
Automotive Electronics

GTM-IP Application note Revision 0.1

Robert Bosch GmbH i 11.02.2013

GTM-IP

Application Note AN016

GTM SPI application

Date: 11.02.2013

Robert Bosch GmbH
Automotive Electronics (AE)

Automotive Electronics

GTM-IP Application note Revision 0.1

Robert Bosch GmbH ii 11.02.2013

LEGAL NOTICE

© Copyright 2011 by Robert Bosch GmbH and its licensors. All rights reserved.

“Bosch” is a registered trademark of Robert Bosch GmbH.

The content of this document is subject to continuous developments and
improvements. All particulars and its use contained in this document are given by
BOSCH in good faith.

NO WARRANTIES: TO THE MAXIMUM EXTENT PERMITTED BY LAW, NEITHER
THE INTELLECTUAL PROPERTY OWNERS, COPYRIGHT HOLDERS AND
CONTRIBUTORS, NOR ANY PERSON, EITHER EXPRESSLY OR IMPLICITLY,
WARRANTS ANY ASPECT OF THIS SPECIFICATION, SOFTWARE RELATED
THERETO, CODE AND/OR PROGRAM RELATED THERETO, INCLUDING ANY
OUTPUT OR RESULTS OF THIS SPECIFICATION, SOFTWARE RELATED
THERETO, CODE AND/OR PROGRAM RELATED THERETO UNLESS AGREED
TO IN WRITING. THIS SPECIFICATION, SOFTWARE RELATED THERETO, CODE
AND/OR PROGRAM RELATED THERETO IS BEING PROVIDED "AS IS",
WITHOUT ANY WARRANTY OF ANY TYPE OR NATURE, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, AND ANY
WARRANTY THAT THIS SPECIFICATION, SOFTWARE RELATED THERETO,
CODE AND/OR PROGRAM RELATED THERETO IS FREE FROM DEFECTS.

ASSUMPTION OF RISK: THE RISK OF ANY AND ALL LOSS, DAMAGE, OR
UNSATISFACTORY PERFORMANCE OF THIS SPECIFICATION (RESPECTIVELY
THE PRODUCTS MAKING USE OF IT IN PART OR AS A WHOLE), SOFTWARE
RELATED THERETO, CODE AND/OR PROGRAM RELATED THERETO RESTS
WITH YOU AS THE USER. TO THE MAXIMUM EXTENT PERMITTED BY LAW,
NEITHER THE INTELLECTUAL PROPERTY OWNERS, COPYRIGHT HOLDERS
AND CONTRIBUTORS, NOR ANY PERSON EITHER EXPRESSLY OR
IMPLICITLY, MAKES ANY REPRESENTATION OR WARRANTY REGARDING THE
APPROPRIATENESS OF THE USE, OUTPUT, OR RESULTS OF THE USE OF
THIS SPECIFICATION, SOFTWARE RELATED THERETO, CODE AND/OR
PROGRAM RELATED THERETO IN TERMS OF ITS CORRECTNESS,
ACCURACY, RELIABILITY, BEING CURRENT OR OTHERWISE. NOR DO THEY
HAVE ANY OBLIGATION TO CORRECT ERRORS, MAKE CHANGES, SUPPORT
THIS SPECIFICATION, SOFTWARE RELATED THERETO, CODE AND/OR
PROGRAM RELATED THERETO, DISTRIBUTE UPDATES, OR PROVIDE
NOTIFICATION OF ANY ERROR OR DEFECT, KNOWN OR UNKNOWN. IF YOU
RELY UPON THIS SPECIFICATION, SOFTWARE RELATED THERETO, CODE
AND/OR PROGRAM RELATED THERETO, YOU DO SO AT YOUR OWN RISK,
AND YOU ASSUME THE RESPONSIBILITY FOR THE RESULTS. SHOULD THIS
SPECIFICATION, SOFTWARE RELATED THERETO, CODE AND/OR PROGRAM
RELATED THERETO PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
LOSSES, INCLUDING, BUT NOT LIMITED TO, ANY NECESSARY SERVICING,
REPAIR OR CORRECTION OF ANY PROPERTY INVOLVED TO THE MAXIMUM
EXTEND PERMITTED BY LAW.

Automotive Electronics

GTM-IP Application note Revision 0.1

Robert Bosch GmbH iii 11.02.2013

DISCLAIMER: IN NO EVENT, UNLESS REQUIRED BY LAW OR AGREED TO IN
WRITING, SHALL THE INTELLECTUAL PROPERTY OWNERS, COPYRIGHT
HOLDERS OR ANY PERSON BE LIABLE FOR ANY LOSS, EXPENSE OR
DAMAGE, OF ANY TYPE OR NATURE ARISING OUT OF THE USE OF, OR
INABILITY TO USE THIS SPECIFICATION, SOFTWARE RELATED THERETO,
CODE AND/OR PROGRAM RELATED THERETO, INCLUDING, BUT NOT LIMITED
TO, CLAIMS, SUITS OR CAUSES OF ACTION INVOLVING ALLEGED
INFRINGEMENT OF COPYRIGHTS, PATENTS, TRADEMARKS, TRADE
SECRETS, OR UNFAIR COMPETITION.

INDEMNIFICATION: TO THE MAXIMUM EXTEND PERMITTED BY LAW YOU
AGREE TO INDEMNIFY AND HOLD HARMLESS THE INTELLECTUAL
PROPERTY OWNERS, COPYRIGHT HOLDERS AND CONTRIBUTORS, AND
EMPLOYEES, AND ANY PERSON FROM AND AGAINST ALL CLAIMS,
LIABILITIES, LOSSES, CAUSES OF ACTION, DAMAGES, JUDGMENTS, AND
EXPENSES, INCLUDING THE REASONABLE COST OF ATTORNEYS’ FEES AND
COURT COSTS, FOR INJURIES OR DAMAGES TO THE PERSON OR
PROPERTY OF THIRD PARTIES, INCLUDING, WITHOUT LIMITATIONS,
CONSEQUENTIAL, DIRECT AND INDIRECT DAMAGES AND ANY ECONOMIC
LOSSES, THAT ARISE OUT OF OR IN CONNECTION WITH YOUR USE,
MODIFICATION, OR DISTRIBUTION OF THIS SPECIFICATION, SOFTWARE
RELATED THERETO, CODE AND/OR PROGRAM RELATED THERETO, ITS
OUTPUT, OR ANY ACCOMPANYING DOCUMENTATION.

GOVERNING LAW: THE RELATIONSHIP BETWEEN YOU AND ROBERT BOSCH
GMBH SHALL BE GOVERNED SOLELY BY THE LAWS OF THE FEDERAL
REPUBLIC OF GERMANY. THE STIPULATIONS OF INTERNATIONAL
CONVENTIONS REGARDING THE INTERNATIONAL SALE OF GOODS SHALL
NOT BE APPLICABLE. THE EXCLUSIVE LEGAL VENUE SHALL BE
DUESSELDORF, GERMANY.

MANDATORY LAW SHALL BE UNAFFECTED BY THE FOREGOING
PARAGRAPHS.
INTELLECTUAL PROPERTY OWNERS/COPYRIGHT OWNERS/CONTRIBUTORS:
ROBERT BOSCH GMBH, ROBERT BOSCH PLATZ 1, 70839 GERLINGEN,
GERMANY AND ITS LICENSORS.

Automotive Electronics

GTM-IP Application note Revision 0.1

Robert Bosch GmbH iv 11.02.2013

Revision History

Issue Date Remark
0.1 11.2.2013 Initial version

Tracking of major changes

Changes between revision 1.x and 1.y
NA

Conventions

The following conventions are used within this document.
ARIAL BOLD CAPITALS Names of signals
Arial bold Names of files and directories
Courier bold Command line entries
Courier Extracts of files

References

This document refers to the following documents.
Ref Authors(s) Title
1 AE/EIN2 GTM-IP Specification

Terms and Abbreviations

This document uses the following terms and abbreviations.
Term Meaning
GTM Generic Timer Module

Automotive Electronics

GTM-IP Application note Revision 0.1

Robert Bosch GmbH v 11.02.2013

Table of Contents

1 Overview ... 1
1.1 Use case .. 1
1.2 System architecture ... 2
2 Submodule setup ... 4
2.1 CMU and TBU setup ... 4
2.2 SPI transceiver .. 5
2.3 SPI receiver ... 8
3 Test Environment ... 11
3.1 Error Codes .. 12

Automotive Electronics

GTM-IP Application note Revision 0.1

Robert Bosch GmbH 1/12 11.02.2013

1 Overview

This application note provides an example about a GTM related implementation of a
simple Serial Peripheral Interface (SPI) transceiver (TX) and SPI receiver (RX)
module. The example may be used as a starting point for developing more complex
protocol transceivers or receivers with the GTM.

The SPI transceiver module allocates an MCS channel for transceiver protocol
integration and three ATOM channels for output signal generation. The receiver
module allocates another MCS channel for receiver protocol integration and three
TIM channels for input signal capturing.

1.1 Use case

Figure 1.1 shows the timing diagram of the SPI protocol that is used in this
application note. The signal CE is used as a chip enable signal, which indicates a
valid data transfer with a low active signal level. The signal CLK provides the serial
clock signal for the data transfer. With each rising edge of CLK, the transceiver drives
a new data bit on its output signal SDATA. On the other hand, the SPI receiver
module samples a new incoming data bit on the signal SDATA with each falling edge
of CLK.

Figure 1.1: Timing diagram of SPI protocol.

The SPI transmitter module presented in this application note allows to send data
with a variable bit width W (with W < 24) and a variable bit clock period T with
(T > 3⋅ARU Round trip cycle) for the Transceiver and (T > 1⋅ARU Round trip cycle
but not faster than 21 instruction cycles) for the Receiver. The SPI receiver module
can also be configured to accept a desired bit width W (with W < 24). Moreover, the
receiver also inspects the bit clock period T of the incoming signal CLK and it will
generate an error, when a specified timeout value is expired. If the CE signal is

CLK

SDATA

CE

D1D0 D2 D3 D4 D5 D6 D7

T

Automotive Electronics

GTM-IP Application note Revision 0.1

Robert Bosch GmbH 2/12 11.02.2013

changing to level high during an active transfer, the receiver module will abort and
report an error.

1.2 System architecture
For this application note, the GTM is configured as shown in Figure 1.2. The SPI
transceiver allocates MCS-channel 0 of an MCS instance MCS[i] and three ATOM
channels (channel 0 to 2) of an ATOM instance ATOM[i], whereas channel 0
generates the CLK signal, channel 1 the CE signal and channel 2 the SDATA signal.
All three ATOM channels are configured in PWM mode (mode SOMP), which means
that the channels are generating PWM signals with varying duty cycles. The receiver
module allocates MCS-channel 1 of an MCS instance MCS[i] and three TIM
channels 0 to 2 of a TIM instance TIM[i]. The TIM channel 0 is configured in bit
compression mode (mode TBCM), whereas the incoming CLK signal is connected to
TIM channel 0, the CE signal to TIM channel 1, and the serial input data SDATA to
TIM channel 2.

Figure 1.2: Application of the SPI functionality on the GTM device.

In order to test that both, transceiver and receiver modules work properly the outputs
of the ATOM module are directly connected to the inputs of the TIM module using the
internal loop back of the GTM configured with the registers GTM_TIM_AUX_IN_SRC
and TIM_IN_SRC. The SPI application also makes usage of the modules TBU,
providing a common time base to all TIM, ATOM, and MCS modules, and it makes
usage of the module CMU that provides a clock signal to the ATOM module.

ARU ATOM[i]

CH1

MCS[i]

CH0

CH0

CH2 SDATA

CLK

CH1 CE

TIM[i]

CH0

CH2

CH1
SDATA

CLK

CE

Loop back for testing

TBU

CMU

Automotive Electronics

GTM-IP Application note Revision 0.1

Robert Bosch GmbH 3/12 11.02.2013

Further, the application note provides a test bench, in which multiple pairs of SPI
transceiver and receiver modules are instantiated and a set of predefined data with
varying bit width W and varying bit clock periods T are send out via the SPI
transceiver. The corresponding SPI receiver module, verifies that the data of the
transceiver arrived correctly and no timeout of the bit clock period occurred.

Automotive Electronics

GTM-IP Application note Revision 0.1

Robert Bosch GmbH 4/12 11.02.2013

2 Submodule setup

2.1 CMU and TBU setup

The application note provides by a C-function

int spi_common_init(int inst);

which initializes the commonly used modules CMU and TBU. If the initialization was
successfully, the return value of this function is 0, otherwise occurred error identifier
is returned. If more than one error occurs only the last error identifier is returned. The
CMU provides a clock signal CMU_CLK0 that is used by the ATOM module as base
clock for PWM generation. The period for this signal is TCMU_CLK0 =1 us. Further, the
TBU channel 0 is configured to update its time base with the clock signal
CMU_CLK0. Finally spi_common_init connects the internal loop back between
the ATOM and the TIM channels of instance inst.

Automotive Electronics

GTM-IP Application note Revision 0.1

Robert Bosch GmbH 5/12 11.02.2013

2.2 SPI Transceiver

From the software point of view, the SPI transceiver is configured by a C-function

int spi_tx_init(int inst);

whereas the parameter inst is defining the instantiation index for allocated ATOM[i]
and the allocated MCS[i]. If the initialization was successfully, the return value of this
function is 0, otherwise occurred error identifier is returned. If more than one error
occurs only the last error identifier is returned. The function is configuring the three
ATOM channels with the PWM mode SOMP in the register ATOM[i]_CH[x]_CTRL
with x= 0..2, and it is setting up further ATOM parameters in order to signalize an idle
state on the outputs, this is implemented by setting default values to the registers
ATOM[i]_CH[x]_SR0 and ATOM[i]_CH[x]_SR1 with x= 0..2. This means, that the
output CE is set to high, and the signals CLK and SDATA are set to low. Moreover,
the function spi_tx_init establishes the ARU connection between each ATOM
channel and the common MCS channel, by writing the first three ARU write
addresses of the corresponding instance MCS[i] into its ARU read registers
ATOM[i]_CH[x]_RDADDR with x= 0..2. Considering the MCS-channel 0 of MCS
instance i, the function spi_tx_init first loads the micro code for the transceiver
into the MCS[i] RAM and additionally enables the MCS channel 0 interrupt. The
function is also enabling the three ATOM channels and configuring the ATOM
registers ATOM[i]_AGC_ENDIS_CTRL, ATOM[i]_AGC_OUTEN_CTRL, and
ATOM[i]_AGC_GLB_CTRL).

Automotive Electronics

GTM-IP Application note Revision 0.1

Robert Bosch GmbH 6/12 11.02.2013

Figure 2.1: Timing diagram with additional ATOM Registers

The SPI transceiver provides another C-function

int spi_tx_put(int inst, int data, int width, int period);

that initiates sending of new data on the SPI transceiver module. Parameter inst
denotes the instance number of the transceiver module and the parameter data
holds the value to be sent via SPI. The W lower significant bits of parameter data
are sent out via SPI. A data width parameter width (equals W in the description
above) and a bit clock period period are configured for the SPI receiver module.
The bit clock period is specified as integer multiples of the CMU period TCMU_CLK0 .If
the data sending was initialized successfully, the return value of this function is 0,
otherwise occurred error identifier is returned. If more than one error occurs only the
last error identifier is returned.

Automotive Electronics

GTM-IP Application note Revision 0.1

Robert Bosch GmbH 7/12 11.02.2013

If the function is called during an active data transmission, the function will terminate
with an error and no changes the actual configuration are applied. The
implementation of the function spi_tx_put tells the MCS micro program for the
transceiver the parameters data, period and width by writing them to variables
allocated in the MCS memory. Furthermore it triggers the MCS micro program to start
with a new data transmission, by setting the program counter to the start address of
the MCS micro code and enables the current MCS-channel (0). Moreover the
function configures the update mechanism of the ATOM channels by writing the
registers ATOM[i]_AGC_GLB_CTRL. In order to force an immediate update of the
ATOM parameters the register ATOM[i]_AGC_FUPD_CTRL also has to be
configured. To synchronize the ATOM channels to each other and to the MCS micro
program, the function spi_tx_put schedules the beginning of the PWM generation in
the ATOM channels by writing a TBU related start time to the
ATOM[i]_AGC_ACT_TB register and it tells the MCS the same start time plus one
micro second by writing this start time to another variable allocated in the MCS RAM,
marked in Figure 2.1 as spi_tx_put (sync). The additional micro second is responsible
to start with the MCS code at a counter value of 0 by the ATOM counter CN0,
marked in Figure 2.1 as (start). The MCS micro program first synchronizes to the
ATOM channels, by waiting to the scheduled start time using the WURM instruction.
After that, the MCS micro program tells the ATOM channel 1 to drive up a 50 percent
PWM for one ATOM period at the output CE and afterwards drive up a low on output
CE continuously by setting up a 0 percent PWM using the AWRI instruction, shown in
cycles (-1) and (0) of Figure 2.1. After a half period, the MCS tells the ATOM channel
0 to generate an active CLK signal by setting up a 50 percent PWM using the AWRI
instruction. The serial data bits of SDATA are generated within a loop by writing a
100 percent or 0 percent PWM value to ATOM channel 2 using the AWRI instruction
again, shown in cycles (0) to (7) Figure 2.1. After all data bits are sent out, the MCS
code is setting up the ATOM channels to drive output values for an idle state and it
rises an interrupt signalizing that the transmission is finished and finally the MCS
code disables the MCS-channel, as shown in cycle (8) of Figure 2.1.
In addition, Figure 2.1 shows the shadow and operating registers for each ATOM
channel. The AWRI instruction of the MCS writes the duty cycle values (0%, 50% or
100%) to the associated shadow registers and in the next ATOM period the content
of the shadow register is moved to the operating register. This process is shown
several times in the timing diagram for example in cycles (1) and (2) for the SDATA
signal.

Automotive Electronics

GTM-IP Application note Revision 0.1

Robert Bosch GmbH 8/12 11.02.2013

 In order to abort active SPI transfers the SPI transceiver provides a function

int spi_tx_abort(int inst);

which is aborting any active transfer and setting the associated ATOM channels to an
idle state. The Information about the abort is transferred via the RAM to the MCS
micro code. If the aborting was successfully, the return value of this function is 0 and
the MCS channel 0 of instance inst is disabled, otherwise the occurred error
identifier is returned. If more than one error occurs only the last error identifier is
returned. If the SPI transceiver is disabled or an abort is already active, the function
spi_tx_abort returns an error.

2.3 SPI Receiver

The SPI transceiver is configured by a C-function

int spi_rx_init(int inst);

whereas the parameter inst is defining the instantiation index for the allocated
module MCS[i]. If the initialization was successfully, the return value of this function
is 0, otherwise occurred error identifier is returned. If more than one error occurs only
the last error identifier is returned. The function spi_rx_init first loads the micro
code for the receiver into the MCS RAM, and enables the MCS channel interrupt.

The SPI receiver provides another C-function

int spi_rx_configure(int inst, int width, int timeout);

The parameter inst identifies the instance of the used receiver module. The return
value of this function is 0, otherwise occurred error identifier is returned. If more than
one error occurs only the last error identifier is returned. If the function is called
during an active data transmission, the function will terminate with an error and no
changes the actual configuration are applied. The underlying implementation of this
function is telling the parameters width and TIM_WRADDR(ARU write address of the
corresponding TIM channel that is used for indirect ARU read accesses to obtain the
sampled input data within the MCS-channel) to the MCS-micro program by writing
these variables to the commonly used MCS memory. The parameter timeout is used
to configure the Timeout Detection Unit (TDU) of the TIM sub module in the registers
TIM[i]_CH[x]_TDUV and TIM[i]_CH[x]_CTRL. The timeout value is specified as
integer multiples of the CMU period TCMU_CLK0.

Automotive Electronics

GTM-IP Application note Revision 0.1

Robert Bosch GmbH 9/12 11.02.2013

Function spi_rx_configure is configuring the TIM channel 0 with the bit
compression mode TBCM in the register TIM[i]_CH0_CTRL. By writing a value
0x100 to the register TIM[i]_CH0_CNTS the bit compression mode is configured in
way that it samples all neighboring channels with each falling edge of input channel 0
(CLK signal) followed by writing the sampled data together with an annoted
timestamp to its dedicated ARU write address. The Timeout Detction Unit (TDU) of
the TIM is configured to report to the associated MCS channel that a timeout event
has occurred.
Considering the MCS-channel 1 of MCS instance i, the MCS micro program is
organized in a loop which reads the sampled data from the TIM module and it
composes a parallel data word of width width from the serial input stream. The
receiver module also inspects the ACB bits in order to detect a timeout event.
Moreover, it inspects the signal CE, which has to be zero during the whole data
transfer. Additionally, the data width of a received serial word must also match the
configured data width width.

If the SPI receiver detects an error, it puts an error code in a variable and it
terminates with an MCS channel interrupt. On the other hand, if the SPI receiver
obtained a complete data word without an error it clears the error variable and raises
an MCS channel interrupt to signalize that a complete data word is received before
the MCS code disables the MCS channel.

The C-function

int spi_rx_get_error(int inst);

simply returns the state of the error variable that is associated the SPI receiver
module of instance inst. The function spi_rx_error returns one of the following
error codes:

0 – successful transfer
 21 – CE is set to high (abort occurred)
 22 – Input edge overwritten by subsequent edge
 23 – Timeout detected without valid edge

Moreover, the SPI receiver provides the C-function

int spi_rx_get(int inst);

Automotive Electronics

GTM-IP Application note Revision 0.1

Robert Bosch GmbH 10/12 11.02.2013

which returns the received data of SPI receiver module of instance inst. In the case
of a successfully transfer, the width lower significant bits denote the received data.
If an error occurred during transmission, for example the transmission is not
completed (error code 25), the returned result is 0 or the associated error. Errors are
detected by reading the error variable using function spi_rx_get_error.

Automotive Electronics

GTM-IP Application note Revision 0.1

Robert Bosch GmbH 11/12 11.02.2013

3 Test Environment

This application note also provides a test environment that is instantiating several
pairs SPI transmitter and receiver modules that are working simultaneously. The
transceiver and receiver modules are connected via the GTM internal feedback loop
as mentioned in Figure 1.2 in order to verify the results. The test environment
sending test data with varying bit clock periods T and variable word width W. The test
environment is also simulating the Abort mechanisms of the SPI modules. The Test
Environment contains the main C-function and two additional C-functions as well as
the SPI receiver interrupt function.

The starting point for the test environment is the C function

int mcs_spi_app();

which initiates the transfers between the SPI transceivers and the SPI receivers with
respect to user defined pre-processor parameters.

The C-function

int spi_print_error(int error);

simply translates error codes to readable error messages.

The Test Environment provides another C-function

int spi_fill_test_array();

which fills a test array in dependency of user limitations and random parameters.
Moreover the function intersperses the abort functionality of the SPI transceiver.

Moreover, the Test Environment provides the C-function for the ISR

int mcs_spi_rx_isr(int number);

whereas the parameter number is defining the instantiation index for the allocated
receiver interrupt. As long as the test array has data vailable, the function
mcs_spi_rx_isr will initiate new data transmissions.

Automotive Electronics

GTM-IP Application note Revision 0.1

Robert Bosch GmbH 12/12 11.02.2013

3.1 Error Codes

Error Code Meaning Function

Common initialisation Errors

ERROR(1) Wrong data received mcs_spi_rx_isr
ERROR(2) Unknown loopback mcs_spi_common
ERROR(3) Unknown loopback mcs_spi_common
ERROR(4) Not enough TIM instances mcs_spi_app
ERROR(5) Not enough MCS instances mcs_spi_app
ERROR(6) Wrong data in register CMU_CLK_EN mcs_spi_common
ERROR(7) Wrong data in register TBU_CHEN mcs_spi_common
ERROR(8) Wrong data in register TIM_IN_SRC mcs_spi_common

Transceiver Errors

ERROR(10) Wrong data in register MCS_CH_IRQ_EN spi_tx_init
ERROR(11) Wrong data in register ATOM_AGC_GLB_CTRL spi_tx_put
ERROR(12) Wrong data in register ATOM_AGC_FUPD_CTRL spi_tx_put
ERROR(13) MCS channel 0 already running spi_tx_init
ERROR(14) SPI transfer already running spi_tx_put
ERROR(15) SPI MCS channel 0 disabled no abort possible spi_tx_abort
ERROR(16) Abort already active spi_tx_abort

Receiver Errors

ERROR(21) MCS-Code: CE note enabled spi_print_error
ERROR(22) MCS-Code: Input edge overwritten by subsequent

edge
spi_print_error

ERROR(23) MCS_Code: Timeout detected without valid edge spi_print_error
ERROR(24) SPI receiver already enabled spi_rx_configure
ERROR(25) SPI transfer not completed spi_rx_get
ERROR(26) Wrong data in register MCS_CH_IRQ_EN spi_rx_configure
ERROR(27) Wrong data in register TIM_CH_CTRL spi_rx_configure

Maximum runtime Errors

ERROR(30) Too much interrupt calls mcs_spi_rx_isr
ERROR(31) Entering isr after maximum runtime mcs_spi_rx_isr

User Parameter Errors

ERROR(40) User parameter NUM_ABORTS is incorrect mcs_spi_app
ERROR(41) User parameter NUM_OF_MODES is incorrect mcs_spi_app
ERROR(42) Mode 1 not implemented mcs_spi_app

	1 Overview
	1.1 Use case
	1.2 System architecture

	2 Submodule setup
	2.1 CMU and TBU setup
	2.2 SPI Transceiver
	2.3 SPI Receiver

	3 Test Environment
	3.1 Error Codes

