.
Bit 27	TIM3_CH3_EIRQ: TIM3 channel 3 error interrupt. See bit 0.
Bit 28	TIM3_CH4_EIRQ: TIM3 channel 4 error interrupt. See bit 0.
Bit 29	TIM3_CH5_EIRQ: TIM3 channel 5 error interrupt. See bit 0.
Bit 30	TIM3_CH6_EIRQ: TIM3 channel 6 error interrupt. See bit 0.
Bit 31	TIM3_CH7_EIRQ: TIM3 channel 7 error interrupt. See bit 0.

Specification

20.5.16 Register ICM_IRQG_CEI2

Address Offset:	S	ee	A	pp	er	ndi	ix	В									In	iti	al	Va	alu	le:			03	x0	00	0_	00	00)	
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	3	2	1	0
Bit	TIM7_CH7_EIRQ	TIM7_CH6_EIRQ	TIM7_CH5_EIRQ	TIM7_CH4_EIRQ	TIM7_CH3_EIRQ	CH2_	CH1			1	TIM6_CH5_EIRQ	TIM6_CH4_EIRQ	TIM6_CH3_EIRQ	TIM6_CH2_EIRQ	TIM6_CH1_EIRQ	TIM6_CH0_EIRQ	TIM5_CH7_EIRQ	TIM5_CH6_EIRQ	TIM5_CH5_EIRQ	TIM5_CH4_EIRQ	TIM5_CH3_EIRQ	TIM5_CH2_EIRQ	TIM5_CH1_EIRQ	TIM5_CH0_EIRQ	TIM4_CH7_EIRQ	TIM4_CH6_EIRQ	TIM4_CH5_EIRQ	CH4_	CH3_	TIM4_CH2_EIRQ		TIM4 CH0 EIRQ
Mode	В	ъ	Я	Я	Я	Я	Я	Я	Я	Я	Я	Я	Я	Я	Я	Я	Я	Я	ъ	щ	Я	щ	Я	к	Я	Я	Я	Я	Я	Я	ъ	ш
Initial Value															0	0																
	1	=	er : e :	ro Tl	r ir his	nte i bi	erru it i	upt s c	t w	vas y s	s ra set	ais t, v	ed vh	l bj en	th	e	er	ror	' in	ite	rrι	ıpt	g s is g s	e	na	ble	ed	in	th	e	err	or
Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8 Bit 9	T T T T T T		4 4 4 4 4 4		H2 H3 H4 H5 H6 H7	2_ 3_ 4_ 5_ 5_ 7_	EIF EIF EIF EIF EIF	RC RC RC RC RC RC RC); ⁻); ⁻); ⁻); ⁻); ⁻	TIN TIN TIN TIN TIN TIN	04 04 04 04 04 05	- cl - cl - cl - cl - cl - cl	าล าล าล าล าล	nn nn nn nn nn	el el el el el	2 3 4 5 6 7 0	err err err err err err	or or or or or or	in in in in in	ter ter ter ter ter	rru rru rru rru rru rru	pt. pt. pt. pt. pt.	S S S S S S S S S S	ee ee ee ee ee		it (it (it (it (it (it ().).).).).					

	-poolinearen	0110
Bit 10	TIM5_CH2_EIRQ: TIM5 channel 2 error interrupt. See bit 0).
Bit 11	TIM5_CH3_EIRQ: TIM5 channel 3 error interrupt. See bit 0).
Bit 12	TIM5_CH4_EIRQ: TIM5 channel 4 error interrupt. See bit 0).
Bit 13	TIM5_CH5_EIRQ: TIM5 channel 5 error interrupt. See bit 0).
Bit 14	TIM5_CH6_EIRQ: TIM5 channel 6 error interrupt. See bit 0).
Bit 15	TIM5_CH7_EIRQ: TIM5 channel 7 error interrupt. See bit 0).
Bit 16	TIM6_CH0_EIRQ: TIM6 channel 0 error interrupt. See bit 0).
Bit 17	TIM6_CH1_EIRQ: TIM6 channel 1 error interrupt. See bit 0).
Bit 18	TIM6_CH2_EIRQ: TIM6 channel 2 error interrupt. See bit 0).
Bit 19	TIM6_CH3_EIRQ: TIM6 channel 3 error interrupt. See bit 0).
Bit 20	TIM6_CH4_EIRQ: TIM6 channel 4 error interrupt. See bit 0).
Bit 21	TIM6_CH5_EIRQ: TIM6 channel 5 error interrupt. See bit 0).
Bit 22	TIM6_CH6_EIRQ: TIM6 channel 6 error interrupt. See bit 0).
Bit 23	TIM6_CH7_EIRQ: TIM6 channel 7 error interrupt. See bit 0).
Bit 24	TIM7_CH0_EIRQ: TIM7 channel 0 error interrupt. See bit 0).
Bit 25	TIM7_CH1_EIRQ: TIM7 channel 1 error interrupt. See bit 0).
Bit 26	TIM7_CH2_EIRQ: TIM7 channel 2 error interrupt. See bit 0).
Bit 27	TIM7_CH3_EIRQ: TIM7 channel 3 error interrupt. See bit 0).
Bit 28	TIM7_CH4_EIRQ: TIM7 channel 4 error interrupt. See bit 0).
Bit 29	TIM7_CH5_EIRQ: TIM7 channel 5 error interrupt. See bit 0).
Bit 30	TIM7_CH6_EIRQ: TIM7 channel 6 error interrupt. See bit 0).
Bit 31	TIM7_CH7_EIRQ: TIM7 channel 7 error interrupt. See bit 0).

Specification

20.5.17 Register ICM_IRQG_CEI3

Address Offset:	s	ee	A	pp	per	ndi	ix	B									In	iti	al	Va	alu	ie:			0	x0	00	0_	00)0()	
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	3	2	1	0
Bit	MCS3_CH7_EIRQ	MCS3_CH6_EIRQ	MCS3_CH5_EIRQ	CH4	-	- 1	MCS3_CH1_EIRQ	MCS3_CH0_EIRQ	MCS2_CH7_EIRQ	MCS2_CH6_EIRQ	MCS2_CH5_EIRQ	MCS2_CH4_EIRQ	CH3_	MCS2_CH2_EIRQ	MCS2_CH1_EIRQ	MCS2_CH0_EIRQ	MCS1_CH7_EIRQ	MCS1_CH6_EIRQ	MCS1_CH5_EIRQ	MCS1_CH4_EIRQ	MCS1_CH3_EIRQ	MCS1_CH2_EIRQ	MCS1_CH1_EIRQ	MCS1_CH0_EIRQ	MCS0_CH7_EIRQ	MCS0_CH6_EIRQ	MCS0_CH5_EIRQ	MCS0_CH4_EIRQ	MCS0_CH3_EIRQ	MCS0_CH2_EIRQ	MCS0_CH1_EIRQ	MCS0 CH0 EIRQ
Mode	Я	R	R	R	R	R	Я	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	В	Я	Я
Initial Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit 0	0 1	=	nc er t e :	ro TI	erro r ir his	io_ or i nte bi rup	inte rru it i	err upt s c	rup t w onl	ot o vas y s	oco s ra set	cui ais t, v	rre ed vh	d bj en	yt ≀th	he ie	e co eri	orr ror	es r ir	spc nte	ono rru	din Ipt	g s is	e	na	ble	ed	in	th	e	err	or
Bit 1				_		11_	-																pt.									

Bit 2 MCS0_CH2_EIRQ: MCS0 channel 2 error interrupt. See bit 0.

Bit 3	MCS0_CH3_EIRQ: MCS0 channel 3 error interrupt. See bit 0.
Bit 4	MCS0_CH4_EIRQ: MCS0 channel 4 error interrupt. See bit 0.
Bit 5	MCS0_CH5_EIRQ: MCS0 channel 5 error interrupt. See bit 0.
Bit 6	MCS0_CH6_EIRQ: MCS0 channel 6 error interrupt. See bit 0.
Bit 7	MCS0_CH7_EIRQ: MCS0 channel 7 error interrupt. See bit 0.
Bit 8	MCS1_CH0_EIRQ: MCS1 channel 0 error interrupt. See bit 0.
Bit 9	MCS1_CH1_EIRQ: MCS1 channel 1 error interrupt. See bit 0.
Bit 10	MCS1_CH2_EIRQ: MCS1 channel 2 error interrupt. See bit 0.
Bit 11	MCS1_CH3_EIRQ: MCS1 channel 3 error interrupt. See bit 0.
Bit 12	MCS1_CH4_EIRQ: MCS1 channel 4 error interrupt. See bit 0.
Bit 13	MCS1_CH5_EIRQ: MCS1 channel 5 error interrupt. See bit 0.
Bit 14	MCS1_CH6_EIRQ: MCS1 channel 6 error interrupt. See bit 0.
Bit 15	MCS1_CH7_EIRQ: MCS1 channel 7 error interrupt. See bit 0.
Bit 16	MCS2_CH0_EIRQ: MCS2 channel 0 error interrupt. See bit 0.
Bit 17	MCS2_CH1_EIRQ: MCS2 channel 1 error interrupt. See bit 0.
Bit 18	MCS2_CH2_EIRQ: MCS2 channel 2 error interrupt. See bit 0.
Bit 19	MCS2_CH3_EIRQ: MCS2 channel 3 error interrupt. See bit 0.
Bit 20	MCS2_CH4_EIRQ: MCS2 channel 4 error interrupt. See bit 0.
Bit 21	MCS2_CH5_EIRQ: MCS2 channel 5 error interrupt. See bit 0.
Bit 22	MCS2_CH6_EIRQ: MCS2 channel 6 error interrupt. See bit 0.
Bit 23	MCS2_CH7_EIRQ: MCS2 channel 7 error interrupt. See bit 0.
Bit 24	MCS3_CH0_EIRQ: MCS3 channel 0 error interrupt. See bit 0.
Bit 25	MCS3_CH1_EIRQ: MCS3 channel 1 error interrupt. See bit 0.
Bit 26	MCS3_CH2_EIRQ: MCS3 channel 2 error interrupt. See bit 0.
Bit 27	MCS3_CH3_EIRQ: MCS3 channel 3 error interrupt. See bit 0.
Bit 28	MCS3_CH4_EIRQ: MCS3 channel 4 error interrupt. See bit 0.
Bit 29	MCS3_CH5_EIRQ: MCS3 channel 5 error interrupt. See bit 0.
Bit 30	MCS3_CH6_EIRQ: MCS3 channel 6 error interrupt. See bit 0.
Bit 31	MCS3_CH7_EIRQ: MCS3 channel 7 error interrupt. See bit 0.

Specification

20.5.18 Register ICM_IRQG_CEI4

Address Offset:	s	ee	A	pp	er	ndi	ix	B									In	iti	al	Va	alu	e:			03	(0)	00	0_	00	00)	
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit	MCS7_CH7_EIRQ	MCS7_CH6_EIRQ	MCS7_CH5_EIRQ	MCS7_CH4_EIRQ	MCS7_CH3_EIRQ	MCS7_CH2_EIRQ	MCS7_CH1_EIRQ	СНО	MCS6_CH7_EIRQ	MCS6_CH6_EIRQ	MCS6_CH5_EIRQ	MCS6_CH4_EIRQ	MCS6_CH3_EIRQ	MCS6_CH2_EIRQ	MCS6_CH1_EIRQ	MCS6_CH0_EIRQ	MCS5_CH7_EIRQ	MCS5_CH6_EIRQ	MCS5_CH5_EIRQ	MCS5_CH4_EIRQ	MCS5_CH3_EIRQ	MCS5_CH2_EIRQ	MCS5_CH1_EIRQ	MCS5_CH0_EIRQ	MCS4_CH7_EIRQ	MCS4_CH6_EIRQ	MCS4_CH5_EIRQ	MCS4_CH4_EIRQ	MCS4_CH3_EIRQ	MCS4_CH2_EIRQ	MCS4_CH1_EIRQ	MCS4_CH0_EIRQ
Mode	Я	Я	ы	Я	Я	æ	Я	ы	Я	Я	œ	ы	Я	æ	щ	ц	ы	Я	œ	œ	ц	с	с	ц	Я	ц	ы	ц	œ	£	œ	œ
Initial Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit 0	N	IC	S4	(СН	0	E	IR	Q:	Μ	C	S4	cł	nai	nn	el	0 (err	or	in	ter	ru	pt									

GTM-IP		

Specification

0 = no error interrupt occurred	
---------------------------------	--

1 = error interrupt was raised by the corresponding sub-module **Note**: This bit is only set, when the error interrupt is enabled in the error

interrupt enable register of the corresponding sub-module.

Bit 1	MCS4_CH1_EIRQ: MCS4 channel 1 error interrupt. See bit 0.
Bit 2	MCS4_CH2_EIRQ: MCS4 channel 2 error interrupt. See bit 0.
Bit 3	MCS4 CH3 EIRQ: MCS4 channel 3 error interrupt. See bit 0.
Bit 4	MCS4 CH4 EIRQ: MCS4 channel 4 error interrupt. See bit 0.
Bit 5	MCS4 CH5 EIRQ: MCS4 channel 5 error interrupt. See bit 0.
Bit 6	MCS4 CH6 EIRQ: MCS4 channel 6 error interrupt. See bit 0.
Bit 7	MCS4 CH7 EIRQ: MCS4 channel 7 error interrupt. See bit 0.
Bit 8	MCS5 CH0 EIRQ: MCS5 channel 0 error interrupt. See bit 0.
Bit 9	MCS5 CH1 EIRQ: MCS5 channel 1 error interrupt. See bit 0.
Bit 10	MCS5 CH2 EIRQ: MCS5 channel 2 error interrupt. See bit 0.
Bit 11	MCS5_CH3_EIRQ: MCS5 channel 3 error interrupt. See bit 0.
Bit 12	MCS5_CH4_EIRQ: MCS5 channel 4 error interrupt. See bit 0.
Bit 13	MCS5 CH5 EIRQ: MCS5 channel 5 error interrupt. See bit 0.
Bit 14	MCS5 CH6 EIRQ: MCS5 channel 6 error interrupt. See bit 0.
Bit 15	MCS5_CH7_EIRQ: MCS5 channel 7 error interrupt. See bit 0.
Bit 16	MCS6 CH0 EIRQ: MCS6 channel 0 error interrupt. See bit 0.
Bit 17	MCS6_CH1_EIRQ: MCS6 channel 1 error interrupt. See bit 0.
Bit 18	MCS6 CH2 EIRQ: MCS6 channel 2 error interrupt. See bit 0.
Bit 19	MCS6 CH3 EIRQ: MCS6 channel 3 error interrupt. See bit 0.
Bit 20	MCS6_CH4_EIRQ: MCS6 channel 4 error interrupt. See bit 0.
Bit 21	MCS6 CH5 EIRQ: MCS6 channel 5 error interrupt. See bit 0.
Bit 22	MCS6 CH6 EIRQ: MCS6 channel 6 error interrupt. See bit 0.
Bit 23	MCS6 CH7 EIRQ: MCS6 channel 7 error interrupt. See bit 0.
Bit 24	MCS7_CH0_EIRQ: MCS7 channel 0 error interrupt. See bit 0.
Bit 25	MCS7_CH1_EIRQ: MCS7 channel 1 error interrupt. See bit 0.
Bit 26	MCS7_CH2_EIRQ: MCS7 channel 2 error interrupt. See bit 0.
Bit 27	MCS7_CH3_EIRQ: MCS7 channel 3 error interrupt. See bit 0.
Bit 28	MCS7_CH4_EIRQ: MCS7 channel 4 error interrupt. See bit 0.
Bit 29	MCS7_CH5_EIRQ: MCS7 channel 5 error interrupt. See bit 0.
Bit 30	MCS7_CH6_EIRQ: MCS7 channel 6 error interrupt. See bit 0.
Bit 31	MCS7_CH7_EIRQ: MCS7 channel 7 error interrupt. See bit 0.

20.5.19 Register ICM_IRQG_MCS[i]_CI

Specification

Revision 3.1.5.1

Address Offset:	see Appendix B	nitial Value:	0x0000_	0000
	31 30 29 27 28 28 26 26 26 26 25 26 27 26 27 26 27 26 27 26 27 27 26 27 26 27 26 27 26 27 27 26 26 27 27 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 26 27 26 26 27 26 26 27 27 26 26 27 26 26 27 27 26 26 27 26 26 27 26 26 27 26 26 27 26 26 27 26 26 27 26 26 26 27 26 26 27 26 26 27 26 26 27 26 26 27 26 26 27 26 26 27 26 26 27 26 26 27 26 27 27 26 26 27 27 26 27 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27	14 13 13 12 11 10 9 8	7 6 5 4	3 1 0
Bit	Reserved		CH5 CH5 CH5 CH4	MCS_CH3_RQ MCS_CH2_RQ MCS_CH1_RQ MCS_CH0_RQ
Mode	٣		<u>к</u> к к	ж ж ж
Initial Value	00000 00 00		0000	o o o o
	 MCS_CH0_IRQ: MCS channel 0 inter 0 = no interrupt occurred 1 = interrupt was raised by the corres Note: This bit is only set, when the i enable register of the correspondent 	ponding sub-mod nterrupt is enabl	ed in the	interrupt
Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 31:8	MCS_CH1_IRQ: MCS channel 1 inter MCS_CH2_IRQ: MCS channel 2 inter MCS_CH3_IRQ: MCS channel 3 inter MCS_CH4_IRQ: MCS channel 4 inter MCS_CH5_IRQ: MCS channel 5 inter MCS_CH6_IRQ: MCS channel 6 inter MCS_CH7_IRQ: MCS channel 7 inter Reserved: Read as zero, should be writter	rrupt. See bit 0. rrupt. See bit 0. written as zero.		

20.5.20 Register ICM_IRQG_MCS[i]_CEI

Address Offset:	S	see Appendix B												Initial Value:								03	k 0	00	0_	00						
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	6	5	4	3	2	1	0
Bit		<u> </u>														СНО																
Mode												C	r												R	R	R	R	R	R	Я	Я
Initial Value												0×0000	00												0	0	0	0	0	0	0	0
Bit 0	N	1C	S	C	H0)_E	EIR	Q	: 1	ИC	CS	c	nai	าท	el () (erro	or	in	ter	ru	pt.										

GTM-IP	Specification	Revision 3.1.5.1
	0 = no interrupt occurred	
	1 = interrupt was raised by the corresponding sub-r	nodule
	Note: This bit is only set, when the interrupt is enable register of the corresponding sub-mod	•
Bit 1	MCS_CH1_EIRQ: MCS channel 1 error interrupt. S	See bit 0.
Bit 2	MCS_CH2_EIRQ: MCS channel 2 error interrupt. S	See bit 0.
Bit 3	MCS_CH3_EIRQ: MCS channel 3 error interrupt. S	See bit 0.
Bit 4	MCS_CH4_EIRQ: MCS channel 4 error interrupt. S	See bit 0.
Bit 5	MCS_CH5_EIRQ: MCS channel 5 error interrupt. S	See bit 0.
Bit 6	MCS_CH6_EIRQ: MCS channel 6 error interrupt. S	See bit 0.
Bit 7	MCS_CH7_EIRQ: MCS channel 7 error interrupt. S	See bit 0.
Bit 31:8	Reserved: Read as zero, should be written as zero	0.
	Note: Read as zero, should be written as zero	

20.5.21 Register ICM_IRQG_SPE_CI

Address Offset:	see Appendix B Initial Value: 0x0000_0000
	31 33 33 33 33 33 33 33 33 33 33 25 25 25 25 25 25 25 25 25 25 25 27 25 25 27 25 27 26 27 27 26 27 27 27 26 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 26 27 26 27 27 26 27 27 26 27 26 27 27 26 27 26 27 27 26 27 27 26 27 27 26 27 26 27 27 26 27 27 26 27 27 26 27 27 27 26 27 27 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27
Bit	Reserved SPE5_IRQ SPE3_IRQ SPE1_IRQ SPE1_IRQ SPE1_IRQ SPE1_IRQ SPE1_IRQ
Mode	۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲
Initial Value	
Bit 0	 SPE0_IRQ: SPE channel 0 interrupt. 0 = no interrupt occurred 1 = interrupt was raised by the corresponding sub-module Note: This bit is only set, when the interrupt is enabled in the interrupt enable register of the corresponding sub-module.
Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 31:6	 SPE1_IRQ: SPE channel 1 interrupt. See bit 0. SPE2_IRQ: SPE channel 2 interrupt. See bit 0. SPE3_IRQ: SPE channel 3 interrupt. See bit 0. SPE4_IRQ: SPE channel 4 interrupt. See bit 0. SPE5_IRQ: SPE channel 5 interrupt. See bit 0. Reserved: Read as zero, should be written as zero. Note: Read as zero, should be written as zero

Specification

20.5.22 Register ICM_IRQG_SPE_CEI

Address Offset:	see Appendix B Initial	Value:	0x0	00	0_	00	00	
	31 30 29 27 28 26 26 26 26 26 23 23 23 23 23 21 20 19 117 117 117 117 117 117 117 117	12 11 10 9 8	7 6	5	4	ო	2	1 0
Bit	Reserved			SPE5_EIRQ	SPE4_EIRQ	SPE3_EIRQ	1	SPE1_EIRQ SPE0_EIRQ
Mode	۳			Я	с	щ	œ	ж ж
Initial Value	000000 00			0	0	0	0	0 0
Bit 0	 SPE0_EIRQ: SPE channel 0 error interrup 0 = no interrupt occurred 1 = interrupt was raised by the correspond Note: This bit is only set, when the interrupt enable register of the corresponding and a set of the corresponding a set of the corresponding and a set of the corresponding a se	ing sub-mo upt is enabl	led ir	n tl	he	in	ter	rupt
Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 31:6	SPE1_EIRQ: SPE channel 1 error interrup SPE2_EIRQ: SPE channel 2 error interrup SPE3_EIRQ: SPE channel 3 error interrup SPE4_EIRQ: SPE channel 4 error interrup SPE5_EIRQ: SPE channel 5 error interrup Reserved: Read as zero, should be written Note: Read as zero, should be written as z	ot. See bit 0. ot. See bit 0. ot. See bit 0. ot. See bit 0. en as zero.						

Register ICM_IRQG_PSM_0_CI

Address Offset:	s	see Appendix B												Initial Value: 0x0000_000)0()						
	31	10	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	9	2	4	ε	2	1	0
Bit		Reserved									PSM_M2_CH6_IR				PSM_M2_CH2_IR	PSM_M2_CH1_IR	PSM_M2_CH0_IR	PSM_M1_CH7_IR	PSM_M1_CH6_IR	PSM_M1_CH5_IR	PSM_M1_CH4_IR	PSM_M1_CH3_IR	PSM_M1_CH2_IR	PSM_M1_CH1_IR	PSM_M1_CH0_IR	PSM_M0_CH7_IR	PSM_M0_CH6_IR	PSM_M0_CH5_IR	PSM_M0_CH4_IR	PSM_M0_CH3_IR	PSM_M0_CH2_IR	PSM_M0_CH1_IR	PSM M0 CH0 IR
Mode					œ	1				ж	Ч	ж	Ч	R	Я	Я	ж	В	Я	Я	R	Я	Я	Я	Я	R	Я	Я	Я	Я	Я	Я	Я
Initial Value					0,000,00	000000				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit 0		P	SN	Λ_	M	0_	C	H0)_I	RC	2:	PS	SN	m	cł	nar	nne	el	0 s	sha	are	ed	int	er	ru	ot	(m	=2	!* ()+()).		

20.5.23

Specification

	 0 = no interrupt occurred 1 = interrupt was raised by the corresponding sub-module Note: This bit is only set, when the interrupt is enabled in the interrupt enable register of the corresponding sub-module.
	Note: Set this bit represents an OR function of the four interrupt sources <i>FIFO_EMPTY</i> , <i>FIFO_FULL</i> , <i>FIFO_LOWER_WM</i> or <i>FIFO_UPPER_WM</i> of FIFO instance 0 channel 0.
Bit 1	PSM_M0_CH1_IRQ: PSMm channel 1 shared interrupt (m=4*0+0). See bit 0.
Bit 2	PSM_M0_CH2_IRQ: PSMm channel 2 shared interrupt (m=4*0+0). See bit 0.
Bit 3	PSM_M0_CH3_IRQ: PSMm channel 3 shared interrupt (m=4*0+0). See bit 0.
Bit 4	PSM_M0_CH4_IRQ: PSMm channel 4 shared interrupt (m=4*0+0). See bit 0.
Bit 5	PSM_M0_CH5_IRQ: PSMm channel 5 shared interrupt (m=4*0+0). See bit 0.
Bit 6	PSM_M0_CH6_IRQ: PSMm channel 6 shared interrupt (m=4*0+0). See bit 0.
Bit 7	PSM_M0_CH7_IRQ: PSMm channel 7 shared interrupt (m=4*0+0). See bit 0.
Bit 8	PSM_M1_CH0_IRQ: PSMm channel 0 shared interrupt (m=4*0+1). See bit 0.
Bit 9	PSM_M1_CH1_IRQ: PSMm channel 1 shared interrupt (m=4*0+1). See bit 0.
Bit 10	PSM_M1_CH2_IRQ: PSMm channel 2 shared interrupt (m=4*0+1). See bit 0.
Bit 11	PSM_M1_CH3_IRQ: PSMm channel 3 shared interrupt (m=4*0+1). See bit 0.
Bit 12	PSM_M1_CH4_IRQ: PSMm channel 4 shared interrupt (m=4*0+1). See bit 0.
Bit 13	PSM_M1_CH5_IRQ: PSMm channel 5 shared interrupt (m=4*0+1). See bit 0.
Bit 14	PSM_M1_CH6_IRQ: PSMm channel 6 shared interrupt (m=4*0+1). See bit 0.
Bit 15	PSM_M1_CH7_IRQ: PSMm channel 7 shared interrupt (m=4*0+1). See bit 0.
Bit 16	PSM_M2_CH0_IRQ: PSMm channel 0 shared interrupt (m=4*0+2). See bit 0.
Bit 17	PSM_M2_CH1_IRQ: PSMm channel 1 shared interrupt (m=4*0+2). See bit 0.
Bit 18	PSM_M2_CH2_IRQ: PSMm channel 2 shared interrupt (m=4*0+2). See bit 0.
Bit 19	PSM_M2_CH3_IRQ: PSMm channel 3 shared interrupt (m=4*0+2). See bit 0.

GTM-IP	Specification	Revision 3.1.5.1
Bit 20	PSM_M2_CH4_IRQ: PSMm channel 4 shared interr bit 0.	rupt (m=4*0+2). See
Bit 21	PSM_M2_CH5_IRQ: PSMm channel 5 shared inter- bit 0.	rupt (m=4*0+2). See
Bit 22	PSM_M2_CH6_IRQ: PSMm channel 6 shared inter- bit 0.	rupt (m=4*0+2). See
Bit 23	PSM_M2_CH7_IRQ: PSMm channel 7 shared inter- bit 0.	rupt (m=4*0+2). See
Bit 31:24	Reserved: Read as zero, should be written as zero Note: Read as zero, should be written as zero	

20.5.24 Register ICM_IRQG_PSM_0_CEI

Address Offset:	s	ee	èΔ	۱p	pe	en	di	X	В									In	iti	al	Va	alu	ie:			0	x0	00	0_	00)0()	
	31	30	20	00	27	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	З	2	1	0
Bit					Reserved					PSM_M2_CH7_EI	PSM_M2_CH6_EI	M2_CH5_	M2_CH4_	CH3_			PSM_M2_CH0_EI	PSM_M1_CH7_EI	PSM_M1_CH6_EI	PSM_M1_CH5_EI	PSM_M1_CH4_EI	PSM_M1_CH3_EI	PSM_M1_CH2_EI	PSM_M1_CH1_EI	PSM_M1_CH0_EI	CH7_	PSM_M0_CH6_EI	PSM_M0_CH5_EI	PSM_M0_CH4_EI	PSM_M0_CH3_EI	PSM_M0_CH2_EI	PSM_M0_CH1_EI	PSM_M0_CH0_EI
Mode					£					щ	Я	æ	œ	ж	Я	Я	Я	Я	Я	Я	ч	Я	Ж	Ъ	Ж	щ	Я	щ	щ	щ	Я	Ж	щ
Initial Value		Big B													0																		
Bit 1	1 N F	. = 10 25	te M	rro : T in	or Thi tei	in is rru	te bi Jp	rru ti: te	ipt s c ena	t w onl ab	yas ly : le	s ra se re	ais t, v gis	wh ste	en r o	f th	ie he	er co	ror orr	r ir es	ро	rru nc	ipt lin	is g s	eı suk	na b-r	ble no	ed du	in Ile	th		err Se	
Bit 2	F	S	0. M 0.	_N	/10	_(Cł	12	_E	EIF	Q	: F	۶	Mı	n	ch	an	ne	el 2	2 e	erro	or	int	eri	rup	ot	(m	=Z	1 *C)+()).	Se	e
Bit 3	F	PS		_N	/10	_(Cł	13	_E	EIF	Q	: F	۶	Mı	n	ch	an	ne	el 3	3 е	erro	or	int	eri	rup	ot	(m	=Z	1 *C)+()).	Se	e
Bit 4	F	S	-	_N	/10	_(Cł	14	_E	EIF	Q	: F	۶	Mı	n	ch	an	ne	el 4	1 e	erro	or	int	er	rup	ot	(m)=Z	1 *C)+()).	Se	e
Bit 5	PSM_M0_CH5_EIRQ: PSMm channel 5 error interrupt (m=4*0+0). See bit 0.																																
Bit 6	F	PS		_N	/10	_(Cł	16	_E	EIF	Q	: F	۶	Mı	n	ch	an	ne	el 6	6 e	erro	or	int	eri	rup	ot	(m	=Z	1 *C)+()).	Se	e
Bit 7	F	S		_N	/10	_(Cł	17	_E	EIF	Q	: F	۶	Mı	n	ch	an	ne	el 7	7 e	erro	or	int	er	rup	ot	(m	ı=2	4*C)+()).	Se	e

GTM-IP	Specification	Revision 3.1.5.1
Bit 8	PSM_M1_CH0_EIRQ: PSMm channel 0 error interrupt bit 0.	(m=4*0+1). See
Bit 9	PSM_M1_CH1_EIRQ: PSMm channel 1 error interrupt bit 0.	(m=4*0+1). See
Bit 10	PSM_M1_CH2_EIRQ: PSMm channel 2 error interrupt bit 0.	(m=4*0+1). See
Bit 11	PSM_M1_CH3_EIRQ: PSMm channel 3 error interrupt bit 0.	(m=4*0+1). See
Bit 12	PSM_M1_CH4_EIRQ: PSMm channel 4 error interrupt bit 0.	(m=4*0+1). See
Bit 13	PSM_M1_CH5_EIRQ: PSMm channel 5 error interrupt bit 0.	(m=4*0+1). See
Bit 14	PSM_M1_CH6_EIRQ: PSMm channel 6 error interrupt bit 0.	(m=4*0+1). See
Bit 15	PSM_M1_CH7_EIRQ: PSMm channel 7 error interrupt bit 0.	(m=4*0+1). See
Bit 16	PSM_M2_CH0_EIRQ: PSMm channel 0 error interrupt bit 0.	(m=4*0+2). See
Bit 17	PSM_M2_CH1_EIRQ: PSMm channel 1 error interrupt bit 0.	(m=4*0+2). See
Bit 18	DR 0. PSM_M2_CH2_EIRQ: PSMm channel 2 error interrupt bit 0.	(m=4*0+2). See
Bit 19	DR 0. PSM_M2_CH3_EIRQ: PSMm channel 3 error interrupt bit 0.	(m=4*0+2). See
Bit 20	PSM_M2_CH4_EIRQ: PSMm channel 4 error interrupt bit 0.	(m=4*0+2). See
Bit 21	PSM_M2_CH5_EIRQ: PSMm channel 5 error interrupt bit 0.	(m=4*0+2). See
Bit 22	PSM_M2_CH6_EIRQ: PSMm channel 6 error interrupt bit 0.	(m=4*0+2). See
Bit 23	DR 0. PSM_M2_CH7_EIRQ: PSMm channel 7 error interrupt bit 0.	(m=4*0+2). See
Bit 31:24	Reserved: Read as zero, should be written as zero. Note: Read as zero, should be written as zero	

20.5.25 Register ICM_IRQG_TOM_[k]_CI (k:0..2)

Confidential

Specification

Revision 3.1.5.1

Bit WOL	CHI5_I	L4_I 30 L3_I 29	28	27	6	-										••••	iti	.										00			
		[4_ [3_	1		26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	ო	2	1	0
		TOM M1 CH14 TOM M1 CH13	μ	M1	TOM_M1_CH10_I	TOM_M1_CH9_IR	M1	TOM_M1_CH7_IR	TOM_M1_CH6_IR	TOM_M1_CH5_IR	TOM_M1_CH4_IR	TOM_M1_CH3_IR	TOM_M1_CH2_IR	TOM_M1_CH1_IR	TOM_M1_CH0_IR	TOM_M0_CH15_I	TOM_M0_CH14_I	TOM_M0_CH13_I	TOM_M0_CH12_I	TOM_M0_CH11_I	TOM_M0_CH10_I	TOM_M0_CH9_IR	TOM_M0_CH8_IR	TOM_M0_CH7_IR	TOM_M0_CH6_IR	TOM_M0_CH5_IR		TOM_M0_CH3_IR	TOM_M0_CH2_IR	TOM_M0_CH1_IR	TOM M0 CH0 IR
Mode 🗠	r i	œ ۳	ъ	ж	ы	щ	с	Я	с	Я	щ	ч	щ	щ	щ	щ	щ	Ж	ж	ы	Я	ж	Ж	Ж	Ж	R	щ	ц	щ	Я	£
Initial Value	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1 r	1 : No	ote	ter T en	ru his ab et	pt s b le thi _ C	wa iti re sl	as i is (gis oit U0	rai on tei re	ise ly r o pre	ed se f tl	by et, he en	wł co ts	nei orr an	n t es n C	he po R	e ir onc fu	nte lin nc	erru g s	upt sub	is o-r of	i e no the	na du e tv	bl le wc	ed o ir	l ir	erru	Jpt	t s	ou	rce	es
Bit 2 1 Bit 3 1 Bit 4 1 Bit 5 1 Bit 6 1 Bit 7 1 Bit 8 1 Bit 9 1 Bit 10 1 Bit 11 1 Bit 12 1 Bit 13 1 Bit 14 1 Bit 15 1 Bit 16 1 Bit 17 1 Bit 18 1 Bit 19 1 Bit 20 1 Bit 21 1 Bit 22 1				0_ 0_ 0_ 0_ 0_ 0_ 0_ 0_ 1_ 1_ 1_ 1_		H2 H3 H4 H5 H6 H7 H1						Im I	ch ch ch ch ch ch ch ch ch ch ch ch ch c	nar nar nar nar nar nar nar nar nar nar		el el el el el ne ne el el el el el	2 i 3 i i 5 i 5 i i 5 i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	interinterinterinterinterinterinterinter	err err err err err err nte nte nte err err err err err err	up up up up up up up up up up up up up u	.t (((((((((((((((((((m= m= m= m= m= t (i t (i t (i m= m= m= m= m=	= 2 [°] = 2 [°]	* * * * * * * * = = = = = * * * * * * *	+ + + + + + + + + * * * * * * + + + + +).).).).).). +0 +0 +0 +0 +0).).).).).).).	Seeeeee???????????????????????????????		bit bit bit bit bit bit bit bit bit bit	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0. 0. 0. 0. 0.

GTM-IP	Specification	Revision 3.1.5.1
Bit 25	TOM M1 CH9 IRQ: TOMm channel 9 interrupt (m	=2*k+1). See bit 0.
Bit 26	TOM_M1_CH10_IRQ: TOMm channel 10 interrupt (-
Bit 27	TOM_M1_CH11_IRQ: TOMm channel 11 interrupt ((m=2*k+1). See bit 0.
Bit 28	TOM_M1_CH12_IRQ: TOMm channel 12 interrupt ((m=2*k+1). See bit 0.
Bit 29	TOM_M1_CH13_IRQ: TOMm channel 13 interrupt ((m=2*k+1). See bit 0.
Bit 30	TOM_M1_CH14_IRQ: TOMm channel 14 interrupt ((m=2*k+1). See bit 0.
Bit 31	TOM_M1_CH15_IRQ: TOMm channel 15 interrupt ((m=2*k+1). See bit 0.

20.5.26 Register ICM_IRQG_ATOM_[k]_CI (k:0..2)

Address Offset:	S	A product of a set o													In	iti	al	Va	alu	e:			03	k0	00	0_	0_0000					
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	6	5	4	3	2	1	0
Bit	ATOM_M3_CH7_I	ATOM_M3_CH6_I	ATOM_M3_CH5_I	ATOM_M3_CH4_I	ATOM_M3_CH3_I	ATOM_M3_CH2_I	ATOM_M3_CH1_I	ATOM_M3_CH0_I	ATOM_M2_CH7_I	ATOM_M2_CH6_I	ATOM_M2_CH5_I	M2	ATOM_M2_CH3_I	ATOM_M2_CH2_I	ATOM_M2_CH1_I	ATOM_M2_CH0_I	ATOM_M1_CH7_I	ATOM_M1_CH6_I	ATOM_M1_CH5_I	ATOM_M1_CH4_I	ATOM_M1_CH3_I	ATOM_M1_CH2_I	ATOM_M1_CH1_I	ATOM_M1_CH0_I	ATOM_M0_CH7_I	ATOM_M0_CH6_I	ATOM_M0_CH5_I	ATOM_M0_CH4_I	ATOM_M0_CH3_I	ATOM_M0_CH2_I	MO	ATOM M0 CH0 I
Mode	R	R	R	R	В	Я	Я	Я	В	В	R	R	R	R	R	R	R	R	R	R	В	R	R	Я	R	В	R	R	R	Я	Я	R
Initial Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Ν	lot	e: e:	Ti en S	ab et	b le thi	it i re s l	is gis bit	on ste re	ly r o pro	se ft	et, he en	wł co ts	ne orr ar	n t es n C	he pc R	ir ir	nte din Inc	erru g : ctic	upt sul	is b-r of	s e nc th	ena odu e t	ıbl ile wo	ed o ir	ir nte	erru	JD.	t s	ou	rruj rce el :	es
Bit 1	А 0		ON	/_	MC)_(CH	11_	IF	Q	:/	ΑT	O	Mr	no	cha	an	ne	1	L ir	nte	erru	lqr	: (I	m=	-4'	۴k	-0)). (Se	e k	oit
Bit 2	A 0		ON	/I_	MC)_(CH	12	IF	Q	:/	ΑT	O	Mr	n (cha	an	ne	el 2	2 ir	nte	erru	lqr	: (I	m=	-4'	۴k	-0)). (Se	e k	oit
Bit 3	А 0		ON	/I_	MC)_(CH	13_	IF	Q	:/	ΑT	O	Mr	n (cha	an	ne	el 3	3 ir	nte	erru	upt	: (I	m=	=4'	۴k	-0)). (Se	e k	oit
Bit 4	-	T	ON	/I_	MC)_(CH	14_	IF	Q	:/	ΑT	O	Mr	n (cha	an	ne	el Z	l ir	nte	erru	lqr	: (I	m=	-4'	۴k	-0)). (Se	e k	oit
Bit 5		T	ON	/I_	MC)_(CH	15_	IF	٩Q	:/	ΑT	O	Mr	n o	cha	an	ne	el 5	5 ir	nte	erru	upt	: (I	m=	=4'	۴k	-0)). (Se	e k	oit
Bit 6		T	ON	۸_	MC)_(CH	16 ₋	IF	Q	:/	ΑT	O	Mr	n o	cha	an	ne	el 6	6 ir	nte	erru	lqr	: (I	m=	-4'	۴k	-0)). \$	Se	e k	oit
Bit 7		T	ON	۸_	MC)_(CH	17_	IF	Q	: /	ΑT	O	Mr	no	cha	an	ne	el 7	7 ir	nte	erru	ldr	: (1	m=	-4'	۴k	-0)). (Se	e k	oit

GTM-IP	Specification	Revision 3.1.5.1
Bit 8	ATOM_M1_CH0_IRQ: ATOMm channel 0 interrupt 0.	(m=4*k+1). See bit
Bit 9	ATOM_M1_CH1_IRQ: ATOMm channel 1 interrupt	(m=4*k+1). See bit
Bit 10	0. ATOM_M1_CH2_IRQ: ATOMm channel 2 interrupt	(m=4*k+1). See bit
Bit 11	0. ATOM_M1_CH3_IRQ: ATOMm channel 3 interrupt	(m=4*k+1). See bit
Bit 12	0. ATOM_M1_CH4_IRQ: ATOMm channel 4 interrupt	(m=4*k+1). See bit
Bit 13	0. ATOM_M1_CH5_IRQ: ATOMm channel 5 interrupt	(m=4*k+1). See bit
Bit 14	0. ATOM_M1_CH6_IRQ: ATOMm channel 6 interrupt	(m=4*k+1). See bit
Bit 15	0. ATOM_M1_CH7_IRQ: ATOMm channel 7 interrupt	(m=4*k+1). See bit
Bit 16	0. ATOM_M2_CH0_IRQ: ATOMm channel 0 interrupt	(m=4*k+2). See bit
Bit 17	0. ATOM_M2_CH1_IRQ: ATOMm channel 1 interrupt	(m=4*k+2). See bit
Bit 18	 ATOM_M2_CH2_IRQ: ATOMm channel 2 interrupt 0. 	(m=4*k+2). See bit
Bit 19	O. ATOM_M2_CH3_IRQ: ATOMm channel 3 interrupt 0.	(m=4*k+2). See bit
Bit 20	O. ATOM_M2_CH4_IRQ: ATOMm channel 4 interrupt 0.	(m=4*k+2). See bit
Bit 21	O. ATOM_M2_CH5_IRQ: ATOMm channel 5 interrupt 0.	(m=4*k+2). See bit
Bit 22	ATOM_M2_CH6_IRQ: ATOMm channel 6 interrupt 0.	(m=4*k+2). See bit
Bit 23	ATOM_M2_CH7_IRQ: ATOMm channel 7 interrupt	(m=4*k+2). See bit
Bit 24	 ATOM_M3_CH0_IRQ: ATOMm channel 0 interrupt 0. 	(m=4*k+3). See bit
Bit 25	ATOM_M3_CH1_IRQ: ATOMm channel 1 interrupt	(m=4*k+3). See bit
Bit 26	0. ATOM_M3_CH2_IRQ: ATOMm channel 2 interrupt	(m=4*k+3). See bit
Bit 27	0. ATOM_M3_CH3_IRQ: ATOMm channel 3 interrupt	(m=4*k+3). See bit
Bit 28	0. ATOM_M3_CH4_IRQ: ATOMm channel 4 interrupt	(m=4*k+3). See bit
Bit 29	0. ATOM_M3_CH5_IRQ: ATOMm channel 5 interrupt	(m=4*k+3). See bit
Bit 30	0. ATOM_M3_CH6_IRQ: ATOMm channel 6 interrupt	(m=4*k+3). See bit
Bit 31	0. ATOM_M3_CH7_IRQ: ATOMm channel 7 interrupt (m=4*k+3).See bit 0.

Specification

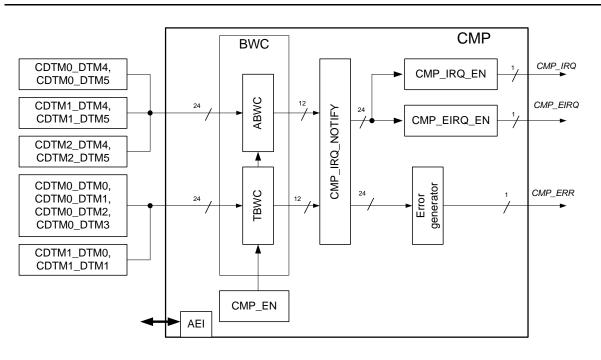
20.5.27 Register ICM_IRQG_CLS_[k]_MEI (k:0..2)

Address Offset:	see App	end	ix B					Initial \	/al	ue	:		0x000	0_	00	00)	
	31 30 29 28	27 26	25 24	23 22 21 21 20	19	τα Γ	17 16	15 14 13	11	10	6	8	7 6 5	4	e	2	1	0
Bit	Reserved	FIFO_M3_EIRQ SPE_M3_EIRQ	MCS_M3_EIRQ TIM_M3_FIRQ	eserved	M2	MZ S	MCS_M2_EIRQ TIM_M2_FIRQ	eserv	FIEO M1 FIRO	Ξ	M1	TIM_M1_EIRQ	Reserved		FIFO_M0_EIRQ	SPE_M0_EIRQ	MCS_M0_EIRQ	TIM MO EIRQ
Mode	Я	R	ж а	с <u>с</u>	ч (r i	ж ж	К	ď	R	R	Я	Ľ		Я	Я	Я	Я
Initial Value	0×0	0	0 0	0×0	0		o c	0×0	c	0	0	0	0×0		0	0	0	0
Bit 1 Bit 2	Note: Th inte MCS_M SPE_M																	
Bit 3 Bit 7:4 Bit 8	FIFO_M0_EIRQ: error interrupt FIFOm_EIRQ (m=4*k+0). See bit 0. Reserved: Read as zero, should be written as zero. Note: Read as zero, should be written as zero TIM_M1_EIRQ: error interrupt TIMm_EIRQ (m=4*k+1). See bit 0.																	
Bit 8 Bit 9 Bit 10 Bit 11 Bit 15:12	MCS_M SPE_M: FIFO_M Reserve	Reserved: Read as zero, should be written as zero. Note: Read as zero, should be written as zero																
Bit 16 Bit 17 Bit 18 Bit 19 Bit 23:20 Bit 24 Bit 25 Bit 26	Reserved: Read as zero, should be written as zero. Note: Read as zero, should be written as zero TIM_M2_EIRQ: error interrupt TIMm_EIRQ (m=4*k+2). See bit 0. MCS_M2_EIRQ: error interrupt MCSm_EIRQ (m=4*k+2). See bit 0. SPE_M2_EIRQ: error interrupt SPEm_EIRQ (m=4*k+2). See bit 0. FIFO_M2_EIRQ: error interrupt FIFOm_EIRQ (m=4*k+2). See bit 0. Reserved: Read as zero, should be written as zero. Note: Read as zero, should be written as zero TIM_M3_EIRQ: error interrupt TIMm_EIRQ (m=4*k+3). See bit 0. MCS_M3_EIRQ: error interrupt MCSm_EIRQ (m=4*k+3). See bit 0. SPE_M3_EIRQ: error interrupt SPEm_EIRQ (m=4*k+3). See bit 0.																	
Bit 27 Bit 31:28	Reserve	MCS_M3_EIRQ: error interrupt MCSm_EIRQ (m=4*k+3). See bit 0.																

21 Output Compare Unit (CMP)

21.1 Overview

The Output Compare Unit (CMP) is designed for the use in safety relevant applications. The main idea is to have the possibility to duplicate outputs in order to be compared in this unit. Because of the simple EXOR function used it is necessary to ensure the total cycle accurate output behavior of the output modules to be compared. This is given when two neighbored DTM channel (CDTM[n]_DTM[2*i] and CDTM[n]_DTM[2*i+1]) generate identical signals with phase shift zero at their outputs. This can be reached if they start their output generation at the same time. This start of synchronization is possible by means of the trigger mechanisms $TRIG_x$ provided by the TOM or ATOM as shown in the TOM chapter 12 or ATOM chapter 13. It is not necessary to compare each output channel with each other.


The CMP enables the comparison of 2x24 channels of the CDTM0, CDTM1 and CDTM2 and is restricted to neighbored channels. The first 24 CMP channels are the first 24 DTM channels placed behind TOM0 and TOM1 and the second 24 CMP channels are the first 24 DTM channels placed behind the ATOM0, ATOM1 and ATOM2.

Note : When the channels were generated with a higher frequency than the frequency of cluster 1 it is not certain to catch the interrupt in the notify register. Avoid a comparison if freqency is unequal cluster 1 AND (cluster 0 OR cluster 2)

21.1.1 Architecture of the Compare Unit

Specification

21.2 Bitwise Compare Unit (BWC)

21.2.1 ABWC compare unit (1)

ABWC Comparator	Comparator Input 1	Comparator Input 2
ABWC0	CDTM0_DTM4_CH0_OUT	CDTM0_DTM4_CH1_OUT
ABWC1	CDTM0_DTM4_CH2_OUT	CDTM0_DTM4_CH3_OUT
ABWC2	CDTM0_DTM5_CH0_OUT	CDTM0_DTM5_CH1_OUT
ABWC3	CDTM0_DTM5_CH2_OUT	CDTM0_DTM5_CH3_OUT
ABWC4	CDTM1_DTM4_CH0_OUT	CDTM1_DTM4_CH1_OUT
ABWC5	CDTM1_DTM4_CH2_OUT	CDTM1_DTM4_CH3_OUT
ABWC6	CDTM1_DTM5_CH0_OUT	CDTM1_DTM5_CH1_OUT
ABWC7	CDTM1_DTM5_CH2_OUT	CDTM1_DTM5_CH3_OUT
ABWC8	CDTM2_DTM4_CH0_OUT	CDTM2_DTM4_CH1_OUT
ABWC9	CDTM2_DTM4_CH2_OUT	CDTM2_DTM4_CH3_OUT
ABWC10	CDTM2_DTM5_CH0_OUT	CDTM2_DTM5_CH1_OUT
ABWC11	CDTM2_DTM5_CH2_OUT	CDTM2_DTM5_CH3_OUT

The Bitwise Compare Unit TBWC compares in pairs the combinations shown in following table

21.2.2 TBWC compare unit

TBWC Comparator	Comparator Input 1	Comparator Input 2
TBWC0	CDTM0_DTM0_CH0_OUT	CDTM0_DTM0_CH1_OUT
TBWC1	CDTM0_DTM0_CH2_OUT	CDTM0_DTM0_CH3_OUT
TBWC2	CDTM0_DTM1_CH0_OUT	CDTM0_DTM1_CH1_OUT
TBWC3	CDTM0_DTM1_CH2_OUT	CDTM0_DTM1_CH3_OUT
TBWC4	CDTM0_DTM2_CH0_OUT	CDTM0_DTM2_CH1_OUT
TBWC5	CDTM0_DTM2_CH2_OUT	CDTM0_DTM2_CH3_OUT
TBWC6	CDTM0_DTM3_CH0_OUT	CDTM0_DTM3_CH1_OUT
TBWC7	CDTM0_DTM3_CH2_OUT	CDTM0_DTM3_CH3_OUT
TBWC8	CDTM1_DTM0_CH0_OUT	CDTM1_DTM0_CH1_OUT
TBWC9	CDTM1_DTM0_CH2_OUT	CDTM1_DTM0_CH3_OUT
TBWC10	CDTM1_DTM1_CH0_OUT	CDTM1_DTM1_CH1_OUT
TBWC11	CDTM1_DTM1_CH2_OUT	CDTM1_DTM1_CH3_OUT

21.3 Configuration of the Compare Unit

Because of the restrictions described in the section above the Compare Unit consists of 24 antivalence (EXOR) elements, a select register **CMP_EN** which selects the corresponding comparisons and a status register **CMP_IRQ_NOTIFY** which shows and stores each mismatching result, when selected.

For each with **CMP_IRQ_EN** enabled mismatching error an interrupt signal on *CMP_IRQ* is generated.

For each with **CMP_EIRQ_EN** enabled mismatching error an interrupt signal on *CMP_EIRQ* is generated.

21.4 Error Generator

The error generator generates an error signal to be transmitted directly to the MON unit and independently from the *CMP_IRQ* and *CMP_EIRQ*. The error is set when in the **CMP_IRQ_NOTIFY** register at least one bit is set. The CMP_IRQ_NOTIFY bits are not mask able for this purpose.

Additionally *CMP_ERR* is a primary output port for interrupt actions by CPU itself.

Specification

21.5 CMP Interrupt Signal

21.5.1 CMP Interrupt Signal table

Signal	Description
CMP_EIRQ	Mismatching interrupt of outputs to be compared, when enabled
CMP_IRQ	Mismatching interrupt of outputs to be compared, when enabled

The CMP sub-module has two interrupt signals, one normal interrupt and one error interrupt. The source of both interrupt can be determined by reading the CMP_IRQ_NOTIFY register under consideration of CMP_IRQ_EN register and CMP_EIRQ_EN register. Each source can be forced separately for debug purposes using the interrupt force CMP_IRQ_FORCINT register. CMP_IRQ_MODE configures interrupt output characteristic. All interrupt modes are described in detail in section 2.5.

21.6 CMP Configuration Register Overview

21.6.1 CMP Configuration Register Overview Table

Register Name	Description	Details in Section
CMP_EN	CMP comparator enable register	21.7.1
CMP_IRQ_NOTIFY	CMP event notification register	21.7.2
CMP_IRQ_EN	CMP interrupt enable register	21.7.3
CMP_IRQ_FORCINT	CMP interrupt force register	21.7.4
CMP_IRQ_MODE	CMP interrupt mode configuration register	21.7.5
CMP_EIRQ_EN	CMP error interrupt enable register	21.7.6

21.7 CMP Configuration Register Description

21.7.1 Register CMP_EN

Address Offset:	see Appendix B	ee Appendix B											alu	le:			03	x0	00	0_	00)0()	
	31 30 29 28 27 26 25 25	23	22	21	20	19 18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	З	2	1	0
Bit	Reserved	TBWC11_EN	TBWC10_EN	TBWC9_EN		TBWC7_EN TBWC6_EN		TBWC4_EN	TBWC3_EN	TBWC2_EN	TBWC1_EN	TBWC0_EN	ABWC11_EN	ABWC10_EN	ABWC9_EN	ABWC8_EN	ABWC7_EN	ABWC6_EN	ABWC5_EN	ABWC4_EN	ABWC3_EN	ABWC2_EN	ABWC1_EN	
Mode	۲	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW
Initial Value	0×00	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit 0	ABWC0_EN: En	abl	le d	cor	np	ara	tor	0	in	A	ЗW	٧C	(s	ee	c c	ha	pt	er	21	2)	4		
	0 = ABWC Comparator 0 is disabled 1 = ABWC Comparator 0 is enabled																							
	1 = ABWC Comp	= ABWC Comparator 0 is enabled																						
Bit 1		BWC1_EN: Enable comparator 1 in ABWC (see chapter 21.2)																						
Bit 2		BWC2_EN: Enable comparator 2 in ABWC (see chapter 21.2)																						
Bit 3	ABWC3_EN: Enable comparator 3 in ABWC (see chapter 21.2)																							
Bit 4	ABWC4_EN: Enable comparator 4 in ABWC (see chapter 21.2)																							
Bit 5	ABWC5_EN: Enable comparator 5 in ABWC (see chapter 21.2)																							
Bit 6	-	ABWC5_EN: Enable comparator 5 in ABWC (see chapter 21.2) ABWC6_EN: Enable comparator 6 in ABWC (see chapter 21.2) ABWC7_EN: Enable comparator 7 in ABWC (see chapter 21.2)																						
Bit 7 Bit 8					•								-				•				-			
Bit 9	ABWC8_EN: En ABWC9_EN: En												•				•							
Bit 10	ABWC9_EN: EN)		
Bit 11	ABWC11_EN: E					-								-				•				-		
Bit 12	TBWC0_EN: Ena					•								-				•				,		
	0 = TBWC compa									. –		-	(-		•.					,				
	1 = TBWC compa																							
Bit 13	TBWC1_EN: Ena								in	ТΒ	ßW	/C	(s	ee	cł	าล	pte	er :	21	.2))			
Bit 14	TBWC2_EN: Ena				-																			
Bit 15	TBWC3_EN: Ena	abl	e c	con	npa	arat	tor	3	in	ТΒ	ßW	/C	(s	ee	cł	าล	pte	er	21	.2))			
Bit 16	TBWC4_EN: Ena	abl	e c	con	npa	arat	tor	4	in	ТΒ	ßW	/C	(s	ee	cł	าล	pte	er	21	.2))			
Bit 17	TBWC5_EN: Ena	abl	e c	con	npa	arat	tor	5	in	ТΒ	ßW	/C	(s	ee	cl	าล	pte	er	21	.2))			
Bit 18	TBWC6_EN: Ena	abl	e c	con	npa	arat	tor	6	in	TE	ßW	/C	(s	ee	cł	na	pte	er	21	.2))			
Bit 19	TBWC7_EN: Ena				•								•											
Bit 20	TBWC8_EN: Ena				•								-							-				
Bit 21	TBWC9_EN: Ena												-							-				
Bit 22	TBWC10_EN: Er													-				•			-			
Bit 23	TBWC11_EN: Er	nat	ole	CO	m	par	ato	r 1	1	in	ſĒ	ЗW	/C	(s	ee	c c	ha	pte	er	21	2))		

Specification

Bit 31:24 **Reserved:** Reserved **Note**: Read as zero, should be written as zero

21.7.2 Register CMP_IRQ_NOTIFY

Address Offset:	see Appendix B												Va	alu	ie:	:		02	x0	00	0_	00)0(D	
	31 30 29 28 28 27 26 25 25	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	6	5	4	з	2	1	0
Bit	Reserved	TBWC11	TBWC10	TBWC9	TBWC8	TBWC7	TBWC6	TBWC5	TBWC4	TBWC3	TBWC2	TBWC1	TBWC0	ABWC11	ABWC10	ABWC9	ABWC8	ABWC7	ABWC6	ABWC5	ABWC4	ABWC3	ABWC2	ABWC1	ABWC0
Mode	Ľ	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw
Initial Value	00×0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit 1	 0 = no error recognized on DTMA sub-modules bits 0 and 1 (see chapter 21.2) 1 = an error was recognized on corresponding DTMA sub-modules bits Note: This bit will be cleared on a CPU write access of value '1'. A read access leaves the bit unchanged. ABWC1: error indication for ABWC1. See bit 0. ABWC2: error indication for ABWC2. See bit 0. 													S											
Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8 Bit 9 Bit 10 Bit 11 Bit 12	access leaves the bit unchanged.										on														
DIL IZ	TBWC0: TOM su 0 = no error reco 21.2) 1 = an error was 0 = no error reco 21.2) 1 = an error was	gn reo gni	ize coş	ed gni d o	on ze on	d d D	Ol on TN	М со //Т	su orr sı	b- es ub·	mo spc -m	odi ond	ule din lule	g es	bit TC bi	s (DM ts	0 a si 0 a	ub and	1 1 -m d 1	- (s noc L (s	se dul se	e d les e d	cha bi cha	api its api	ter

GTM-IP	Specification Revision 3.1.5.	1
	Note: This bit will be cleared on a CPU write access of value '1'. A rea access leaves the bit unchanged.	ad
Bit 13	TBWC1: TOM sub-modules outputs bitwise comparator 1 err indication. See bit 12.	or
Bit 14	TBWC2: TOM sub-modules outputs bitwise comparator 2 err indication. See bit 12.	or
Bit 15	TBWC3: TOM sub-modules outputs bitwise comparator 3 err indication. See bit 12.	or
Bit 16	TBWC4: TOM sub-modules outputs bitwise comparator 4 err indication. See bit 12.	or
Bit 17	TBWC5: TOM sub-modules outputs bitwise comparator 5 err indication. See bit 12.	or
Bit 18	TBWC6: TOM sub-modules outputs bitwise comparator 6 err indication. See bit 12.	or
Bit 19	TBWC7: TOM sub-modules outputs bitwise comparator 7 err indication. See bit 12.	or
Bit 20	TBWC8: TOM sub-modules outputs bitwise comparator 8 err indication. See bit 12.	or
Bit 21	TBWC9: TOM sub-modules outputs bitwise comparator 9 err indication. See bit 12.	or
Bit 22	TBWC10: TOM sub-modules outputs bitwise comparator 10 err indication. See bit 12.	or
Bit 23	TBWC11: TOM sub-modules outputs bitwise comparator 11 err indication. See bit 12.	or
Bit 31:24	Reserved: reserved Note: Read as zero, should be written as zero	

21.7.3 Register CMP_IRQ_EN

Address Offset:	se	ee A	۱ţ	pe	en	di	хB									In	iti	al	Va	alu	ie:	}		02	x0	00	0_	.00)0()	
	31	30	23	28	71	26	25 24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	6	5	4	3	2	1	0
Bit		·		Reserved.				TBWC11 EN IRQ	TBWC10_EN_IRQ	TBWC9_EN_IRQ	TBWC8_EN_IRQ	TBWC7_EN_IRQ	TBWC6_EN_IRQ	TBWC5_EN_IRQ	TBWC4_EN_IRQ	TBWC3_EN_IRQ	TBWC2_EN_IRQ	TBWC1_EN_IRQ	TBWC0_EN_IRQ	ABWC11_EN_IRQ	ABWC10_EN_IRQ	ABWC9_EN_IRQ	ABWC8_EN_IRQ	ABWC7_EN_IRQ	ABWC6_EN_IRQ	ABWC5_EN_IRQ	ABWC4_EN_IRQ	ABWC3_EN_IRQ	ABWC2_EN_IRQ	ABWC1_EN_IRQ	ABWC0 EN IRQ
Mode				œ				RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW
Initial Value				0×00				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit 0	0	ABWC0_EN_IRQ: enable ABWC0 interrupt source for <i>CMP_IRQ</i> line 0 = interrupt source ABWC0 is disabled 1 = interrupt source ABWC0 is enabled																													

GTM-IP	Specification Revision 3.1.5.1
Bit 1	ABWC1_EN_IRQ: enable ABWC1 interrupt source for <i>CMP_IRQ</i> line. See bit 0.
Bit 2	ABWC2_EN_IRQ: enable ABWC2 interrupt source for <i>CMP_IRQ</i> line. See bit 0.
Bit 3	ABWC3_EN_IRQ: enable ABWC3 interrupt source for <i>CMP_IRQ</i> line. See bit 0.
Bit 4	ABWC4_EN_IRQ: enable ABWC4 interrupt source for <i>CMP_IRQ</i> line. See bit 0.
Bit 5	ABWC5_EN_IRQ: enable ABWC5 interrupt source for <i>CMP_IRQ</i> line. See bit 0.
Bit 6	ABWC6_EN_IRQ: enable ABWC6 interrupt source for <i>CMP_IRQ</i> line. See bit 0.
Bit 7	ABWC7_EN_IRQ: enable ABWC7 interrupt source for <i>CMP_IRQ</i> line. See bit 0.
Bit 8	ABWC8_EN_IRQ: enable ABWC8 interrupt source for CMP_IRQ line.
Bit 9	See bit 0. ABWC9_EN_IRQ: enable ABWC9 interrupt source for <i>CMP_IRQ</i> line.
Bit 10	See bit 0. ABWC10_EN_IRQ: enable ABWC10 interrupt source for <i>CMP_IRQ</i> line.
Bit 11	See bit 0. ABWC11_EN_IRQ: enable ABWC11 interrupt source for <i>CMP_IRQ</i> line.
Bit 12	See bit 0. TBWC0_EN_IRQ: enable TBWC0 interrupt source for <i>CMP_IRQ</i> line 0 = interrupt source TBWC0 is disabled
	1 = interrupt source TBWC0 is enabled
Bit 13	TBWC1_EN_IRQ: enable TBWC1 interrupt source for <i>CMP_IRQ</i> line. See bit 12.
Bit 14	TBWC2_EN_IRQ: enable TBWC2 interrupt source for <i>CMP_IRQ</i> line. See bit 12.
Bit 15	TBWC3_EN_IRQ: enable TBWC3 interrupt source for <i>CMP_IRQ</i> line. See bit 12.
Bit 16	TBWC4_EN_IRQ: enable TBWC4 interrupt source for <i>CMP_IRQ</i> line. See bit 12.
Bit 17	TBWC5_EN_IRQ: enable TBWC5 interrupt source for <i>CMP_IRQ</i> line. See bit 12.
Bit 18	TBWC6_EN_IRQ: enable TBWC6 interrupt source for <i>CMP_IRQ</i> line. See bit 12.
Bit 19	TBWC7_EN_IRQ: enable TBWC7 interrupt source for <i>CMP_IRQ</i> line. See bit 12.
Bit 20	TBWC8_EN_IRQ: enable TBWC8 interrupt source for <i>CMP_IRQ</i> line. See bit 12.
Bit 21	TBWC9_EN_IRQ: enable TBWC9 interrupt source for <i>CMP_IRQ</i> line. See bit 12.
Bit 22	TBWC10_EN_IRQ: enable TBWC10 interrupt source for <i>CMP_IRQ</i> line.
Bit 23	See bit 12. TBWC11_EN_IRQ: enable TBWC11 interrupt source for <i>CMP_IRQ</i> line. See bit 12.
Bit 31:24	Reserved: reserved

BOSCH Revision 3.1.5.1

Specification

GTM-IP

Note: Read as zero, should be written as zero

21.7.4 Register CMP_IRQ_FORCINT

Address Offset:	see Appendix B		In	iti	al	Va	alu	ie:	}		0	x0	00	0_	00)0()							
	31 30 29 28 27 26 26 26 25 24	23	22	21	19	18	17	16	15	14	13	12	11	10	6	8	7	6	5	4	з	2	1	0
Bit	Reserved	TRG_TBWC11		TRG_IBWC9				TRG_TBWC4	TRG_TBWC3	TRG_TBWC2	TRG_TBWC1	TRG_TBWC0	TRG_ABWC11	TRG_ABWC10	TRG_ABWC9	TRG_ABWC8	TRG_ABWC7	TRG_ABWC6	TRG_ABWC5	TRG_ABWC4	TRG_ABWC3	TRG_ABWC2	TRG_ABWC1	TRG_ABWC0
Mode	œ	RAw	RAw	RAW RAw	RAw	RAw	RAw	RAw	RAw	RAw	RAw	RAw	RAw	RAw	RAw	RAw	RAw	RAw	RAw	RAw	RAw	RAw	RAw	RAw
Initial Value	00×0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	software 0 = No event trigg 1 = Assert corresp Note: This bit is cl Note: This bit is w	oo ea	ndi arec	ng d a	uto	ma	atio	cal	lly	af	ter	w	rite	e.				-			M	C	TR	۲L
Bit 1	TRG_ABWC1: Trigger ABWC1 bit in CMP_IRQ_NOTIFY register by software. See bit 0.																							
Bit 2	TRG_ABWC2: Trigger ABWC2 bit in CMP_IRQ_NOTIFY register by software. See bit 0.													зу										
Bit 3														зу										
Bit 4	TRG_ABWC4: To software. See bit (rig	ge	r A	BV	٧C	:4	bi	t i	n	С	ИP	_	R	ຊ_	N	т	ΊF	Y	re	gis	ste	r I	зу
Bit 5	TRG_ABWC5: The software. See bit (rig	ge	r A	BV	۷C	:5	bi	t i	n	C	ИP)_I	R	ວ_	N	τс	ΊF	Y	re	gi	ste	r I	зу
Bit 6	TRG_ABWC6: The software. See bit (rig	ge	r A	BV	٧C	6	bi	t i	n	C	ИP	<u></u>	R	ຊ_	N	тс	ΊF	Y	re	gis	ste	r I	οу
Bit 7	TRG_ABWC7: T	rig	ge	r A	BV	٧C	;7	bi	t i	n	CI	ИP	<u> </u>	R	ຊ_	N	от	ΊF	Y	re	gis	ste	r I	οу
Bit 8	software. See bit (TRG_ABWC8: The software See bit (rig	ge	r A	BV	VC	:8	bi	t i	n	CI	MP	<u>'</u>	R	ຊ_	N	от	ΊF	Y	re	gis	ste	r I	οу
Bit 9	software. See bit (TRG_ABWC9: The software See bit (rig	ge	r A	BV	VC	:9	bi	t i	n	CI	MP	<u>'</u>	R	ຊ_	N	тс	ΊF	Y	re	gis	ste	r I	οу
Bit 10	software. See bit (TRG_ABWC10: 7	Γri	gge	er /	۱B	W	C1	0	bit	in	С	MI	>_	IR	Q_	_N	0	TI	ŦY	re	egi	ste	er I	οу
Bit 11	software. See bit (TRG_ABWC11: 7 software. See bit (Γri	gge	er /	AB,	W	C1	1	bit	in	С	MI	> _	IR	Q_	_N	0	TIF	ŦY	re	egi	ste	er I	зу

TRG_TBWC0: Trigger TBWC0 bit in CMP_IRQ_NOTIFY register by software
0 = No event triggering
1 = Assert corresponding field in CMP_IRQ_NOTIFY register
Note: This bit is cleared automatically after write.
•
TRG_TBWC1: Trigger TBWC1 bit in CMP_IRQ_NOTIFY register by software. See bit 12.
TRG_TBWC2: Trigger TBWC2 bit in CMP_IRQ_NOTIFY register by
software. See bit 12.
TRG_TBWC3: Trigger TBWC3 bit in CMP_IRQ_NOTIFY register by
software. See bit 12.
TRG_TBWC4: Trigger TBWC4 bit in CMP_IRQ_NOTIFY register by
software. See bit 12.
TRG_TBWC5: Trigger TBWC5 bit in CMP_IRQ_NOTIFY register by
software. See bit 12.
TRG_TBWC6: Trigger TBWC6 bit in CMP_IRQ_NOTIFY register by
software. See bit 12.
TRG_TBWC7: Trigger TBWC7 bit in CMP_IRQ_NOTIFY register by
software. See bit 12.
TRG_TBWC8: Trigger TBWC8 bit in CMP_IRQ_NOTIFY register by
software. See bit 12.
TRG_TBWC9: Trigger TBWC9 bit in CMP_IRQ_NOTIFY register by
software. See bit 12.
TRG_TBWC10: Trigger TBWC10 bit in CMP_IRQ_NOTIFY register by
software. See bit 12.
TRG_TBWC11: Trigger TBWC11 bit in CMP_IRQ_NOTIFY register by
software. See bit 12.
Reserved: reserved
Note: Read as zero, should be written as zero

Specification

21.7.5 Register CMP_IRQ_MODE

Address Offset:	see Appendix B Initial Value: 0x0000_0002	x									
	31 33 30 30 29 29 27 27 27 27 27 27 27 27 27 26 27 28 29 20 11 12 13 14 15 16 17 18 19 11 11 11 11 11 12 13 14 15 16 17 18 19 11 11 12 13 14 25 5 3 3	1 0									
Bit	Reserved										
Mode	۳	RW									
Initial Value	0 00 00 00 00 00 00 00 00										
Bit 1:0	IRQ_MODE: IRQ mode selection										

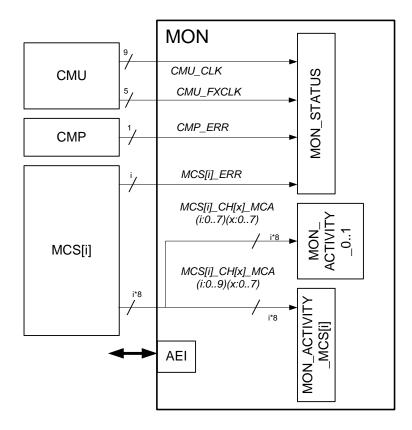
	0h00 - Lovel mode
	0b00 = Level mode
	0b01 = Pulse mode
	0b10 = Pulse-Notify mode
	0b11 = Single-Pulse mode
	Note: The interrupt modes are described in section 2.5.
Bit 31:2	Reserved: reserved
	Note: Read as zero, should be written as zero

Specification

21.7.6 Register CMP_EIRQ_EN

Address Offset:	see Appendix B		In	iti	al	Va	alu	ie:			03	x0	00	0_	00)0()						
	31 30 29 28 28 27 26 25 25 25	23	22	21	20	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1 0
Bit	Reserved	TBWC11_EN_EIR	TBWC10_EN_EIR	Ъ.	TBWC8_EN_EIRQ	Z	TBWC5_EN_EIRQ	TBWC4_EN_EIRQ	TBWC3_EN_EIRQ	TBWC2_EN_EIRQ	Ч	TBWC0_EN_EIRQ	ABWC11_EN_EIR	ABWC10_EN_EIR	ABWC9_EN_EIRQ	ABWC8_EN_EIRQ	ABWC7_EN_EIRQ	ABWC6_EN_EIRQ	ABWC5_EN_EIRQ	ABWC4_EN_EIRQ	ABWC3_EN_EIRQ	ABWC2_EN_EIRQ	
Mode	٣	RW	RW	RV N	N N	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW W
Initial Value	0×00	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit 0	ABWC0_EN_EIR 0 = interrupt sour 1 = interrupt sour	ce	AE	3W	C0	is	dis	sal	ble	ed	erru	ldr	t so	ou	rce	e fo	or	Cl	МF	<u></u> 1	EIF	76	line
Bit 1	ABWC1_EN_EIR See bit 0.										rrι	ıpt	sc	bui	rce	e fo	or (CN	1P_	_E	ĪR	Q	line.
Bit 2	ABWC2_EN_EIR See bit 0.	Q	: ei	nak	ole /	AB	W	C2	2 ir	nte	rrι	ıpt	sc	bui	rce	e fo	or (CN	1P_	_E	ĪR	Q	line.
Bit 3	ABWC3_EN_EIR See bit 0.	Q	: ei	nak	le.	AB	W	СЗ	3 ir	nte	rru	ıpt	so	DUI	rce	e fo	or (CN	1P	_E	ĪR	Q	line.
Bit 4	ABWC4_EN_EIR See bit 0.	Q	: ei	nak	le	AB	W	C4	l ir	nte	rrι	ıpt	SC	DUI	rce	e fo	or (CN	1P_	_E	ĪR	Q	line.
Bit 5	ABWC5_EN_EIR See bit 0.	Q	: ei	nak	le.	AB	W	C5	5 ir	nte	rrι	ıpt	so	DUI	rce	e fo	or (CN	1P	_E	ĪR	Q	line.
Bit 6	ABWC6_EN_EIR See bit 0.	Q	: ei	nak	le.	AB	W	Ce	6 ir	nte	rrι	ıpt	so	DUI	rce	e fo	or (CN	1P	_E	ĪR	Q	line.
Bit 7	ABWC7_EN_EIR See bit 0.	Q	: ei	nak	le.	AB	W	C7	7 ir	nte	rrι	ıpt	so	DUI	rce	e fo	or (CN	1P	_E	ĪR	Q	line.
Bit 8	ABWC8_EN_EIR See bit 0.	Q	: ei	nak	le.	AB	W	C	3 ir	nte	rru	ıpt	so	DUI	rce	e fo	or (CN	1P	_E	ĪR	Q	line.
Bit 9	ABWC9_EN_EIR See bit 0.	Q	: eı	nak	le	AB	W	CS) ir	nte	rru	ıpt	so	oui	rce	e fo	or (CN	1P_	_E	ĪR	Q	line.

GTM-IP	Specification	Revision 3.1.5.1
Bit 10	ABWC10_EN_EIRQ: enable ABWC10 interrupt source line. See bit 0.	e for CMP_EIRQ
Bit 11	ABWC11_EN_EIRQ: enable ABWC11 interrupt source line. See bit 0.	e for CMP_EIRQ
Bit 12	TBWC0_EN_EIRQ: enable TBWC0 interrupt source for 0 = interrupt source TBWC0 is disabled 1 = interrupt source TBWC0 is enabled	CMP_EIRQ line
Bit 13	TBWC1_EN_EIRQ: enable TBWC1 interrupt source for See bit 12.	CMP_EIRQ line.
Bit 14	TBWC2_EN_EIRQ: enable TBWC2 interrupt source for See bit 12.	CMP_EIRQ line.
Bit 15	TBWC3_EN_EIRQ: enable TBWC3 interrupt source for See bit 12.	CMP_EIRQ line.
Bit 16	TBWC4_EN_EIRQ: enable TBWC4 interrupt source for See bit 12.	CMP_EIRQ line.
Bit 17	TBWC5_EN_EIRQ: enable TBWC5 interrupt source for See bit 12.	CMP_EIRQ line.
Bit 18	TBWC6_EN_EIRQ: enable TBWC6 interrupt source for See bit 12.	CMP_EIRQ line.
Bit 19	TBWC7_EN_EIRQ: enable TBWC7 interrupt source for See bit 12.	CMP_EIRQ line.
Bit 20	TBWC8_EN_EIRQ: enable TBWC8 interrupt source for See bit 12.	CMP_EIRQ line.
Bit 21	TBWC9_EN_EIRQ: enable TBWC9 interrupt source for See bit 12.	CMP_EIRQ line.
Bit 22	TBWC10_EN_EIRQ: enable TBWC10 interrupt source line. See bit 12.	e for CMP_EIRQ
Bit 23	TBWC11_EN_EIRQ: enable TBWC11 interrupt source line. See bit 12.	e for CMP_EIRQ
Bit 31:24	Reserved: reserved Note : Read as zero, should be written as zero	



22 Monitor Unit (MON)

22.1 Overview

The Monitor Unit (MON) is designed for the use in safety relevant applications. The main idea is to have a possibility to supervise common used circuitry and resources. In this way the activity of the clocks is supervised. In addition the characteristics of output signals can be checked in a MCS channel by a re-read-in via TIM and routing to the MCS. When the comparison fails an error signal is generated in MCS and sent to the monitor unit. One error signal per MCS summarizes the errors of all channels. By generating of an activity signal per channel for each such performed comparison, the activity of TIM, ARU and the used clocks is checked implicitly.

In addition the ARU cycle time could be also compared in a MCS channel to given values.

22.1.1 MON Block Diagram

Confidential

22.1.2 Realization without Activity Checker of the clock signals

An activity checker of the clock signals used is not needed because these signals are only enables to be used in combination with the system clock. Therefore the clock enables are to be checked to have a high value.

22.2 Clock Monitoring

The monitor unit has a connection to each of the 9 clocks $CMU_CLK[x]$ (x=0..8), provided by the CMU. Some of these clocks can be used for special tasks (see chapter 8).

In addition the 5 clock inputs of the TOMs *CMU_FXCLK[y]* (y=0..4) are also connected to the MON unit.

The supervising of the clocks is done by scanning for activity of each clock.

A high value is defined as the state to be monitored.

When a high value of the clock enable is detected, the corresponding bit in the status register **MON_STATUS** is set.

The status register bits are reset by writing a one.

When the register is polled by the CPU and the time between two read accesses is higher than the period of the slowest clock, all bits of the corresponding clocks must have been set.

When polling in shorter time distances, not for all clocks an activity can be shown, although they are still working.

Because of the realization without a select register for the clock signals only the bits of the status register are to be considered for which the clock signal is enabled in the CMU.

22.3 CMP error Monitoring

The signal CMP_ERR is to be received directly from module CMP and is set if an error occurred.

22.4 Checking the Characteristics of Signals by MCS

By use of the MCS some given properties of signals can be checked. Such signals can be generated output signals of TOM or ATOM channels including DTM function, which

are reread in into a TIM and the time stamp information is routed via ARU to the MCS module.

The corresponding MCS signal performs the check according to given properties. In this way signal high or low time as well as signal periods can be checked, also taking into account tolerances. When the check fails a MCS internal error signal is generated and ORed with the error signals of the other channels of the MCS module to a summarized error signal *MCS*[*i*]_*ERR*.

For each MCS a summarized error signal is transmitted to MON and monitored in the MON_STATUS register.

In order to check the execution of the comparison for each MCS channel an activity signal is generated. In the MCS[i]_CH[x]_MCA (i=0..9) (x=0..7) vector 8 bits for each MCS[i](i=0..9) instance are combined. The activity signals are stored in the **MON_ACTIVITY_MCS[i]** register. In addition the first 8 bits of MCS0..3 are stored in **MON_ACTIVITY_0** and the first 8 bits of MCS4..7 are stored in **MON_ACTIVITY_1**. The bits are set by a one signal and reset by writing a one to it (preferably after polling the status of the register).

Because the activity signal shows the execution of a comparison, the involved units for providing the signals and execution of comparison (like TIM, ARU and MCS itself) are checked implicitly to work accordingly. Also the involved clocks and time bases are checked in this way.

22.5 Checking ARU Cycle Time

The cycle time of the ARU can be checked, when this is essential for safety purposes. This check can be performed by an MCS channel. It should be noted that the MCS program for measuring the ARU round trip time must add a tolerance value.

The resulting error is reported to the MON unit using the summarized error signal *MCS[i]_ERR* for each MCS module in addition to an interrupt, generated in MCS. The same signals and status bits are used as in the case of checking the signal characteristics.

The corresponding MCS is programmed to get a fixed data value at address 0x1FF. The data value is always zero and is not blocked. When getting the access the time stamp value TBU_TS0 is stored in a register. The next time getting the access the new TBU_TS0 value is stored and the difference between both values is compared with a given value. When the comparison fails, an error flag is set in the MCS internal status register, an interrupt is generated and the error signal *MCS[i]_ERR* is provided.

When the check is performed, an activity signal $MCS[i]_CH[x]_MCA$ (i=0..9)(x=0..7) is provided for each channel x for each MCS[i](i=0..9) instance together with a summarized interrupt $MCS[i]_ERR$ for each MCS.

Specification

The activity signal sets a bit in the MON ACTIVITY register. The bits in the MON ACTIVITY registers are reset by writing a one. When the check fails, an interrupt is generated and the error signal MCS[i] ERR is provided for the MON unit.

Figure 22.1.1 shows the block diagram of the Monitor Unit.

22.6 MON Interrupt Signals

The MON submodule has no interrupt signals.

22.7 MON Register Overview

Register Name	Description	Details in Section
MON_STATUS	MON status register	22.8.1
MON_ACTIVITY_0	MON activity register 0	22.8.2
MON_ACTIVITY_1	MON activity register 1	22.8.3
MON_ACTIVITY_MCS[z] (z:09)	MON activity register for MCS z	22.8.4

22.8 MON Configuration Register Description

22.8.1 Register MON_STATUS

Address Offset:	see Appendix B														Initial Value:								0	0x0000_0000								
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit	Beserved		MCS9_ERR	MCS8_ERR	MCS7_ERR	MCS6_ERR	MCS5_ERR	MCS4_ERR	MCS3_ERR	MCS2_ERR	MCS1_ERR	1		Reserved		CMP_ERR	Reserved	ACT_CMU8	Reserved	ACT_CMUFX4	ACT_CMUFX3	ACT_CMUFX2	ACT_CMUFX1	ACT_CMUFX0	ACT_CMU7	ACT_CMU6	ACT_CMU5	ACT_CMU4	ACT_CMU3	ACT_CMU2	ACT_CMU1	ACT_CMU0
Mode	ď		Я	Ч	R	Я	В	R	Я	Я	В	R		Ж		В	Я	RCw	Я	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw
Initial Value	0,000	§ •														0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit 0			T_						_	-					-	a (СР	U	W	rite	e a	CC	es	S	of	va	lu	e :	1.	A	rea	ad

access leaves the bit unchanged.

GTM-IP	Specification	Revision 3.1.5.1
D:1 1		
Bit 1	ACT_CMU1: CMU_CLK1 activity Note: This bit will be cleared on a CPU write access	of value 1 A read
	access leaves the bit unchanged.	of value 1. A leau
Bit 2	ACT_CMU2: CMU CLK2 activity	
-	Note: This bit will be cleared on a CPU write access	of value 1. A read
	access leaves the bit unchanged.	
Bit 3	ACT_CMU3: CMU_CLK3 activity	
	Note: This bit will be cleared on a CPU write access	s of value 1. A read
	access leaves the bit unchanged.	
Bit 4	ACT_CMU4: CMU_CLK4 activity	
	Note: This bit will be cleared on a CPU write access	s of value 1. A read
Bit 5	access leaves the bit unchanged.	
DIUD	ACT_CMU5: CMU_CLK5 activity Note: This bit will be cleared on a CPU write access	of value 1 A read
	access leaves the bit unchanged.	of value 1. A leau
Bit 6	ACT_CMU6: CMU CLK6 activity	
	Note: This bit will be cleared on a CPU write access	s of value 1. A read
	access leaves the bit unchanged.	
Bit 7	ACT_CMU7: CMU_CLK7 activity	
	Note: This bit will be cleared on a CPU write access	s of value 1. A read
	access leaves the bit unchanged.	
Bit 8	ACT_CMUFX0: CMU_CLKFX0 activity	
	Note: This bit will be cleared on a CPU write access	s of value 1. A read
	access leaves the bit unchanged.	
Bit 9	ACT_CMUFX1: CMU_CLKFX1 activity Note: This bit will be cleared on a CPU write access	of value 1 A read
	access leaves the bit unchanged.	o or value 1. A reau
Bit 10	ACT_CMUFX2: CMU_CLKFX2 activity	
	Note: This bit will be cleared on a CPU write access	s of value 1. A read
	access leaves the bit unchanged.	
Bit 11	ACT_CMUFX3: CMU_CLKFX3 activity	
	Note: This bit will be cleared on a CPU write access	s of value 1. A read
	access leaves the bit unchanged.	
Bit 12	ACT_CMUFX4: CMU_CLKFX4 activity	
	Note: This bit will be cleared on a CPU write access	s of value 1. A read
	access leaves the bit unchanged.	in classical at the
	Note: Bits 0 to 12 are set, when a rising edge considered clock	is detected at the
Bit 13	Reserved: Reserved bits	
DICIO	Note: Read as zero should be written as zero	
Bit 14	ACT_CMU8: CMU CLK8 activity	
	Note: This bit will be cleared on a CPU write access	s of value 1. A read
	access leaves the bit unchanged.	
	Note: Bit is set, when a rising edge is detected at the	considered clock
Bit 15	Reserved: Reserved bits	
	Note: Read as zero should be written as zero	
Bit 16	CMP_ERR: Error detected at CMP	

GTM-IP	Specification Revision 3.1.5.1
	Note: This bit will be readable only.
Bit 19:17	Reserved: Reserved bits
	Note: Read as zero should be written as zero
Bit 20	MCS0 ERR: Error detected at MCS0
	Note: This bit will be readable only.
Bit 21	MCS1 ERR: Error detected at MCS1
	Note: This bit will be readable only.
Bit 22	MCS2 ERR: Error detected at MCS2
	Note: This bit will be readable only.
Bit 23	MCS3_ERR: Error detected at MCS3
	Note: This bit will be readable only.
Bit 24	MCS4_ERR: Error detected at MCS4
	Note: This bit will be readable only.
Bit 25	MCS5_ERR: Error detected at MCS5
	Note: This bit will be readable only.
Bit 26	MCS6_ERR: Error detected at MCS6
	Note: This bit will be readable only.
Bit 27	MCS7_ERR: Error detected at MCS7
	Note: This bit will be readable only.
Bit 28	MCS8_ERR: Error detected at MCS8
	Note: This bit will be readable only.
Bit 29	MCS9_ERR: Error detected at MCS9
	Note: This bit will be readable only.
Bit 31:30	Reserved: Reserved bits
	Note: Read as zero should be written as zero
	Note: Bits16 and 20 to 29 are set, when the corresponding unit reports an error
	Note: The MCS can be programmed to generate an error, when the comparison of signal values (duty time, cycle time) fails or also when the cycle time of the ARU (checking of the TBU_TS0 between two periodic accesses) is out of the expected range.

22.8.2 Register MON_ACTIVITY_0

Confidential

Specification

Revision 3.1.5.1

Address Offset:	see Appendix B												Initial Value:								0x0000_0000											
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	6	5	4	3	2	1	0
Bit	MCA_3_7	MCA_3_6	(m	m	ε	ε	e	MCA_3_0	MCA_2_7	MCA_2_6	MCA_2_5	MCA_2_4	MCA_2_3	MCA_2_2	MCA_2_1	MCA_2_0	MCA_1_7	MCA_1_6	MCA_1_5	MCA_1_4	MCA_1_3	MCA_1_2	MCA_1_1	MCA_1_0	MCA_0_7	MCA_0_6	MCA_0_5	MCA_0_4	MCA_0_3	MCA_0_2	MCA_0_1	MCA 0 0
Mode	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw	RCw
Initial Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit 0	Ν	IC	A	0	0	: a	cti	vit	y c	of c	che	ec	k p	bei	fo	rm	ied	l ir	n n	no	du	le	M	CS	50	a	t c	ha	nn	el	0	
	Ν	lot															CP		w	rite	e a	CC	es	S	of	va	ιlu	e :	1.	A	rea	ad
Bit 1			A _	_ 0 _ Tł	_ 1 : nis	: a b	cti it v	vit <u>:</u> vill	y c b	of o e o	che cle	ecl ar	k p ed	bei o	fo n a	rm a (ed led CP ed	l ir VU														ad
Bit 2			A _ :e:	_ 0 _ Tł	_2 : nis	: a b	cti it v	vit <u>y</u> vill	y c b	of o e o	che cle	ecl ar	k p ed	bei o	fo n a	rm a (ied CP ed	l ir VU														ad
Bit 3			A _ :e:	_ 0 _ Tł	_3 : nis	: a b	cti it v	vit <u>y</u> vill	y c b	of o e o	che cle	ecl ar	k p ed	bei o	fo n a	rm a (ied CP ed	l ir VU														ad
Bit 4			A _ :e:	0 Tł	_ 4 : nis	: a b	cti it v	vit <u>:</u> vill	y c b	of o e o	che cle	ecl ar	k p ed	bei o	fo n a	rm a (ied CP ed	l ir VU														ad
Bit 5			A _ :e:	0 Tł	_5 : nis	: a b	cti it v	vit <u>y</u> vill	y c b	of o e o	che cle	ecl ar	k p ed	bei o	fo n a	rm a (ied CP jed	l ir VU														ad
Bit 6			A _ :e:	0 Tł	_ 6 : nis	: a b	cti it v	vit <u>:</u> vill	y c b	of o e o	che cle	ecl ar	k p ed	bei o	fo n a	rm a (ied CP jed	l ir VU														ad
Bit 7			A _ :e:	_ 0 _ Tł	_ 7 : nis	: a b	cti it v	vit <u>:</u> vill	y c b	of o e o	che cle	ecl ar	k p ed	bei o	fo n a	rm a (ied CP jed	l ir VU														ad
Bit 8			A _ :e:	1 Tł	_ 0 : nis	: a b	cti it v	vit <u>y</u> vill	y c b	of o e o	cho cle	ecl ear	k p ed	bei l o	fo n a	rm a (ied CP ed	l ir PU														ad
Bit 9			A _ :e:	1 Tł	_ 1 : nis	: a b	cti it v	vit <u>y</u> vill	y c b	of o e o	che cle	ecl ar	k p ed	bei o	fo n a	rm a (ied CP jed	l ir VU														ad
Bit 10			A _ :e:	1 Tł	_ 2 : nis	: a b	cti it v	vit <u>:</u> vill	y c b	of o e o	che cle	ecl ar	k p ed	bei o	fo n a	rm a (ied CP ed	l ir VU														ad
Bit 11	N	1C														_	ed		n n	00	du	le	M	CS	51	a	t c	ha	nn	el	3	

GTM-IP	Specification	Revision 3.1.5.1
	Note: This bit will be cleared on a CPU write acc access leaves the bit unchanged.	ess of value 1. A read
Bit 12	MCA_1_4 : activity of check performed in module	MCS 1 at channel 4
	Note: This bit will be cleared on a CPU write acc access leaves the bit unchanged.	
Bit 13	MCA_1_5 : activity of check performed in module	MCS 1 at channel 5
	Note: This bit will be cleared on a CPU write acc access leaves the bit unchanged.	
Bit 14	MCA_1_6: activity of check performed in module	MCS 1 at channel 6
	Note: This bit will be cleared on a CPU write acc access leaves the bit unchanged.	
Bit 15	MCA_1_7 : activity of check performed in module	MCS 1 at channel 7
	Note: This bit will be cleared on a CPU write acc access leaves the bit unchanged.	ess of value 1. A read
Bit 16	MCA_2_0: activity of check performed in module	MCS 2 at channel 0
	Note: This bit will be cleared on a CPU write acc access leaves the bit unchanged.	ess of value 1. A read
Bit 17	MCA_2_1: activity of check performed in module	MCS 2 at channel 1
	Note: This bit will be cleared on a CPU write acc	ess of value 1. A read
	access leaves the bit unchanged.	
Bit 18	MCA_2_2: activity of check performed in module	
	Note: This bit will be cleared on a CPU write acc access leaves the bit unchanged.	
Bit 19	MCA_2_3: activity of check performed in module	
	Note: This bit will be cleared on a CPU write acc access leaves the bit unchanged.	ess of value 1. A read
Bit 20	MCA_2_4 : activity of check performed in module	MCS 2 at channel 4
	Note: This bit will be cleared on a CPU write acc	
	access leaves the bit unchanged.	
Bit 21	MCA_2_5: activity of check performed in module	
	Note: This bit will be cleared on a CPU write acc access leaves the bit unchanged.	ess of value 1. A read
Bit 22	MCA_2_6: activity of check performed in module	
	Note: This bit will be cleared on a CPU write acc access leaves the bit unchanged.	ess of value 1. A read
Bit 23	MCA_2_7: activity of check performed in module	
	Note: This bit will be cleared on a CPU write acc access leaves the bit unchanged.	ess of value 1. A read
Bit 24	MCA_3_0: activity of check performed in module	
	Note: This bit will be cleared on a CPU write acc access leaves the bit unchanged.	ess of value 1. A read
Bit 25	MCA_3_1: activity of check performed in module	MCS 3 at channel 1
	Note: This bit will be cleared on a CPU write acc	ess of value 1. A read
	access leaves the bit unchanged.	
Bit 26	MCA_3_2: activity of check performed in module	
	Note: This bit will be cleared on a CPU write acc access leaves the bit unchanged.	ess of value 1. A read
Bit 27	MCA_3_3: activity of check performed in module	MCS 3 at channel 3

GTM-IP	Specification	Revision 3.1.5.1
	Note: This bit will be cleared on a CPU write acces access leaves the bit unchanged.	ss of value 1. A read
Bit 28	MCA_3_4: activity of check performed in module M Note: This bit will be cleared on a CPU write acces access leaves the bit unchanged.	
Bit 29	MCA_3_5: activity of check performed in module M Note: This bit will be cleared on a CPU write acces access leaves the bit unchanged.	
Bit 30	MCA_3_6: activity of check performed in module M Note: This bit will be cleared on a CPU write acces access leaves the bit unchanged.	
Bit 31	MCA_3_7: activity of check performed in module M Note: This bit will be cleared on a CPU write acces	

access leaves the bit unchanged. Note: When not all MCS modules are implemented or the channels are not used for check purposes with supervising, the corresponding activity bits remain zero.

Address Offset:	see Appendix B											Initial Value:								0x0000_0000												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	6	5	4	3	2	1	0
Bit	w MCA 7 7 w MCA 7 6 w MCA 7 5 w MCA 7 5 w MCA 7 5 w MCA 7 3 w MCA 7 3 w MCA 7 3 w MCA 7 2 w MCA 7 2 w MCA 6 6 w MCA 6 7 1 w MCA 6 6 w MCA 6 1 w MCA 6 1 w MCA 5 1 w MCA 5 1 w MCA 5 2 w MCA 5 2 w MCA 5 2 w MCA 5 1 w MCA 5 2 w MCA 4 7 w MCA 4 4 w MCA 4 4 w MCA 4 4 w MCA 4 5 w MCA 4 5 w MCA 4 4 w MCA 4 5 w MCA 4 4															MCA_4_1	MCA 4 0															
Mode	RCw																RCw	RCw														
Initial Value	0	o o															0	0														
Bit 0		MCA_4_0: activity of check performed in module MCS 4 at channel 0 Note: This bit will be cleared on a CPU write access of value 1. A re access leaves the bit unchanged.																ad														
Bit 1			A _ e:	_4_	_ 1 nis	: a bi	cti it v	vit vill	y c b	ofo eo	cho cle	ecl ar	k p ed	oer o	fo n a	rm a (ed CP	l ir U		noo rite												ad
Bit 2			A _ e:	_4	_ 2 nis	: a bi	cti it v	vit vill	y c b	ofo eo	che cle	ecl ar	k p ed	oer o	fo n a	rm a (ed CP	l ir U		noo rite												ad
Bit 3			A _ e:	_4	_3 nis	: a bi	cti it v	vit vill	y c b	ofo eo	che cle	ecl ar	k p ed	oer o	fo n a	rm a (ed CP	l ir U		noo rite												ad
Bit 4	N	IC														-			n n	100	du	le	M	CS	54	a	t cl	ha	nn	el	4	

22.8.3 Register MON_ACTIVITY_1

GTM-IP	Specification	Revision 3.1.5.1
	Note: This bit will be cleared on a CPU write access access leaves the bit unchanged.	of value 1. A read
Bit 5	MCA_4_5: activity of check performed in module MC	S 4 at channel 5
	Note: This bit will be cleared on a CPU write access	
	access leaves the bit unchanged.	
Bit 6	MCA_4_6: activity of check performed in module MC	
	Note: This bit will be cleared on a CPU write access access leaves the bit unchanged.	s of value 1. A read
Bit 7	MCA_4_7: activity of check performed in module MC	
	Note: This bit will be cleared on a CPU write access access leaves the bit unchanged.	
Bit 8	MCA_5_0: activity of check performed in module MC	
	Note: This bit will be cleared on a CPU write access access leaves the bit unchanged.	of value 1. A read
Bit 9	MCA_5_1: activity of check performed in module MC	S 5 at channel 1
	Note: This bit will be cleared on a CPU write access access leaves the bit unchanged.	of value 1. A read
Bit 10	MCA_5_2: activity of check performed in module MC	S 5 at channel 2
	Note: This bit will be cleared on a CPU write access	s of value 1. A read
	access leaves the bit unchanged.	
Bit 11	MCA_5_3: activity of check performed in module MC	
	Note: This bit will be cleared on a CPU write access access leaves the bit unchanged.	
Bit 12	MCA_5_4: activity of check performed in module MC	
	Note: This bit will be cleared on a CPU write access access leaves the bit unchanged.	s of value 1. A read
Bit 13	MCA_5_5: activity of check performed in module MC	
	Note: This bit will be cleared on a CPU write access	of value 1. A read
	access leaves the bit unchanged.	
Bit 14	MCA_5_6: activity of check performed in module MC Note: This bit will be cleared on a CPU write access	
	access leaves the bit unchanged.	or value 1. A leau
Bit 15	MCA_5_7: activity of check performed in module MC	S 5 at channel 7
	Note: This bit will be cleared on a CPU write access	of value 1. A read
	access leaves the bit unchanged.	
Bit 16	MCA_6_0: activity of check performed in module MC	
	Note: This bit will be cleared on a CPU write access	s of value 1. A read
Bit 17	access leaves the bit unchanged.	S. 6. at channel 1
	MCA_6_1: activity of check performed in module MC Note: This bit will be cleared on a CPU write access	
	access leaves the bit unchanged.	o of value 1. A leau
Bit 18	MCA_6_2: activity of check performed in module MC	S 6 at channel 2
	Note: This bit will be cleared on a CPU write access	
	access leaves the bit unchanged.	
Bit 19	MCA_6_3: activity of check performed in module MC	
	Note: This bit will be cleared on a CPU write access	of value 1. A read
D'1 00	access leaves the bit unchanged.	0.0 -1 -1 -1 4
Bit 20	MCA_6_4: activity of check performed in module MC	S 6 at channel 4

	Creation	
GTM-IP	Specification	Revision 3.1.5.1
	Note: This bit will be cleared on a CPU write access access leaves the bit unchanged.	of value 1. A read
Bit 21	MCA_6_5: activity of check performed in module MCS Note: This bit will be cleared on a CPU write access access leaves the bit unchanged.	
Bit 22	MCA_6_6: activity of check performed in module MCS Note: This bit will be cleared on a CPU write access access leaves the bit unchanged.	
Bit 23	MCA_6_7: activity of check performed in module MCS Note: This bit will be cleared on a CPU write access access leaves the bit unchanged.	
Bit 24	MCA_7_0: activity of check performed in module MCS Note: This bit will be cleared on a CPU write access access leaves the bit unchanged.	
Bit 25	MCA_7_1: activity of check performed in module MCS Note: This bit will be cleared on a CPU write access access leaves the bit unchanged.	
Bit 26	MCA_7_2: activity of check performed in module MCS Note: This bit will be cleared on a CPU write access access leaves the bit unchanged.	
Bit 27	MCA_7_3: activity of check performed in module MCS Note: This bit will be cleared on a CPU write access access leaves the bit unchanged.	
Bit 28	MCA_7_4: activity of check performed in module MCS Note: This bit will be cleared on a CPU write access access leaves the bit unchanged.	
Bit 29	MCA_7_5: activity of check performed in module MCS Note: This bit will be cleared on a CPU write access access leaves the bit unchanged.	
Bit 30	MCA_7_6: activity of check performed in module MCS Note: This bit will be cleared on a CPU write access access leaves the bit unchanged.	
Bit 31	MCA_7_7: activity of check performed in module MCS Note: This bit will be cleared on a CPU write access access leaves the bit unchanged.	
	not all MCC madulas are implemented or the channel	la ava waturaad faw

Note: When not all MCS modules are implemented or the channels are not used for check purposes with supervising, the corresponding activity bits remain zero.

22.8.4 Register MON_ACTIVITY_MCS[z] (z:0...9)

Specification

Revision 3.1.5.1

Address Offset:	see Appendix B	Initial Value:	0x	00	00	0_0	00(D	
	31 30 27 28 28 28 28 28 28 22 25 22 23 23 23 21 21 21 19 11 11 11 11 11 11 11 11 11 11 11 11	15 14 13 13 12 11 10 9 8	7	9	۲	9 v	2	1	0
Bit	Reserved		MCA_7		MCA_5	MCA 4 MCA 3	MCA_2	MCA_1	MCA 0
Mode	۲		RCw	RCw	RCW	RCW RCW	RCw	RCw	RCw
Initial Value	00000 00		0	0	0	0 0	0	0	0
Bit 0	MCA_0: activity of check performed Note: This bit will be cleared on a (access leaves the bit unchang	CPU write access ed.	of	/al	ue	1.	A	rea	ad
Bit 1	MCA_1: activity of check performed Note: This bit will be cleared on a (access leaves the bit unchang	CPU write access						rea	ad
Bit 2	MCA_2: activity of check performed Note: This bit will be cleared on a (access leaves the bit unchang	l in module MCS[i] CPU write access						rea	ad
Bit 3	MCA_3: activity of check performed Note: This bit will be cleared on a (access leaves the bit unchang	l in module MCS[i] CPU write access						rea	ad
Bit 4	MCA_4: activity of check performed Note: This bit will be cleared on a (access leaves the bit unchang	l in module MCS[i] CPU write access						rea	ad
Bit 5	MCA_5: activity of check performed Note: This bit will be cleared on a access leaves the bit unchang	l in module MCS[i] CPU write access						rea	ad
Bit 6	MCA_6: activity of check performed Note: This bit will be cleared on a access leaves the bit unchang	l in module MCS[i] CPU write access						rea	ad
Bit 7	MCA_7: activity of check performed Note: This bit will be cleared on a access leaves the bit unchang Note: Unused MCA bits are reserve	CPU write access ed.						rea	эd
Bit 31:8	Reserved: Reserved bits Note: Read as zero should be writte								

Specification

23 Appendix A

23.1 Register Bit Attributes

Mode	Description			
R	Read access			
W	Write access			
Cr	Clear on read access			
Sr	Set on read access			
Cw	Clear by write 1 (clears only those bits with value 1)			
Sw	Set by write 1 (sets only those bits with value 1)			
Aw	Auto clear after write (e.g. trigger something)			
Pw	Protected write (separate write enable bit, e.g. init)			

Below the bit name in a register table, the attributes "Access Mode" and "Reset Value" of each bit are described with the syntax above.

Note: When using Cw or Sw for a bit field e.g. representing a number, a clear / set has to be applied to all bits of the data field, to avoid construction of unintended values different to 0b00..00 and 0b11..11.

23.2 Register Reset Value

Reset Value	Description	
0	logic value is 0 after reset	
1	logic value is 1 after reset	

23.3 ARU Write Address Overview

The ARU write address map is specified in Appendix B [1].

23.4 GTM Configuration Register Address Map

The addresses of the implemented sub-modules are specified in Appendix B [1]. The start and end address of the configured rams are specified in Appendix B [1]. The full address map of all implemented registers, the start and end addresses of configured rams are recorded in Appendix B [1].

23.5 GTM Application Constraints

The constraints put on applications by GTM implementation are specified in Appendix B [1].

23.6 GTM Internal functional dependencies

23.6.1 GTM Internal functional dependencies (part 1)

	Signal paths between GTM-IP modules	/een GTM-IP moo	dules					
	희							
from:	map	mcs	non	psm	spe	tbu	tim	tom
aru								
aru		53 bit data		53 bit data				
atom							ATOM[]_OUT	
brc								
ccm							CCM[]_ CMU_CLK[x]	CCM[i]_ CMU_FXCLK[x]
cmp			CMP_ERR					
cmu			CMU_CLK[x], CMU_FXCLK[x]			CMU_CLK[x]	CMU_CLK[x]	CMU_FXCLK[x]
dpII						SUB_INC1c, SUB_INC2c,		
dtm								
icm								
map	$\left \right\rangle$							
mcs		ig	MCS[i]_ERR, MCS[i]_CH[x]_MCA					
uom								
msq				X				
spe	SPE(]_OUT, SPE(]_NIPD, 							SPE[I]_OUT, SPE[I]_NIPD,
tbu		TBU_TS[x]					TBU_TS[x]	TBU_TS[x]
tim	TIM0_CH0(48:0)	TIM[I]_EXT_ CAPTURE			TIM[i]_CH[x](48)		X	TIM[]_EXT_ CAPTURE
tom					TOMIL_CH0_TRIG_CCU0, TOMI1_CH0_TRIG_CCU1, TOMI1_CH[x1_SOUR,		τοΜί]_ουτ	$\left \right\rangle$

signals IRQ signals IRQ signals IRQ signals IRQ + EIRC signals IRQ + EIRG signals IRQ + EIRC signals IRQ + EIRC signals IRQ + EIRC signals IRQ signals IRQ + EIR(signals IRQ signals RQ + EII ica CLK[x]/FX CMU_CLK[x]/FX CCM[1]_ ATOM[i]_OUT TIM[I]_CH[x] _F_OUT TOM[]_OUT đ CCM[i]_ CMU_CLK[x] STATI DIR, CMU_CLK0 TBU_TS[x], LOW_RES, TS_CLK 53 bit data RIGGER, S T_DIR, S_I lldb CCM[]__ CMU_CLK6 SUB_INC1, SUB_INC2,.. cmu DTM[i]_OUT cmp CMU_CLK[x] ccm 53 bit data brc CCM[I]_ CMU_CLK[x] 53 bit data CMU_CLK[x] TIM[I]_EXT_ CAPTURE between GTM-IP TBU_TS[x] atom 53 bit data aru I paths Signal arch ë cmp lldb nap psm brc CCM cmu dtm icm mcs spe tbu ţ m

23.6.2 GTM Internal functional dependencies (part 2)

23.7 Compatibility Notes

23.7.1 DPLL

The following features of DPLL have changed since GTM v3.1.0 release:

(1) In case of TORI/SORI the DPLL internal pointer handling is continued and the inc_cnt is not frozen.

(2) The acceptance of input signals by configuration of DPLL_CTRL_1.TSL/SSL is extended such that after enabling the by setting DPLL by DPLL_CTRL_1.DEN=1 while DPLL_STATUS.FTD/FSD still '0' the first input signal is treated as level sensitive. In this case the signal level only is used to decide if an input signal is treated as active input signal or not.

Specification

23.7.2 MCS

Since GTM v2.x following feaures of MCS have changed: (1) MCS[i]_CTRL was replaced by MCS[i]_CTRL_STAT: MCS[i]_CTRL is obsolete. MCS[i]_CTRL and MCS[i]_CTRL_STAT have different addresses.

(2) MCS[i]_RST was replaced by MCS[i]_RESET: MCS[i]_RST is obsolete. MCS[i]_RST and MCS[i]_RESET have different addresses.

(3) the new register MCS[i]_CAT contains bits of obsolete register MCS[i]_CTRL

(4) the new register MCS[i]_CWT contains bits of obsolete register MCS[i]_CTRL

(5) the instruction execution time in accelerated mode compared to a GTM v1.x may be faster due to instruction pre-fetching.

Since GTM v3.1.x following features of MCS have changed: (6) the instruction execution time in accelerated mode compared to a GTM v2.x and v1.x may be different due to increased pipeline depth.

(7) On mode switch to SCD_MODE = 0b01 - Round Robin Scheduling - the value of SCD_CH has to be set to appropriate number of tasks. The reset value 0b0000 for SCD_CH means that only task 0 is scheduled.

Specification

24 Revision History

24.1 Revision History Table

lssue	Date	Remark	
3.1.1.0	24.10.2014	GTM v3.1.	1.0
		changes to	o v3.1.0.0
		at all:	
		•	nulti bit definitions (00 01 100 011) to (0b00
			0 0b011)
			in column Description of register overview nodule name
		GTM:	
		2.1	Information about appendix B
			Information about virtual hierarchy PSM
			Information about virtual hierarchy CDTM
			Information about new cluster structure
		2.1.3	changed figure GTM-IP signal multiplex
		2.1.4	changed figure TIM auxiliary input multiplexing
		2.1.6	changed figure TIM to MCS signal forwarding
		2.3.1	table Overview about the number of channels replaced by table ARU source and destination address count per instance
		2.9.2	new bits BRIDGE_MODE_WREN
		2.9.5	new bits CLK_EN_ERR, CLK_PER_ERR, CLK_EN_ERR_STATE and CLK_EN_EXP_STATE
		2.9.6	new bits CLK_EN_ERR_IRQ_EN and CLK_PER_ERR_IRQ_EN
		2.9.7	new bits TRG_CLK_EN_ERR and TRG_CLK_PER_ERR
		2.8	new register GTM_CFG
		2.9.9	detailed information: MSK_WR_RSP new bit BYPASS SYNC
		2.9.13	new bits CLK_EN_ERR_EIRQ_EN and CLK_PER_ERR_EIRQ_EN
		2.9.14	changed definition of SRC_CH07 new bits SEL_OUT_N_CH07
		2.9.15	new bit INT_CLK_EN_GEN
		2.9.19	new register GTM_CFG

GTM-IP

Specification

ARU: 3.5 3.6 3.7.17ff	ARU prefix added to access acknowledge IRQ bit changed index x to z changed index x to z
BRC: 4.4 4.5.1ff	changed index x to z changed index x to z
FIFO: 5.4 5.5.1ff	changed index x to z changed index x to z
AFD: 6.2 6.3.1	changed index x to z changed index x to z
F2A: 7.1 7.4 7.5.1 7.5.2ff 7.5.4	additional stream information about enable and disable changed index x to z additional stream information changed index x to z additional stream information
CMU: 8.1.1 8.3 8.8.4ff 8.8.5	updated CMU block diagram removed sources for CMU_CLK6 and CMU_CLK7 additional hint that EN_ECLK1 must be disabled, too changed index x to z removed bit for source selector of CMU_CLK6
CCM: 9.1 9.1.1	information about cluster clock configuration about CCM[i]_(CMU_CLK_CFG, CMU_FXCLK_CFG) information about mirroring of new registers CCM[i]_(HW_CONF, AUX_IN_SRC, EXT_CAP_EN, TOM_OUT, ATOM_OUT)
9.3	

Specification

BOSCH Revision 3.1.5.1

((日))

9.4.2	bits CLK1_SRC, CLK6_SRC, FXCLK0_SRC, TBU_CH2_SRC removed,
9.4.3	bit CLS_CLK_DIV added bit TBU_TS2 replaced by CLK0_SRC,
	CLK1_SRC added
9.4.4 9.4.8-12	• • • • •
	TIM_AUX_IN_SRC, EXT_CAP_EN, TOM_OUT, ATOM_OUT)
TBU: 10.1	new channel for relative angle
10.1.1	updated TBU block diagram
10.4.4ff	separated description for CH1 and CH2_CTRL registers
10.4.5	removed bit TS2_SRC
TIM: 11.1.1	changed figure TIM Block Diagram
11.1.2	new sub chapter internal connectivity
11.1.3	contains information from 11.1.1 partly changed figure INPUTSRC Block Diagram
11.4.1.1	added additional functionality changed figure TIM Channel Architecture
11.4.2.7	inserted figure TIM Serial Shift Mode introduced configurable init value
11.4.2.7.	1 new sub chapter Signal Generation with TIM Serial Shift Mode
11.4.2.7.5	2 extended external capture functionality
11.8.1ff	
11.8.7	reworded for mode TSSM in CNT
11.8.16	detailed definition: SLICING
11.8.17	additional note
11.8.19	detailed definition: behavior TDU_RESYNC new bit USE_LUT
TOM:	
12.2.2	naming of SOMP mode removed
12.7	reworded column "Description"
12.8.1ff	detailed definition: double bits
12.8.1 12.8.3	reworded bit description UPEN_CTRL reworded bit description ENDIS_STAT
12.8.6ff	detailed information about write/read function

Revision 3.1.5.1

BOSCH

12.8.7	reworded bit description FUPD_CTRL0 and
12.0.7	RSTCN0_CH0
12.8.7	reworded bit description INT_TRIG0
12.8.9	reworded bit description CLK_SRC_SR,
	SPE_TRIG and SPEM
	new bit ECLK_SRC
12.8.16	reworded bit description CCU1TC
ATOM:	
13.1	reworded update via ARU in SOMP mode
13.3	exception of bit reverse mode removed
13.3.1.1	reworded bit description SL, additional "Not
10.0.1.1	used" bits
13.3.2.2	reworded exception sentence
13.3.2.3	reworded exception sentence
13.3.2.4	reworded bit description SL, bit ESLS
	renamed to bit EUPD, additional "Not used" bits
13.3.3.9	reworded bit description SL and
	CLK_SRC_SR,
	new bits ECLK_SRC and EXT_FUPD
13.3.4.10	reworded bit description SL and
	CLK_SRC_SR,
	new bits ECLK_SRC and EXT_FUPD
13.3.5.4	reworded bit description SL, bit ESLS
	renamed to bit EUPD, additional "Not used"
10 5	bits
13.5	reworded column "Description"
13.6.1	reworded bit description UPEN_CTRL0
13.6.6	reworded bit description OUTEN_STAT0
13.6.7	reworded bit description FUPD_CTRL0 and RSTCN0 CH0
13.6.8	reworded bit description INT TRIG0
13.6.9	reworded bit description SL and
	CLK_SRC/CLK_SRC_SR
	new bits ECLK_SRC and EXT_FUPD,
	bit ESLS renamed to bit EUPD
DTM:	
14.1ff	changed figure Overview
	renaming OUT to COUT, TIM CH IN1
	added to description,
	cluster DTM (CDTM) introduced,
14.3.1	additional TIM input port
14.4	additional TIM input port
14.3.1	detailed specification of connections between TIM, TOM, ATOM and DTM
14.4	additional TIM input port

14.6 14.8ff	additional TIM input port cluster DTM prefix (CDTM) added to register
14.00	name
14.9.6	new bit TIM_SEL
MCS:	
15.1	updated parameter list
15.4 15.7	clarified memory description updated register set XOREG
15.7.1	2-parts-table Instruction Set Summary
	divided into 3 parts
15.7.2	
	clarified description of ARU instruction.
15.7.45	updated description of new instructions DIVU, DIVS, and MODU
17.7.73	renamed instruction WURL to WURLE
17.7.74	new instructions WUBS
15.8	new registers DSTAX
15.9.3	additional information in note new register DSTAX
	corrected note of register
10.11.12	MCS[i]_REG_PROT
MCFG:	
16.3.1	new bits MEM7 to MEM9
DPLL:	
18.5.6,8	
18.6.2.2	some corrections for equation DPLL-1b in DPLL-1b1, DPLL-1b2 and DPLL-1b3
18.6.2.7	additional formula DPLL-5a2 to DPLL-5a3 and DPLL-5c
18.6.3.2	some corrections for equation DPLL-6b in DPLL-6b1, DPLL-6b2 and DPLL-6b3
18.7.4	some changes index p to t
18.8.3	modified equation DPLL-21 and DPLL-22
18.8.4	modified equation DPLL-27 and DPLL-28
18.8.6.7	removed TOR=0 condition for SYT=1 in step 1
	corrected usage of PD_store in step 5
	removed SOR=0 condition for SYS=0,FSD=1 and SYS=1 in step 21
	corrected usage of PD_store in step 25
18.10	new interface chapter
18.11	corrected notes 2 and 3 for register table
	modified description of address offset for RAM 1a data fields

Revision 3.1.5.1

	corrected notes 1 and 2 for RAM1 table corrected register names and new registers for region EXT removed registers DPLL_(CTN_MIN,
	CTN_MAX, CSN_MIN, CSN_MAX) corrected notes 3 and 4 for region EXT table
	additional information for other devices
18.12.1	
18 12 2	improved note for RMO additional note for SYN NS
	removed note about device 4
	detailed information about new PMTR
18.12.11	additional note
18.12.13	additional note
	additional note for NUSE, FSS, SYN_S, SYN_S_OLD and VSN
	additional note for APS_1C2_EXT, APS_1C2_STATUS and APS_1C2_OLD
	removed note for special devices
	f additional information about negative PD and PD_S
	removed information about device 4
	f corrected description about FTD/FSD=1
18.12.88-	91 new register note additional details about PD_S
18.12.92-	
	additional notes for ACB_x
	new bits STATE_EXT and WSTATE_EXT
18.12.110	
	new registers DPLL_(INC_CNT1_MASK, INC_CNT2_MASK, NUSC_EXT1, NUSC_EXT2, APS_SYNC_EXT, CTRL_EXT)
	additional information for other devices
18.14.3	modified definition of PD parameter
18.15	new register chapter
SPE:	
19.1.1	changed figure SPE Submodule integration concept
19.2.1	changed figure SPE to TOM Connections
19.2.2	changed figure SPE Submodule architecture
19.5.1	reworded bit description TRIG_SEL and ETRIG_SEL
ICM:	

Specification

20.2.	1 additional details about new SPE and PSM CI registers
20.2.	4 MCS channels changed from 32 to 9
20.2.	-
20.2.	6 additional details about new SPE CEI
20.2.	register 7 additional details about new PSM CEI
20.2.	register 9 MCS channels changed from 32 to 9
20.2.	changed last MCS instance to 7
20.2. 20.4	S <u> </u>
20.4	-
20.5.	PSM0_CH0_IRQ
	removed description and note to PSM1_CH0_IRQ
	new bits SPE4 IRQ and SPE5 IRQ
20.5.	2 additional note to DPLL EDI IRQ
20.5.	additional note to TIM0 CH0 IRQ
20.5.	4 additional note to TIM4 CH0 IRQ
	new bits TIM7_CHx_IRQ
20.5.	
20.5.	
	new bits MCS7_CHx_IRQ
20.5.	
	10-12 additional notes to ATOM(0, 4,
	8) CH0 IRQ
20.5.	13 additional note to GTM_EIRQ
	new bits TIM7_EIRQ and MCS7_EIRQ
20.5.	
20.5.	
20.5.	18 new bits MCS7_CH0_EIRQ to
20.5.	MCS7_CH7_EIRQ 19ff changed range ICM_IRQG_MCS0_CI to
	ICM_IRQG_MCS6_CI to ICM_IRQG_MCS[i]_CI
	changed range ICM_IRQG_MCS0_CEI to
	ICM_IRQG_MCS6_CEI to
	ICM_IRQG_MCS[i]_CEI new registers ICM_IRQG_SPE_CI,
	ICM_IRQG_SPE_CEI,
	ICM_IRQG_PSM_0_CI,
	ICM_IRQG_PSM_0_CEI,
	ICM_IRQG_TOM_[k]_CI,

			ICM_IRQG_ATOM_[k]_CI and ICM_IRQG_CLS_[k]_MEI
		CMP:	
		21.1	changed instance naming to new cluster structure
		21.1.1	changed figure Architecture of the Compare Unit
		21.2	changed bitwise compare table included TBWC unit table
		21.4	additional information about new primary port
		MON:	
		22.1.1 22.2	changed figure MON Block Diagram changed CMU clocks to 9
		22.4ff	changed number of maximum MCS instances to 10
			changed number of maximum MCS channels to 9
		22.8.1	new bits ACT_CMU8 and MCS7_ERR to
		22.8.3	MCS9_ERR new bits MCA_7_0 to MCA_7_7
		22.8.4	changed index i to z removed bits MCA_9 to MCA_31
		APP: 23.6	removed wrong figure number changed figure GTM internal functional dependencies
3.1.2.0	17.12.2014	GTM v3.1.2 changes to	
		at all: Each Table	and figure do have their own headlines.
		•	ter Overview tables: to XML output
		GTM: 2.4.2 2.9.15 2.9.18 2.9.19	Information about cyclic event compare new note for bit CFG_CLOCK_RATE new note for bit TIM_EXT_CAP_EN new note
		ARU:	

3.1 3.4.1.1	introduction of keyword ARU read ID description of dynamic routing ring mode improved
CMU: 8.1.1 8.8.11	updated CMU block diagram included bit level definition
CCM: 9.4.2 9.4.3	bits TBU_DIR1 and TBU_DIR2 added only read mode for reserved bits decimal bit level description changed to binary
TIM: 11.1.5 11.4.2.2 11.4.2.2.1	changed figure EXTCAPSRC Block Diagram detailed information about pulse times and DSL ???
ATOM: 13.1.2.2 13.2.1 13.3.2.3.9 13.6.9	changed "signed" with "cyclic event" in a note changed "signed" with "cyclic event" twice reworded capture event for SR0/1 reworded bit description EUPM
DTM: 14.1.4 14.2.1 14.6 14.9.2	detailed information to neighbored DTM instances reduced to one channel overview figure changed reset priority of SHUT_OFF_SYNC from high to low new bit I1SEL_0
MCS: 15.7 15.7.2 15.7.9 15.7.11 15.7.43ff	updated register set XOREG by register DSTAX added register set WXREG and BAREG new note about ERR bit changed XOREG to BAREG for register B changed XOREG to BAREG for register B updated description of instructions DIVU and DIVS removed instruction MODU (modulo result is now part of DIVU and DIVS)

		17.7.70ff	changed XOREG to OREG for register A changed XOREG to WXREG for register B
		17.7.72	replaced WURLE by WUCE instruction removed instruction WUBS (can be realized
			by WURMX)
		15.9.3	removed MODU for bit ERR
		15.9.13	
		15.11.11	adapted for bit EN_XOREG
		DPLL:	
			additional formula DPLL-5c
			additional formula DPLL-10c
		18.6.4.4	
		18.6.5.4	
		18.8.6.7	removed TOR=0 condition for SYT=1 in step 1
		18.11.1	changed table structure as usual as other register overview
		18.11.2ff	spliited ram region 1 table into 4 tables
		18.11.6	changed table structure as usual as other register overview
		18.12.1	additional information for SNU and TNU
		18.12.2	additional information for SYN_NS, SYN_NT, SYSF, SSL and TSL
		18.12.31	NOAC is defined in appendix B
		18.12.99-	102
		18.12.109	re-added registers DPLL_(CTN_MIN, CTN_MAX, CSN_MIN, CSN_MAX) additional information to bit STA_FLAG_s, INC_CNT1_FLAG and INC_CNT2_FLAG about visible to MCS0
		18.12.110	Off removed information about visible to MCS0
		18.14.1ff	additional information about starting index
		ICM:	
			removed bit 8 for MCS channel 8
		MON:	
		22.8.4	removed bits MCA_8 to MCA_9
3.1.3.0	13.05.2015	GTM v3.1.3	3.0
		changes to	v3.1.2.0
		at all: Each Table	and figure do have their own headlines.

Specification

•	ter Overview tables: to XML output
GTM: 2.1 2.2.1.2 2.9.5 2.9.20	Changed title of figure 2.1.1 changed description for returned 0b10 new register GTM_AEI_STA_XPT changed initial values to 0bx additional hints for usage CFG_CLOCK_RATE
FIFO: 5.2.2	precising add data behaviour
CMU: 8.3	removed alternatively CLK6 sentence corrected signal name to CMU_ECLK1_EN corrected description for ECLK usage.
CCM: 9.4.2 9.4.5 9.4.6	changed initial value for CLS_CLK_DIV to 0bxx changed bit vector to 15:0 changed initial value from SIZE to 0b0011
TBU: 10.1 10.1.1 10.4.7 10.4.10	precising description of the channel usage corrected TBU_CH[y]_BASE equation updated figure, corrected usage TBU_TS1+2 and TBU_TC1+2 changed TBU_TSx to TBU_TCx changed TBU_TSx to TBU_TCx
TIM: 11.1.3 11.4.2.2	corrected register name to TIM[i]_IN_SRC corrected DSL usage
TOM: 12.3.3 12.3.6.1	precising description about CN0 counter additional not about up-down counter mode
13.3.2.3.8	5 precising description about usage EUPM=1 3 precising description about ARU Non- Blocking mode 9 precising description about ARU Blocking mode

13.3.2.4	precising description about EUPM and ABM
	in SOMC mode
	additional not about up-down counter mode
	precising description to avoid an update
13.3.3.9	additional description for CLK_SRC_SR and FREEZE in SOMP mode
13.3.4.10	additional description for CLK SRC SR in
	SOMS mode
13.3.5.2	corrected register name ATOM[i]_CH[x]_CTRL for ACB bits
13.3.5.4	
13.6.7	additional hints for FUPD_CTRL0
13.6.9	precising description for EUPM,
	CLK_SRC_SR, ABM and FREEZE
DTM:	
14.1.2ff	corrected signal input names for TIM_CH_IN
14.1.4	additional note
14.2.4ff	corrected index for channel, DTM_IN and DTM OUT
14.3.1	corrected note
14.6	corrected description of SHUT_OFF
14.9.2	additional notes to XDT_EN bits
MCS:	
15.2	changed bit width of common triger register to 24
15.6	precising ADC interface
15.7.21ff	precising instruction BRD, BWR, BRDI, BWRI, SHR, SHL, MULU, MULS, DIVU, DIVS and WUCE
15.11.11	additional not for HLT_AEIM_ERR
15.11.15	corrected note
DPLL:	
18.6.2.2	additional note
18.6.2.7	corrected equations 5a2,5b
18.6.3.2	additional note
18.6.3.7	corrected equations 10a2,10b
	corrected equations 5a6,5b
	corrected equations 10a6,10b
18.7.6.2ff	corrected equation 17a
	additional description about ACBU bit of CTRL11 register
18782ff	corrected equation 20a

additional description about ACBU bit of CTRL11 register 18.10.2.1 corrected table 18.12.14 additional note for NUTE 18.12.15 additional note for NUSE 18.12.79 precising note 18.12.95 additional bits ADT, ADS, WADT and WADS 18.12.114 corrected STATE events to 128 18.15.7 corrected STA S values 18.15.13 corrected STA S values SPE: 19.5.13 additional note for bits SPE CTRL CMD ICM: 20.4 removed ICM IRQG 8 two additional bit for AEI IRQ 20.5.1 two additional bit for AEI EIRQ 20.5.13 APP-A: new compatability notes for MCS 23.7.2 12.06.2015 3.1.4.0GTM v3.1.4.0 changes to v3.1.3.0 ARU: 3.4.1.1.1 precising usage of parameter in ring mode DTM: 14.1.4 updated figure; no TIMi CH2 F OUT connection DPLL: 18.7.8.2 corrected indices for ACB 18.7.8.3 corrected indices for ACB 3.1.5.0 06.07.2015 GTM v3.1.5.0 changes to v3.1.4.0 GTM: additional note for cmu frquency limitation 2.9.20 CMU:

Confidential

		Q 1#	corrected primary cleak course from ave. all
		8.1ff	corrected primary clock source from sys_clk to cls0_clk
		8.6	corrected equation $T_{CMU_ECLK[z]}$ to
			T _{CMU_ECLK[z]_EN}
			corrected primary clock source from sys_clk to cls0 clk
		8.8.11	corrected primary clock source from sys_clk
			to cls0_clk
		CCM:	
		9.4.12	precised meaning of index i
		MCS:	
		15.7.2.1	additional information about write access to protected register
		15.7.15ff	limitation of duration
		15.7.19ff	corrected : duration and description
		DPLL:	
			corrected TISI interrupt
			additional SIP1 information for FTD=0 in
		10 10 05	step 1
		18.12.95	additional SIP=1 information
3.1.5.1	24.03.2016	GTM v3.1.5	5.1
		changes to	v3.1.5.0
		changed de	escription: 1_EXT_CAP_EN_[i] to
			I_LXT_CAP_EN
			1 HW CONF to
		CCM[i]_HW_CONF	
		GTM:	
		2.2.1.2	additional note for behaviour of register CMU CLK CTRL
		2.4.1	information about absolute angle clock precising
		2.8.1	register decription TIM_AUX_IN_SRC, HW_CONF, TOM_OUT, ATOM_OUT and
		0.0.10	EXT_CAP_EN moved to chapter CCM
		2.9.10	additional note for write protection
1			
		ARU:	

٦

1	FIFO: 5.2.2	information about continuous data stream precised
(CMU: 8.7.4	description for CLK_CNT corrected
		register name corrected register decription TIM_AUX_IN_SRC, HW_CONF, TOM_OUT, ATOM_OUT and EXT_CAP_EN moved from chapter 2
-	TBU: 10.1.1	block diagramm corrected
-	TOM: 12.8.9	description of bit 20 RST_CCU0 corrected
1		statement about standard dead time removed
ſ	15.4 15.7.24,26 15.7.75	MCS architecture figure desciption precised maximum write access time corrected additional information about MHB register additional information about subtraction result MCS[i]_MEM description included
	18.8.3 18.12.3-6	Note about "All 5 steps" moved from the end to the beginning of the subchapter description of SUB_INCx generation moved from end to the beginning of the subchapter Note about protection moved to the end of the bit field description
		13,15,25,88-91,94,112-117 Note about usage moved to the end of the bit field description
		additional note usage og recent TRIGGER events
		description about pointer behaviour removed for SOR and TOR
	18.12.94	NOAC limitation removed

GTM-IP	Specification	Revision 3.1.5.1
	18.12.95 description for INC 18.12118ff DPLL MEM descri 18.13.3 Action description of 18.15 MS2DPLL interface	iption included corrected
	CMP: 20.1 additional note for and comparison	combination frequency
	App: 23.7.1 additional hint 2 23.7.2 additional hint 7	

Specification

25 Conventions

The following conventions are used within this document.ARIAL BOLD CAPITALSNames of register and register bitsArial italicNames of signalsCourierExtracts of files

Specification

26 References

This document refers to the following documents.

- Ref Authors(s), Title, Revision
- 1 AE/PJ-SCI, GTM-IP Specification Appendix B, v3.1.5.1

Specification

27 Disclaimer

LEGAL NOTICE

© Copyright 2008-2016 by Robert Bosch GmbH and its licensors. All rights reserved.

"Bosch" is a registered trademark of Robert Bosch GmbH.

The content of this document is subject to continuous developments and improvements. All particulars and its use contained in this document are given by BOSCH in good faith.

NO WARRANTIES: TO THE MAXIMUM EXTENT PERMITTED BY LAW, NEITHER THE INTELLECTUAL PROPERTY OWNERS, COPYRIGHT HOLDERS AND CONTRIBUTORS, NOR ANY PERSON, EITHER EXPRESSLY OR IMPLICITLY, WARRANTS ANY ASPECT OF THIS SPECIFICATION, SOFTWARE RELATED THERETO, CODE AND/OR PROGRAM RELATED THERETO, INCLUDING ANY OUTPUT OR RESULTS OF THIS SPECIFICATION, SOFTWARE RELATED THERETO, CODE AND/OR PROGRAM RELATED THERETO UNLESS AGREED TO IN WRITING. THIS SPECIFICATION, SOFTWARE RELATED THERETO, CODE AND/OR PROGRAM RELATED THERETO IS BEING PROVIDED "AS IS", WITHOUT ANY WARRANTY OF ANY TYPE OR NATURE, EITHER EXPRESS OR IMPLIED, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF INCLUDING, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, AND ANY WARRANTY THAT THIS SPECIFICATION, SOFTWARE RELATED THERETO, CODE AND/OR PROGRAM RELATED THERETO IS FREE FROM DEFECTS. ASSUMPTION OF RISK: THE RISK OF ANY AND ALL LOSS, DAMAGE, OR UNSATISFACTORY PERFORMANCE OF THIS SPECIFICATION (RESPECTIVELY THE PRODUCTS MAKING USE OF IT IN PART OR AS A WHOLE), SOFTWARE RELATED THERETO, CODE AND/OR PROGRAM RELATED THERETO RESTS WITH YOU AS THE USER. TO THE MAXIMUM EXTENT PERMITTED BY LAW. NEITHER THE INTELLECTUAL PROPERTY OWNERS, COPYRIGHT HOLDERS AND CONTRIBUTORS, NOR ANY PERSON EITHER EXPRESSLY OR IMPLICITLY, REPRESENTATION MAKES ANY OR WARRANTY REGARDING THE APPROPRIATENESS OF THE USE, OUTPUT, OR RESULTS OF THE USE OF THIS SPECIFICATION, SOFTWARE RELATED THERETO, CODE AND/OR PROGRAM RELATED THERETO IN TERMS OF ITS CORRECTNESS, ACCURACY, RELIABILITY, BEING CURRENT OR OTHERWISE. NOR DO THEY HAVE ANY OBLIGATION TO CORRECT ERRORS, MAKE CHANGES, SUPPORT THIS SPECIFICATION, SOFTWARE RELATED THERETO, CODE AND/OR PROGRAM RELATED THERETO, DISTRIBUTE UPDATES, OR PROVIDE NOTIFICATION OF ANY ERROR OR DEFECT, KNOWN OR UNKNOWN. IF YOU RELY UPON THIS SPECIFICATION, SOFTWARE RELATED THERETO, CODE AND/OR PROGRAM RELATED THERETO, YOU DO SO AT YOUR OWN RISK, AND YOU ASSUME THE RESPONSIBILITY FOR THE RESULTS. SHOULD THIS SPECIFICATION, SOFTWARE RELATED THERETO, CODE AND/OR PROGRAM RELATED THERETO PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL LOSSES, INCLUDING, BUT NOT LIMITED TO, ANY NECESSARY SERVICING, REPAIR OR DISCLAIMER: IN NO EVENT, UNLESS REQUIRED BY LAW OR AGREED TO IN WRITING, SHALL THE INTELLECTUAL PROPERTY OWNERS, COPYRIGHT HOLDERS OR ANY PERSON BE LIABLE FOR ANY LOSS, EXPENSE OR DAMAGE, OF ANY TYPE OR NATURE ARISING OUT OF THE USE OF, OR INABILITY TO USE THIS SPECIFICATION, SOFTWARE RELATED THERETO, CODE AND/OR PROGRAM RELATED THERETO, INCLUDING, BUT NOT LIMITED TO, CLAIMS, SUITS OR CAUSES OF ACTION INVOLVING ALLEGED INFRINGEMENT OF COPYRIGHTS, PATENTS, TRADEMARKS, TRADE SECRETS, OR UNFAIR COMPETITION.

INDEMNIFICATION: TO THE MAXIMUM EXTEND PERMITTED BY LAW YOU AGREE TO INDEMNIFY AND HOLD HARMLESS THE INTELLECTUAL PROPERTY OWNERS, COPYRIGHT HOLDERS AND CONTRIBUTORS, AND EMPLOYEES, AND ANY PERSON FROM AND AGAINST ALL CLAIMS, LIABILITIES, LOSSES, CAUSES OF ACTION, DAMAGES, JUDGMENTS, AND EXPENSES, INCLUDING THE REASONABLE COST OF ATTORNEYS' FEES AND COURT COSTS, FOR INJURIES OR DAMAGES TO THE PERSON OR PROPERTY OF THIRD PARTIES, INCLUDING, WITHOUT LIMITATIONS, CONSEQUENTIAL, DIRECT AND INDIRECT DAMAGES AND ANY ECONOMIC LOSSES, THAT ARISE OUT OF OR IN CONNECTION WITH YOUR USE, MODIFICATION, OR DISTRIBUTION OF THIS SPECIFICATION, SOFTWARE RELATED THERETO, CODE AND/OR PROGRAM OUTPUT. RELATED THERETO, ITS OR ANY ACCOMPANYING DOCUMENTATION.

GOVERNING LAW: THE RELATIONSHIP BETWEEN YOU AND ROBERT BOSCH GMBH SHALL BE GOVERNED SOLELY BY THE LAWS OF THE FEDERAL REPUBLIC OF GERMANY. THE STIPULATIONS OF INTERNATIONAL CONVENTIONS REGARDING THE INTERNATIONAL SALE OF GOODS SHALL NOT BE APPLICABLE. THE EXCLUSIVE LEGAL VENUE SHALL BE DUESSELDORF, GERMANY.

MANDATORY LAW SHALL BE UNAFFECTED BY THE FOREGOING PARAGRAPHS.

INTELLECTUAL PROPERTY OWNERS/COPYRIGHT OWNERS/CONTRIBUTORS: ROBERT BOSCH GMBH, ROBERT BOSCH PLATZ 1, 70839 GERLINGEN, GERMANY AND ITS LICENSORS.